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Fig. 1. Generated images on the CelebA-HQ dataset [35]. The proposed framework
allows synthesizing high-resolution images (1024×1204 pixels) using the disentangled
representation learned by VAEs.

Abstract. Learning disentangled representation of data without super-
vision is an important step towards improving the interpretability of
generative models. Despite recent advances in disentangled representa-
tion learning, existing approaches often suffer from the trade-off between
representation learning and generation performance (i.e., improving gen-
eration quality sacrifices disentanglement performance). We propose an
Information-Distillation Generative Adversarial Network (ID-GAN), a
simple yet generic framework that easily incorporates the existing state-
of-the-art models for both disentanglement learning and high-fidelity
synthesis. Our method learns disentangled representation using VAE-
based models, and distills the learned representation with an additional
nuisance variable to the separate GAN-based generator for high-fidelity
synthesis. To ensure that both generative models are aligned to ren-
der the same generative factors, we further constrain the GAN gener-
ator to maximize the mutual information between the learned latent
code and the output. Despite the simplicity, we show that the pro-
posed method is highly effective, achieving comparable image genera-
tion quality to the state-of-the-art methods using the disentangled rep-
resentation. We also show that the proposed decomposition leads to an
efficient and stable model design, and we demonstrate photo-realistic
high-resolution image synthesis results (1024x1024 pixels) for the first
time using the disentangled representations. Our code is available at
https://www.github.com/1Konny/idgan.

https://www.github.com/1Konny/idgan
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1 Introduction

Learning a compact and interpretable representation of data without supervision
is important to improve our understanding of data and machine learning systems.
Recently, it is suggested that a disentangled representation, which represents data
using independent factors of variations in data can improve the interpretability
and transferability of the representation [1,5,51]. Among various use-cases of
disentangled representation, we are particularly interested in its application to
generative models, since it allows users to specify the desired properties in the
output by controlling the generative factors encoded in each latent dimension.
There are increasing demands on such generative models in various domains,
such as image manipulation [21,28,31], drug discovery [16], ML fairness [11,36],
etc..

Most prior works on unsupervised disentangled representation learning for-
mulate the problem as constrained generative modeling task. Based on well-
established frameworks, such as the Variational Autoencoder (VAE) or the Gen-
erative Adversarial Network (GAN), they introduce additional regularization to
encourage the axes of the latent manifold to align with independent generative
factors in the data. Approaches based on VAE [9,7,18,26] augment its objective
function to favor a factorized latent representation by adding implicit [7,18] or
explicit penalties [9,26]. On the other hand, approaches based on GAN [10] pro-
pose to regularize the generator such that it increases the mutual information
between the input latent code and its output.

One major challenge in the existing approaches is the trade-off between learn-
ing disentangled representations and generating realistic data. VAE-based ap-
proaches are effective in learning useful disentangled representations in various
tasks, but their generation quality is generally worse than the state-of-the-arts,
which limits its applicability to the task of realistic synthesis. On the other hand,
GAN-based approaches can achieve the high-quality synthesis with a more ex-
pressive decoder and without explicit likelihood estimation [10]. However, they
tend to learn comparably more entangled representations than the VAE counter-
parts [9,7,18,26] and are notoriously difficult to train, even with recent techniques
to stabilize the training [26,54].

To circumvent this trade-off, we propose a simple and generic framework to
combine the benefits of disentangled representation learning and high-fidelity
synthesis. Unlike the previous approaches that address both problems jointly by
a single objective, we formulate two separate, but successive problems; we first
learn a disentangled representation using VAE, and distill the learned repre-
sentation to GAN for high-fidelity synthesis. The distillation is performed from
VAE to GAN by transferring the inference model, which provides a meaningful
latent distribution, rather than a simple Gaussian prior and ensures that both
models are aligned to render the same generative factors. Such decomposition
also naturally allows a layered approach to learn latent representation by first
learning major disentangled factors by VAE, then learning missing (entangled)
nuisance factors by GAN. We refer the proposed method as the Information
Distillation Generative Adversarial Network (ID-GAN).
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Despite the simplicity, the proposed ID-GAN is extremely effective in ad-
dressing the previous challenges, achieving high-fidelity synthesis using the learned
disentangled representation (e.g., 1024×1024 image). We also show that such de-
composition leads to a practically efficient model design, allowing the models to
learn the disentangled representation from low-resolution images and transfer it
to synthesize high-resolution images.

