
Supplementary Material for
“Learning Canonical Representations for

Scene Graph to Image Generation”

In this supplementary file we provide additional implementation details, em-
pirical results, and a proof of correctness for the SGC algorithm.

1 Scene-Graph-to-Layout

In Section 3.2, we introduced the WSGC-E and WSGC-S methods, two different
procedures proposed for mapping an input scene graph into a weighted canon-
icalized relation graph. As mentioned in Section 3.2, although the WSGC-E is
a natural extension of the SGC procedure, it is impractical for large complex
graphs whereas the WSGC-S method adds fewer edges and is thus more practi-
cal for training. In what follows, we provide additional details about WSGC-E
and WSGC-S, as well as comparison and analysis.

1.1 Exact Weighted Scene Graph Canonicalization (WSGC-E)

Next, we describe in detail the WSGC-E method for obtaining a weighted rela-
tion graph that is a natural extension of SGC. The WSGC-E begins with the
user-specified graph E, with weights of one. Next two weighted completion steps
are performed, corresponding to the SGC steps.
Converse Completion: In SGC, this step adds all converse edges. In the
weighted case it makes sense to add the converse edge with its corresponding
converse weight. For example, if the graph E contains the edge (i, above, j, 1)
and pconv(below|above) = 0.7, we add the edge (j,below, i, 0.7). See Figure 1b.
Transitive Completion: In SGC, all transitive edges are found and added.
In the weighted case, a natural alternative is to set a weight of a path to be
the product of weights along this path, and set the weight of a completed edge
(i, r, j) to be the maximum weight of a path between i and j times the probability
ptrans(r) that the relation is transitive. See Figure 1c. The maximum path weight
problem is equivalent to maximizing the sum of log probabilities, and since these
are all negative, this can be solved in polynomial time via a shortest weight
path algorithm (e.g., FW). However, when there are many nodes and relations,
runtime can still be substantial, and thus we offer a faster approach next.

Training with WSGC-E. In the main text, we described the training loss
and optimization for WSGC-S. Optimizing the loss for WSGC-E is similar, as
we explain next. We describe the loss of the WSGC-E method for a single input
scene graph E and its ground truth layout Y . The parameters of the model
are as follows: θg are the parameters of the GCN in Section 4, θtrans are the
parameters of the transitive probability (Eq. 1), and θconv are those of the con-
verse probability (Eq. 2). Let θ denote the set of all parameters. Denote the

2 Herzig et al.

a b c
Left Left

a b c a b c

(a) Input scene graph (b) Converse completion (c) Transitive completion

𝑅, 𝑝$%&' 𝑅|𝐿)+ , 𝑝-./&0 (𝑅)

𝐿, 𝑝-./&0(𝐿)

𝐿, 1

𝑅, 𝑝$%&' 𝑅|𝐿

𝐿, 1

𝑅, 𝑝$%&' 𝑅|𝐿

𝑅, 𝑝$%&' 𝑅|𝐿 𝑅, 𝑝$%&' 𝑅|𝐿

𝐿, 1 𝐿, 1

Fig. 1: An illustration of WSGC-E where relations are Left (L) and Right (R). (a) The
input graph contains two relations with weight 1. (b) Converse edges (blue dashed ar-
rows) are completed with the weights pconv. (c) Transitive edges (green dashed arrows)
are added and assigned the weight of the corresponding path times ptrans.

GCN applied to this graph by Gθg . We use L1 as the loss between predicted
and ground-truth bounding boxes Y . Namely, we wish to minimize the following
objective (we write WSGC instead of WSGC-E below for brevity):

L(θ) =
∥∥Y −Gθg (WSGC(E; θtrans, θconv))

∥∥
1

(1)

When calculating L(θ), most of the operations are standard and are differen-
tiated automatically by PyTorch. The only apparent complication is with the
minimum weight path. However, we next explain why there is actually not a
problem and one can simply take the gradient of the PyTorch computation
graph for L(θ), which includes the minimum-weight-path computation.