The contributions of this paper are as follows:

– We propose ID-GAN, a simple yet effective framework that combines the
benefits of disentangled representation learning and high-fidelity synthesis.

– The decomposition of the two objectives enables plug-and-play-style adop-
tion of state-of-the-art models for both tasks, and efficient training by learn-
ing models for disentanglement and synthesis using low- and high-resolution
images, respectively.

– Extensive experimental results show that the proposed method achieves
state-of-the-art results in both disentangled representation learning and syn-
thesis over a wide range of tasks from synthetic to complex datasets.

2 Related Work

Disentanglement learning. Unsupervised disentangled representation learning
aims to discover a set of generative factors, whose element encodes unique and
independent factors of variation in data. To this end, most prior works based
on VAE [9,18,26] and GAN [10,22,33,34] focused on designing the loss func-
tion to encourage the factorization of the latent code. Despite some encouraging
results, however, these approaches have been mostly evaluated on simple and
low-resolution images [37,41]. We believe that improving the generation quality
of disentanglement learning is important, since it not only increases the practical
impact in real-world applications, but also helps us to better assess the disentan-
glement quality on complex and natural images where the quantitative evalua-
tion is difficult. Although there are increasing recent efforts to improve the gener-
ation quality with disentanglement learning [22,33,34,45], they often come with
the degraded disentanglement performance [10], rely on a specific inductive bias
(e.g., 3D transformation [45]), or are limited to low-resolution images [22,33,34].
On the contrary, our work aims to investigate a general framework to improve
the generation quality without representation learning trade-off, while being gen-
eral enough to incorporate various methods and inductive biases. We emphasize
that this contribution is complementary to the recent efforts for designing bet-
ter inductive bias or supervision for disentanglement learning [8,38,44,48,53]. In
fact, our framework is applicable to a wide variety of disentanglement learning
methods and can incorporate them in a plug-and-play style as long as they have
an inference model (e.g., nonlinear ICA [25]).

Combined VAE/GAN models. There have been extensive attempts in litera-
ture toward building hybrid models of VAE and GAN [4,6,20,29,55]. These ap-
proaches typically learn to represent and synthesize data by combining VAE
and GAN objectives and optimizing them jointly in an end-to-end manner. Our
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method is an instantiation of this model family, but is differentiated from the
prior work in that (1) the training of VAE and GAN is decomposed into two
separate tasks and (2) the VAE is used to learn a specific conditioning variable
(i.e., disentangled representation) to the generator while the previous methods
assume the availability of an additional conditioning variable [4] or use VAE to
learn the entire (entangled) latent distribution [6,20,29,55]. In addition, extend-
ing the previous VAE-GAN methods to incorporate disentanglement constraints
is not straightforward, as the VAE and GAN objectives are tightly entangled in
them. In the experiment, we demonstrate that applying existing hybrid models
on our task typically suffers from the suboptimal trade-off between the genera-
tion quality and the disentanglement performance, and they perform much worse
than our method.

3 Background: Disentanglement Learning

The objective of unsupervised disentanglement learning is to describe each data
x using a set of statistically independent generative factors z. In this section, we
briefly review prior works and discuss their advantages and limitations.

The state-of-the-art approaches in unsupervised disentanglement learning are
largely based on the Variational Autoencoder (VAE). They rewrite their original
objective and derive regularizations that encourage the disentanglement of the
latent variables. For instance, β-VAE [18] proposes to optimize the following
modified Evidence Lower-Bound (ELBO) of the marginal log-likelihood:

Ex∼p(x)[log p(x)] ≥ Ex∼p(x)[Ez∼qφ(z|x)[log pθ(x|z)]− β DKL(qφ(z|x)||p(z))], (1)

where setting β = 1 reduces to the original VAE. By forcing the variational
posterior to be closer to the factorized prior (β > 1), the model learns a more
disentangled representation, but with a sacrifice of generation quality, since it
also decreases the mutual information between z and x [9,26]. To address such
trade-off and improve the generation quality, recent approaches propose to grad-
ually anneal the penalty on the KL-divergence [7], or decompose it to isolate the
penalty for total correlation [52] that encourages the statistical independence of
latent variables [1,9,26].