Recall that in WSGC-E we first weight each edge by the corresponding con-
verse weights pconvθ . Let w(e; θ) denote the weight of edge e after this weighting
step. Next, we perform a transitive completion as follows. Given an edge e′, its
new weight will be (up to the multiplicative factor of ptrans which we leave out
for brevity):

wtrans(e
′; θ) = max

P∈P

∏
e∈P

w(e; θ) = emaxP∈P
∑

e∈P logw(e;θ) (2)

where P are all the paths between the two incident nodes of e′. To calculate the
sub-gradient of this expression with respect to θ, we note that in the exponent
we have a maximum over linear functions, and thus differentiating it wrt θ corre-
sponds to finding the maximizing P∗ and then differentiating

∑
e∈P∗ logw(e; θ).

Technically, the above suggests a very simple PyTorch implementation. Im-
plement the computation graph for Eq. 1, including the non-differentiable max-
imum weight path computation. And then let PyTorch take gradients for this
graph. Since the maximum-weight-path cannot be differentiated through, the
computation will fix the maximizing path and take the gradient there, and this
is indeed the correct sub-gradient, as per our discussion above.

The downside of the WSGC-E method is that it assigns weights to all edges
in the graph, and for all relations, and thus computations involve a dense graph,
which makes training and inference slow. This motivates our use of WSGC-S
which uses sparser graphs.

Learning Canonical Representations for Scene Graph to Image Generation 3

1.2 Empirical Comparison of WSGC-E and WSGC-S

Table 1 shows a comparison of WSGC-E and WSGC-S on the standard COCO
and VG datasets, where WSGC-E runs in a reasonable time so that comparison
is possible. The size of the graphs on the standard datasets is less than an average
of 1000 triplets per image, while on the packed datasets it is 24, 000 triplets per
image. Thus it is impossible to run the WSGC-E on packed datasets. It can be
seen that the methods achieve comparable performance, suggesting that indeed
WSGC-S is a scalable alternative to WSGC-E.

Method
COCO Visual Genome

mIOU R@0.3 R@0.5 mIOU R@0.3 R@0.5

WSGC-S 5 GCN 41.9 63.3 38.2 18.0 25.9 10.6

WSGC-E 5 GCN 42.2 63.0 38.7 18.0 26.5 9.9

Table 1: Evaluation of WSGC-E and WSGC-S on Standard COCO and Visual Genome.

1.3 Analysis of Learned Weights

Our approach parameterizes the weights of converse and transitive relations and
learns these parameters from data. It is interesting to see whether the learned
weights recover known converse and transitive relations.

Inspecting the converse weights pconv that were learned on the standard
COCO dataset reveals that all weights have converged to values close to 0 and
1, and align well with the expected true converse relation. Specifically, weights
corresponding to converse pairs such as (“below”, “above”) all converged to 1,
while the rest of the pairs, such as (“left of”, “inside”) converged to 0. For
transitive weights ptrans, 5/6 of the transitive relations correctly converged to
1 and a single relation to 0. Concretely, “above”, “left of”, “right of”, “inside”
and “below” converged to 1 while “surrounding” did not. The learned values are
shown in Figure 2.

1.4 Weighted Graph Convolutional Network

In Section 4, we presented Graph Convolutional Network (GCN) [6] as a natural
architecture for the SG to layout task. We use a similar approach to recent
methods [1, 2] for this task, but modify the GCN to our weighted scene graph.
This is done by revising the graph convolution layer such that the aggregation
step of each node is set to be a weighted average, where the weights are those
in the canonical SG. In what follows, we provide additional details about our
Weighted GCN.

Each object category c ∈ C is assigned a learned embedding φc ∈ RD and
each relation r ∈ R is assigned a learned embedding ψr ∈ RD. Given an SG with

4 Herzig et al.

Fig. 2: Learned pconv and ptrans weights for the WSGC-S model on the COCO dataset.
The learned values of pconv (see a) and of ptrans (see b) are presented as function of
training iteration.