Approaches based on VAE have shown to be effective in learning disen-
tangled representations over a range of tasks from synthetic [41] to complex
datasets [3,35]. However, their generation performance is generally insufficient
to achieve high-fidelity synthesis, even with recent techniques isolating the fac-
torization of the latent variable [9,26]. We argue that this problem is fundamen-
tally attributed to two reasons: First, most VAE-based approaches assume the
fully-independent generative factors [9,18,26,37,40,51]. This strict assumption
oversimplifies the latent manifold and may cause the loss of useful information
(e.g., correlated factors) for generating realistic data. Second, they typically uti-
lize a simple generator, such as the factorized Gaussian decoder, and learn a
uni-modal mapping from the latent to input space. Although this might be use-
ful to learn meaningful representations [7] (e.g., capturing a structure in local
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Fig. 2. Overall framework of the proposed
method (ID-GAN).

Fig. 3. Comparison of disentangle-
ment vs. generation performance on
dSprites dataset.

modes), such decoder makes it difficult to render complex patterns in outputs
(e.g., textures).

4 High-Fidelity Synthesis via Distillation

Our objective is to build a generative model Gω : Z → X that produces high-
fidelity output x ∈ X with an interpretable latent code z ∈ Z (i.e., disentangled
representation). To achieve this goal, we build our framework upon VAE-based
models due to their effectiveness in learning disentangled representations. How-
ever, discussions in the previous section suggest that disentanglement learning
in VAE leads to the sacrifice of generation quality due to the strict constraints
on fully-factorized latent variables and the utilization of simple decoders. We
aim to improve the VAE-based models by enhancing generation quality while
maintaining its disentanglement learning performance.

Our main idea is to decompose the objectives of learning disentangled repre-
sentation and generating realistic outputs into separate but successive learning
problems. Given a disentangled representation learned by VAEs, we train an-
other network with a much higher modeling capacity (e.g., GAN generator) to
decode the learned representation to a realistic sample in the observation space.

Figure 2 describes the overall framework of the proposed algorithm. Formally,
let z = (s, c) denote the latent variable composed of the disentangled variable c
and the nuisance variable s capturing independent and correlated factors of vari-
ation, respectively. In the proposed framework, we first train VAE (e.g., Eq. (1))
to learn disentangled latent representations of data, where each observation x
can be projected to c by the learned encoder qφ(c|x) after the training. Then in
the second stage, we fix the encoder qφ and train a generator Gω(z) = Gω(s, c)
for high-fidelity synthesis while distilling the learned disentanglement by opti-
mizing the following objective:

min
G

max
D

LGAN(D,G)− λRID(G), (2)

LGAN(D,G) = Ex∼p(x)[logD(x)] + Es∼p(s),c∼qφ(c)[log (1−D(G(s, c)))], (3)

RID(G) = Ec∼qφ(c),x∼G(s,c)[log qφ(c|x)] +Hqφ(c), (4)
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where qφ(c) = 1
N

∑
i qφ(c|xi) is the aggregated posterior [19,39,50] of the en-

coder network4. Similar to [10], Eq. (4) corresponds to the variational lower-
bound of mutual information between the latent code and the generator output
I(c;G(s, c)), but differs in that (1) c is sampled from the aggregated posterior
qφ(c) instead of the prior p(c) and (2) it is optimized with respect to the genera-
tor only. Note that we treat Hqφ(c) as a constant since qφ is fixed in Eq.(4). We
refer the proposed model as the Information Distillation Generative Adversarial
Network (ID-GAN).

4.1 Analysis

In this section, we provide in-depth analysis of the proposed method and its
connections to prior works.

Comparisons to β-VAEs [9,18,26]. Despite the simplicity, the proposed ID-GAN
effectively addresses the problems in β-VAEs with generating high-fidelity out-
puts; it augments the latent representation by introducing a nuisance variable
s, which complements the disentangled variable c by modeling richer generative
factors. For instance, the VAE objective tends to favor representational factors
that characterize as much data as possible [7] (e.g., azimuth, scale, lighting,
etc..), which are beneficial in representation learning, but incomprehensive to
model the complexity of observations. Given the disentangled factors discovered
by VAEs, ID-GAN learns to encode the remaining generative factors (such as
high-frequency textures, face identity, etc.) into nuisance variable s. (Figure 8).
This process shares a similar motivation with a progressive augmentation of la-
tent factors [32], but is used for modeling disentangled and nuisance generative
factors. In addition, ID-GAN employs a much more expressive generator than
a simple factorized Gaussian decoder in VAE, which is trained with adversarial
loss to render realistic and convincing outputs. Combining both, our method
allows the generator to synthesize various data in a local neighborhood defined
by c, where the specific characteristics of each example are fully characterized
by the additional nuisance variable s.

Comparisons to InfoGAN [10]. The proposed method is closely related to In-
foGAN, which optimizes the variational lower-bound of mutual information
I(c;G(s, c)) for disentanglement learning. To clarify the difference between the
proposed method and InfoGAN, we rewrite the regularization for both methods
using the KL divergence as follows:

RInfo(G, q) = −Es∼p(s)[DKL(p(c)||qφ(c|G(s, c)))], (5)

Rours(G, q) = βRVAE(q) + λRID(G), where

RVAE(q) = −Ex∼p(x)[DKL(qφ(c|x)||p(c))], (6)

RID(G) = −Es∼p(s)[DKL(qφ(c)||qφ(c|G(s, c)))], (7)

4 In practice, we can easily sample c from qφ(c) by c ∼ qφ(c|x)p(x).
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where Rours summarizes all regularization terms in our method 5. See the Ap-
pendix A.1 for detailed derivations.

Eq. (5) shows that InfoGAN optimizes the forward KL divergence between
the prior p(c) and the approximated posterior qφ(c|G(s, c)). Due to the zero-
avoiding characteristics of forward KL [43], it forces all latent code c with non-
zero prior to be covered by the posterior qφ. Intuitively, it implies that InfoGAN
tries to exploit every dimensions in c to encode each (unique) factor of variations.
It becomes problematic when there is a mismatch between the number of true
generative factors and the size of latent variable c, which is common in unsuper-
vised disentanglement learning. On the contrary, VAE optimizes the reverse KL
divergence (Eq. (6)), which can effectively avoid the problem by encoding only
meaningful factors of variation into certain dimensions in c while collapsing the
remainings to the prior. Since the encoder training in our method is only affected
by Eq. (6), it allows us to discover the ambient dimension of latent generative
factors robust to the choice of latent dimension |c|.

In addition, Eq. (5) shows that InfoGAN optimizes the encoder using the
generated distributions, which can be problematic when there exists a sufficient
discrepancy between the true and generated distributions (e.g., mode-collapse
may cause learning partial generative factors.). On the other hand, the encoder
training in our method is guided by the true data (Eq. (6)) together with max-
imum likelihood objective, while the mutual information (Eq. (7)) is enforced
only to the generator. This helps our model to discover comprehensive generative
factors from data while guiding the generator to align its outputs to the learned
representation.

Practical benefits. The objective decomposition in the proposed method also
offers a number of practical advantages. First, it enables plug-and-play-style
adoption of the state-of-the-art models for disentangled representation learning
and high-quality generation. As shown in Figure 3, it allows our model to achieve
state-of-the-art performance on both tasks. (Figure 3). Second, such decomposi-
tion also leads to an efficient model design, where we learn disentanglement from
low-resolution images and distill the learned representation to the task of high-
resolution synthesis with a much higher-capacity generator. We argue that it is
practically reasonable in many cases since VAEs tend to learn global structures
in disentangled representation, which can be captured from low-resolution im-
ages. We demonstrate this in the high-resolution image synthesis task, where we
use the disentangled representation learned with 64×64 images for the synthesis
of 256× 256 or 1024× 1024 images.