N objects, the GCN iteratively calculates a representation for each object and
each relation in the graph. Let vki ∈ Rd be the representation of the ith object in
the kth layer of the GCN. Similarly, for each edge e = (i, r, j, w) in the graph let
uke ∈ Rd be the representation of the relation in this edge. These representations
are calculated as follows. Initially we set: v0i = φo(i),u

0
e = ψr(e), where r(e)

is the relation for edge e. Next, we use three functions (MLPs) Fs, Fr, Fo, each
from RD × RD × RD to RD to obtain an updated object representation (see
Section 4.1 for implementation details). These can be thought of as processing
three vectors on an edge (the subject, relation and object representations) and
returning three new representations. Given these functions, the updated object
representation is the weighted average of all edges incident on i:1

vt+1
i =

1

c

 ∑
e=(i,r,j,w)

wFs(v
t
i,u

t
e,v

t
j) +

∑
e=(j,r,i,w)

wFo(v
t
j ,u

t
e,v

t
i)

 (3)

where c is a normalizing constant c =
∑
e=(i,r,j,w) w +

∑
e=(j,r,i,w) w. For the

edge we set: ut+1
e = Fr(v

t+1
i ,ute,v

t+1
j).

After iterating the GCN for L updates, the layout for node i is obtained by
applying an MLP with four outputs to vLi .2 Note that Fs, Fr, Fo and w depend
on learned parameters which are optimized using gradient descent.

1.5 Generalization on Packed Scenes

To further test the effect of model capacity from Table 1 in the paper, we even
trained bigger Sg2Im models with 32, 64 layers on Packed COCO, resulting in

1 Note that a box can appear both as a “subject” and an “object” thus two different
sums in the denominator and the normalization is needed because we want to obtain
a new single object representation while the number of object occurrences is varied.

2 The MLP has a sigmoid activation in the last layer so that the predicted normalized
bounding box coordinates are in [0, 1].

Learning Canonical Representations for Scene Graph to Image Generation 5

SizeShapeColor

Fig. 3: Generating images with our AttSPADE model. Given a layout of boxes, our
model generates an image using the layout into a series of residual blocks with up-
sampling layers. The layout is modeled by multiple semantic attributes per box rather
than a single class descriptor.

IOU of 36.93, 11.65. We also trained a Sg2Im model with 1024 hidden units and
16 layers, and IOU deteriorated to 37.01. These results suggest that increasing
the capacity of Sg2Im leads to overfitting and that WSGC improvement is indeed
due to canonicalization.

2 Layout-to-Image with AttSPADE

For the CLEVR dataset [3], we use a novel generator, which we refer to as
AttSPADE. This generator can be used for directly controlling attributes of the
generated image, and this is not supported by other generators such as LostGAN.
Although the generator is not the main focus of our contribution, we believe it
is of independent interest, and thus describe it in some detail below, and show
images that it generates.

2.1 The AttSPADE Model

The key idea in the AttSPADE model is to condition generation on the attribues,
as opposed to only the object class as done in current models. In what follows
we describe the model.

We consider the case where a bounding box has an associated set of at-
tributes. For example, the object category is an attribute and the size is an
attribute (with possible values “small”, “medium” and “large”). Additionally, if
a segmentation mask is provided as input, it can be added as a binary attribute.
We encode this set of attributes via a multi-hot vector z ∈ Rr that is set to one
for the corresponding attributes, and apply a FC layer to it to obtain a vector
v ∈ Rd. Next, we construct a tensor M ∈ Rd×H×W where H and W are the
boxes height and width and M [:, i, j] = v. This encodes the attributes for each
pixel in the bounding box.3 Finally, we use M as input to a SPADE [10] gen-

3 We note that different pixels may have different attributes in principle although we
don’t use this here.

6 Herzig et al.

erator to obtain the generated image. Thus, our approach simply replaces the
input of the SPADE model (which is just an object mask) with the tensor M .

Lastly, our model uses two discriminators: one for the image (to achieve a
better quality of the entire image), and one for the boxes (in order to better
capture each box). This is similar to [1, 2] but with a few modifications (see next
section). A high level description of the architecture is shown in Figure 3.

2.2 The Loss Functions

Our AttSPADE model contains several modifications of the loss functions. First,
the generator is trained with the same multi-scale discriminator and loss function
used in pix2pixHD [12], except we replace the squared error loss [8] with the hinge
loss [7, 9, 13]. Second, since our layout-to-image model generates the image from
a given layout of bounding boxes, we add a box term loss to guarantee that the
generated objects in these boxes look real. For this purpose, we crop the bounding
boxes to create object images and train the discriminator to discriminate between
real object images and generated object images. The image discriminator is
implemented as in SPADE [10].