5 Experiments

In this section, we present various results to show the effectiveness of ID-GAN.
Refer to the Appendix for more comprehensive results and figures.

5 In practice, we learn the encoder qφ and generator G independently by Eq. (6) and
(7), respectively, through two-step training.
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Table 1. Quantitative comparison results on synthetic datasets.
Color-dSprites Scream-dSprites Noisy-dSprites

FVM(↑) MIG(↑) FID(↓) FVM(↑) MIG(↑) FID(↓) FVM(↑) MIG(↑) FID(↓)
VAE [46] .67±.12 .16±.08 21.63±4.97 .44±.03 .08±.04 7.79±2.51 .42±.09 .05±.04 3.27±1.94

β-VAE [18] .67±.07 .32±.04 15.13±4.25 .57±.01 .29±.00 7.33±2.87 .32±.05 .05±.03 3.46±0.38
FactorVAE [26] .69±.05 .37±.02 10.71±5.73 .57±.01 .22±.06 6.35±3.27 .40±.09 .08±.04 2.48±0.44

GAN [15] N/A N/A .30±0.07 N/A N/A .11±0.03 N/A N/A 9.74±2.18
InfoGAN [10] .34± 00 .01±.01 30.55±21.17 .29± 00 .00±.00 5.77±3.93 .22±.02 .01±.01 5.51±4.22
OOGAN [34] .32±.06 .01±.00 5.67±2.48 .21±.05 .00±.00 3.70±4.31 .21±.08 .01±.00 9.52±3.75

InfoGAN-CR [33] .44±.10 .04±.02 .43±.19 .31±.08 .03±.05 6.05±5.28 .27±.02 .02±.01 48.52±57.12

ID-GAN+VAE .67±.12 .16±.08 .32±0.10 .44±.03 .08±.04 .26±0.03 .42±.09 .05±.04 1.58±0.62
ID-GAN+β-VAE .67±.07 .32±.04 .25±0.23 .57±.01 .29±.00 .18±0.02 .32±.05 .05±.03 12.42±1.13

ID-GAN+FactorVAE .69±.05 .37±.02 .75±0.54 .57±.01 .22±.06 .65±0.33 .40±.09 .08±.04 2.07±0.87

Color-dSprites Scream-dSprites

y-pos

Noisy-dSprites

x-pos

scale

ID-GAN
+β-VAE

y-pos

x-pos

scale

β-VAE

y-pos

x-pos

scale

InfoGAN

Fig. 4. Qualitative results on synthetic datasets. Both β-VAE and ID-GAN share the
same latent code, but ID-GAN exhibits substantailly higher generation quality.

5.1 Implementation Details

Compared methods. We compare our method with state-of-the-art methods
in disentanglement learning and generation. We choose β-VAE [18], Factor-
VAE [26], InfoGAN [10], OOGAN [34], and InfoGAN-CR [33] as baselines for
disentanglement learning. For fair comparison, we choose the best hyperparam-
eter for each model via extensive hyper-parameter search. We also report the
performance by training each method over five different random seeds and aver-
aging the results.

Network architecture. For experiments on synthetic datasets, we adopt the ar-
chitecture from [37] for all VAE-based methods (VAE, β-VAE, and FactorVAE).
For GAN-based methods (GAN, InfoGAN, and ID-GAN), we employ the same
decoder and encoder architectures in VAE as the generator and discriminator,
respectively. We set the size of disentangled latent variable to 10 for all methods,
and exclude the nuisance variable in GAN-based methods for a fair comparison
with VAE-based methods. For experiments on complex datasets, we employ the
generator and discriminator in the state-of-the-art GAN [42,47]. For VAE archi-
tectures, we utilize the same VAE architecture as in the synthetic datasets. We
set the size of disentangled and nuisance variables to 20 and 256, respectively.
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Evaluation metrics. We employ three popular evaluation metrics in the litera-
ture: Factor-VAE Metric (FVM) [26], Mutual Information Gap (MIG) [9], and
Fréchet Inception Distance (FID) [17]. FVM and MIG evaluate the disentan-
glement performance by measuring the degree of axis-alignment between each
dimension of learned representations and ground-truth factors. FID evaluates
the generation quality by measuring the distance between the true and the gen-
erated distributions.