2.3 Baseline Models

We report generation results that vary both the layout being used and the layout-
to-image component. For the layout we consider three options: (1) Ground truth
layout. (2) Our WSGC predicted layout. (3) The layout used in Sg2Im [2]. For
the image generation we use three options: (1) Our AttSpade generator. (2) The
LostGAN generator [11] (the most recent state-of-the-art generation model). (3)
The Grid2Im [1] generator, which uses the same graph model as [2]. The results
reported in [1] use a coarse version of the GT layout (i.e., the layout rounded to
a 5× 5 grid). Since this variant comes close to actually using the GT layout, we
also consider an additional version of [1] that does not use this information. We
refer to this version as “Grid2Im No-Att” (code provided by the authors of [1]).

For a fair comparison, all models were tested with the same external code
evaluation metrics.

2.4 Results

The results in Table 2 suggest that the AttSPADE model improves over pre-
vious approaches [1, 11] when generating an image from a GT layout, in both
resolutions. In addition, our end-to-end model, which includes the WSGC and
AttSPADE model, outperforms most of the baselines on the COCO and Visual
Genome datasets.

Figure 5 shows a direct comparison between different generators using GT
layout for COCO. It can be seen that AttSPADE provides higher quality images
than the other generators.

Learning Canonical Representations for Scene Graph to Image Generation 7

Resolution
Methods Inception Score FID Diversity Score

SG-to-Layout Layout-to-Image COCO VG COCO VG COCO VG

128x128

Real Images Real Images 23.0 ± 0.4 22.8 ± 1.7 - - - -
GT Layout Grid2Im [1] 12.5 ± 0.3 - 59.5 - - -
GT Layout LostGAN [11] 11.8 ± 0.3 8.9 ± 0.3 64.0 66.7 0.57 ± 0.06 0.59 ± 0.06
GT Layout AttSPADE (Ours) 15.6 ± 0.5 11.7 ± 0.8 54.7 36.4 0.44 ± 0.09 0.51 ± 0.08

WSGC LostGAN [11] 11.1 ± 0.6 8.1 ± 0.3 65.9 73.4 0.57 ± 0.06 0.58 ± 0.06
Sg2Im [2] Grid2Im [1] 10.4 ± 0.4 - 75.4 - - -
WSGC AttSPADE (Ours) 10.8 ± 0.5 10.0 ± 0.7 73.8 46.4 0.57 ± 0.06 0.58 ± 0.06

256x256

Real Images Real Images 30.3 ± 1.4 31.7 ± 2.0 - - - -
GT Layout Grid2Im [1] 16.4 ± 0.7 - 65.2 - 0.48 ± 0.09 -
GT Layout AttSPADE (Ours) 19.5 ± 0.9 16.9 ± 1.2 64.65 42.9 0.55 ± 0.11 0.62 ± 0.08
Sg2Im [2] Grid2Im [1] No-Att 6.6 ± 0.3 - 127.0 - 0.65 ± 0.05 -
WSGC AttSPADE (Ours) 13.9 ± 0.3 16.5 ± 0.7 119.1 45.7 0.70 ± 0.07 0.68 ± 0.07

Table 2: Quantitative comparisons for SG-to-image methods using Inception Score
(higher is better), FID (lower is better) and Diversity Score (higher is better). Evalu-
ation is done on the COCO-Stuff and VG datasets.

Figure 6 shows different generators that use both GT and generated layouts
for COCO. Additional qualitative results on Visual Genome can be seen in Fig-
ure 7 and Figure 8. In the generation results it can be seen that AttSPADE
produces more realistic images, when compared to other generators. Further-
more when using WSGC layout the images are qualitatively similar to using GT
layout, which suggests that WSGC produces high quality layouts.

3 Datasets

3.1 Synthetic dataset

In Section 6, a synthetic dataset which was used to explore properties of the
suggested WSGC model was presented. Example cases from this dataset are
included in Figure 4. More specifically, this dataset was utilized to evaluate the
contribution of the transitivity closure on the scene-graph-to-layout task.