5.2 Results on Synthetic Dataset

For quantitative evaluation of disentanglement, we employ the dSprites dataset [41],
which contains synthetic images generated by randomly sampling known gen-
erative factors, such as shape, orientation, size, and x-y position. Since the
complexity of dSprites is limited to analyze the disentanglement and genera-
tion performance, we adopt three variants of dSprites, which are generated by
adding color [26] (Color-dSprites) or background noise [37] (Noisy- and Scream-
dSprites).

Table 1 and Figure 4 summarize the quantitative and qualitative comparison
results with existing disentanglement learning approaches, respectively. First, we
observe that VAE-based approaches (i.e., β-VAE and FactorVAE) achieve the
state-of-the-art disentanglement performance across all datasets, outperforming
the VAE baseline and InfoGAN with a non-trivial margin. The qualitative re-
sults in Figure 4 show that the learned generative factors are well-correlated with
meaningful disentanglement in the observation space. On the other hand, Info-
GAN fails to discover meaningful disentanglement in most datasets. We observe
that information maximization in InfoGAN often leads to undesirable factoriza-
tion of generative factors, such as encoding both shape and position into one
latent code, but factorizing latent dimensions by different combinations of them
(e.g., Color-dSprites in Figure 4). ID-GAN achieves state-of-the-art disentan-
glement through the distillation of the learned latent code from the VAE-based
models. Appendix B.3 also shows that ID-GAN is much more stable to train and
insensitive to hyper-parameters than InfoGAN.

In terms of generation quality, VAE-based approaches generally perform
much worse than GAN baseline. This performance gap is attributed to the strong
constraints on the factorized latent variable and weak decoder in VAE, which
limits the generation capacity. This is clearly observed in the results on the
Noisy-dSprites dataset (Figure 4), where the outputs from β-VAE fail to render
the high-dimensional patterns in the data (i.e., uniform noise). On the other
hand, our method achieves competitive generation performance to the state-of-
the-art GAN using a much more flexible generator for synthesis, which enables
the modeling of complex patterns in data. As observed in Figure 4, ID-GAN per-
forms generation using the same latent code with β-VAE, but produces much
more realistic outputs by capturing accurate object shapes (in Color-dSprites)
and background patterns (in Scream-dSprites and Noisy-dSprites) missed by
the VAE decoder. These results suggest that our method can achieve the best
trade-off between disentanglement learning and high-fidelity synthesis.
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Table 2. Comparison of approaches using a joint and decomposed objective for disen-
tanglement learning and synthesis.

dSprites
FVM (↑) MIG (↑) FID (↓)

β-VAE (reference) 0.65±0.08 0.28±0.09 37.75±24.58
VAE-GAN 0.46±0.18 0.13±0.11 33.54±24.93
ID-GAN (end-to-end) 0.50±0.14 0.13±0.09 3.18±2.38
ID-GAN (two-step) 0.65±0.08 0.28±0.09 2.00±1.74

5.3 Ablation Study

This section provides an in-depth analysis of our method.

Is two-step training necessary? First, we study the impact of two-stage training
for representation learning and synthesis. We consider two baselines: (1) VAE-
GAN [29] as an extension of β-VAE with adversarial loss, and (2) end-to-end
training of ID-GAN. Contrary to ID-GAN that learns to represent (qφ) and syn-
thesize (G) data via separate objectives, these baselines learn a single, entangled
objective for both tasks. Table 2 summarizes the results in the dSprites dataset.

The results show that VAE-GAN improves the generation quality of β-VAE
with adversarial learning. The generation quality is further improved in the
end-to-end version of ID-GAN by employing a separate generator for synthe-
sis. However, the improved generation quality in both baselines comes with the
cost of degraded disentanglement performance. We observe that updating the
encoder using adversarial loss hinders the discovery of disentangled factors, as
the discriminator tends to exploit high-frequency details to distinguish the real
images from the fake images, which motivates the encoder to learn nuisance fac-
tors. This suggests that decomposing the representation learning and generation
objective is important in the proposed framework (ID-GAN two-step), which
achieves the best performance in both tasks.

Is distillation necessary? The above ablation study justifies the importance of
two-step training. Next, we compare different approaches for two-step training
that perform conditional generation using the representation learned by β-VAE.

Specifically, we consider two baselines: (1) cGAN and (2) ID-GAN trained
without distillation (ID-GAN w/o distill). We opt to consider cGAN as the
baseline since we find that it implicitly optimizes RID (see Appendix A.2 for the
proof). In the experiments, we train all models in the CelebA 128x128 dataset
using the same β-VAE trained on the 64× 64 resolution, and compare the gen-
eration quality (FID) and a degree of alignment between the disentangled code
c and generator output G(s, c). For comparison of the alignment, we measure
RID (Eq. (7)) and GILBO 6 [2], both of which are valid lower-bounds of mutual
information I(c;G(s, c)). Note that the comparison based on the lower-bound
is still valid as its relative order has shown to be insensitive to the tightness of
the bound [2]. Table 3 and Figure 5 summarize the quantitative and qualitative
results, respectively.

6 GILBO is formulated similarly asRID (Eq. (4)), but optimized over another auxiliary
encoder network different from the one used in RID.
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Table 3. Comparison of two-step approaches for generation (FID) and alignment (RID

and GILBO7) performance.

CelebA 128x128
FID (↓) RID (↑) GILBO [2] (↑)

ID-GAN w/o distill 5.75 -65.84 -20.40
cGAN 7.07 -17.39 -7.57
ID-GAN 6.61 -10.25 -0.19
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Fig. 5. Qualitative comparisons of various two-step approaches. All samples share the
same disentangled code c, but different nuisance variable s. (1) First column: output of
β-VAE decoder. (2) Second to fourth columns: images generated by different nuisance
variables s using various methods (rows).

As shown in the table, all three models achieve comparable generation per-
formances in terms of FID. However, we observe that their alignments to the
input latent code vary across the methods. The qualitative results (Figure 5)
also show considerable mismatch between the c and the generated images. Com-
pared to this, cGAN achieves much higher degree of alignment due to the im-
plicit optimization of RID, but its association is much loose than our method
(e.g., changes in gender and hairstyle). By explicitly constraining the generator
to optimize RID, ID-GAN achieves the best alignment.

5.4 Results on Complex Dataset

To evaluate our method with more diverse and complex factors of variation,
we conduct experiments on natural image datasets, such as CelebA [35], 3D
Chairs [3], and Cars [27]. We first evaluate our method on 64× 64 images, and
extend it to higher resolution images using the CelebA (256× 256) and CelebA-
HQ [24] (1024× 1024) datasets.

Comparisons to other methods. Table 4 summarizes quantitative comparison re-
sults (see Appendix A.4 for qualitative comparisons). Since there are no ground-
truth factors available in these datasets, we report the performance based on

7 We report both RID and GILBO without Hqφ(c) to avoid potential error in mea-
suring qφ(c) (e.g., fitting a Gaussian [2]). Note that it does not affect the relative
comparison since all models share the same qφ.
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Table 4. Quantitative results based on FID (↓).
3D chair Cars CelebA

VAE 116.46 201.29 160.06
βVAE 107.97 235.32 166.01
FactorVAE 123.64 208.60 154.48
GAN 24.17 14.62 3.34
InfoGAN 60.45 13.67 4.93
ID-GAN+βVAE 25.44 14.96 4.08
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Fig. 6. Comparisons of latent traversal between GAN-based approaches. Although both
methods achieve comparable generation quality, ID-GAN learns much more meaningful
disentanglement.

generation quality (FID). As expected, the generation quality of VAE-based
methods is much worse in natural images. GAN-based methods, on the con-
trary, can generate more convincing samples exploiting the expressive generator.
However, we observe that the baseline GAN taking only nuisance variables ends
up learning highly-entangled generative factors. ID-GAN achieves disentangle-
ment via disentangled factors learned by VAE, and generation performance on
par with the GAN baseline. To better understand the disentanglement learned
by GAN-based methods, we present latent traversal results in Figure 6. We gen-
erate samples by modifying values of each dimension in the disentangled latent
code c while fixing the rest. We observe that the InfoGAN fails to encode mean-
ingful factors into c, and nuisance variable z dominates the generation process,
making all generated images almost identical. On the other hand, ID-GAN learns
meaningful disentanglement with c and generates reasonable variations.

Extension to high-resolution synthesis. One practical benefit of the proposed
two-step approach is that we can incorporate any VAE and GAN into our
framework. To demonstrate this, we train ID-GAN for high-resolution images
(e.g., 256 × 256 and 1024 × 1024) while distilling the β-VAE encoder learned
with much smaller 64× 64 images8. This allows us to easily scale up the resolu-
tion of synthesis and helps us to better assess the disentangled factors.

We first adapt ID-GAN to the 256×256 image synthesis task. To understand
the impact of distillation, we visualize the outputs from the VAE decoder and

8 We simply downsample the generator output by bilinear sampling to match the
dimension between the generator and encoder.
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Fig. 7. Comparisons of VAE and ID-GAN outputs (top-rows: VAE, bottom-rows: ID-
GAN). Note that both outputs are generated from the same latent code, but using
different decoders. Both decoders are aligned well to render the same generative factors,
but ID-GAN produces much more realistic outputs.

Fig. 8. Analysis on the learned disentangled variables c(m) ∈ R20 and nuisance vari-
ables s(n) ∈ R256 of ID-GAN on CelebA (256×256). The samples in the first row are
generated by the β-VAE decoder and the rest are generated by ID-GAN. Each c(m) cap-
tures the most salient factors of variation (e.g.,., azimuth, hair-structure, etc..) while
s(n) contributes to the local details (e.g.,., s(2) and s(3) for curvy and straight hair,
respectively).

the GAN generator using the same latent code as inputs. Figure 7 summarizes
the results. We observe that the outputs from both networks are aligned well
to render the same generative factors to similar outputs. Contrary to blurry
and low-resolution (64 × 64) VAE outputs, however, ID-GAN produces much
more realistic and convincing outputs by introducing a nuisance variable and
employing more expressive decoder trained on higher-resolution (256 × 256).
Interestingly, synthesized images by ID-GAN further clarify the disentangled
factors learned by the VAE encoder. For instance, the first row in Figure 7 shows
that the ambiguous disentangled factors from the VAE decoder output is clarified
by ID-GAN, which is turned out to capture the style of a cap. This suggests that
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sides brightness

Fig. 9. Results on the CelebA-HQ dataset (1024× 1024 images).

ID-GAN can be useful in assessing the quality of the learned representation,
which will broadly benefit future studies.

To gain further insights on the learned generative factors by our method,
we conduct qualitative analysis on the latent variables (c and s) by generating
samples by fixing one variable while varying another (Figure 8). We observe that
varying the disentangled variable c leads to variations in the holistic structures
in the outputs, such as azimuth, skin color, hair style, etc, while varying the
nuisance variable s leads to changes in more fine-grained facial attributes, such
as expression, skin texture, identity, etc.. It shows that ID-GAN successfully
distills meaningful and representative disentangled generative factors learned by
the inference network in VAE, while producing diverse and high-fidelity outputs
using generative factors encoded in the nuisance variable.

Finally, we further conduct experiments on the more challenging task of
mega-pixel image synthesis.our ID-GAN on the VGAN architecture [47] and
adapt it to synthesize CelebA-HQ 1024 × 1024 images given factors learned by
β-VAE. Figure 9 presents the results, where we generate images by changing one
values in one latent dimension in c. We observe that ID-GAN produces high-
quality images with nice disentanglement property, where it changes one factor
of variation in the data (e.g., azimuth and hair-style) while preserving the others
(e.g., identity).

6 Conclusion

We propose Information Distillation Generative Adversarial Network (ID-GAN),
a simple framework that combines the benefits of the disentanglement repre-
sentation learning and high-fidelity synthesis. It allows us to incorporate the
state-of-the-art for both tasks by decomposing their objectives while constrain-
ing the generator by distilling the encoder. Extensive experiments validate that
the proposed method can achieve the best trade-off between realism and disen-
tanglement, outperforming the existing approaches with substantial margin.
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