Every object in this data is a square with one of two possible sizes, small or
large. The set of relations includes:

– Above - The center of the subject is above the object. This relation is tran-
sitive.

– OppositeHorizontally - The subject and the object are on opposite sides
of the image with respect to the middle vertical line. This relation is not
transitive.

– XNear - The subject and object are within distance equal to 10% of the
image with respect to the x coordinate of each center. This relation is not
transitive.

To generate SG-layout pairs for training and evaluation, we uniformly sam-
ple coordinates of object centers and object sizes and automatically compute
relations among object pairs based on their spatial locations.

8 Herzig et al.

S S

L

Opposite Horizonatlly

Above Above

S

S

Above

L

Above S L L

X Near X Near

Opposite Horizonatlly S

L S

X Near
Above

Fig. 4: Example of synthetic dataset samples. In these samples, the scene graph rela-
tions are overlaid on top of the ground truth layout. Every edge is described with a
corresponding relation type and every square object is annotated with an object type:
”S” for small and ”L” for large.

3.2 Packed Datasets

Here we describe the specific characteristics of the packed datasets presented
in the paper. For every packed dataset, only samples with at least 16 objects
per image were included. The method for constructing relations for COCO and
CLEVR is as described next. For VG, since Standard VG contains a limited
number of relations we supplement the dataset with relations as follows. For
every two graph nodes, edges representing geometric relations such as:“left”,
“right”, “above”, “below”, “inside” and “surrounding” are constructed based on
relative (x,y) coordinates. Redundant edges are removed such that the graph is
minimal. This procedure differs from the one used in [2] in two ways: first, in
[2], the decision to construct such edges is based on angles between two objects
and second, in [2], there can be up to a single constructed edge for every pair
of objects and the decision whether to construct or not is random. Hence, the
procedure proposed here results in graphs that are more complex w.r.t number
of edges and are more informative.

4 Implementation Details

4.1 Scene-Graph-to-layout

In the WSGC GCN model, we follow the implementation details proposed in
[2]. We use 5 hidden layers and an embedding layer of 128 units for each object
and relation. The functions Fs, Fr, Fo which were presented in Section 4, are all
implemented as a single 3 layers MLP with 512 units per layer. For optimization
we use Adam [4], where for θconv, θtrans we use LR of 1e−2 and otherwise we
use 1e−4.

4.2 AttSPADE

We apply Spectral Norm [9] to all the layers in both generator and discriminator.
We use the ADAM solver [5] with β1 = 0.5 and β2 = 0.999, and a learning rate
of 0.0001 for both the generator and the discriminator. All the experiments are

Learning Canonical Representations for Scene Graph to Image Generation 9

conducted on NVIDIA V100 GPUs. We use PyTorch synchronized BatchNorm
with the following batch sizes: 32 for 128× 128 and 16 for 256× 256 resolutions
(statistics are collected from all the GPUs). The FC layer that calculates v ∈ Rd
(used to construct tensor M . See Section 2), is set d to 128.

5 Proof that SGC outputs the closure C(E) (Section 3.1)

Lemma 1. The SGC procedure described in Section 3.1 of the main paper out-
puts the closure C(E).

Proof. Let G = (O,E). Denote Ĉ be the canonicalization procedure proposed.
To show Ĉ(E) = C(E), it suffices to prove that (1) C(E) ⊆ Ĉ(E) and (2)
Ĉ(E) ⊆ C(E).

Proof that Ĉ(E) ⊆ C(E):. Let there be e ∈ Ĉ(E) s.t e = (i, r, j). We split into
cases by e construction:

– Original graph edge. if e ∈ E then by C definition e ∈ C(E).

– Converse constructed edge. Therefore there exists r′ ∈ R such that
(r, r′) ∈ Rconv and (j, r′, i) ∈ E. Then (j, r′, i) ∈ C(E) and therefore
(i, r, j) = e ∈ C(E) by definition.

– Transitive constructed edge. Since e was constructed in the Transitivity
step, it must hold that r ∈ Rtrans and e was contained in the transitive
closure of r. Therefore, after the ConverseRelations step, there existed a
directed path p = (ov1 , ..., ovk) with respect to r where v1 = i and vk = j.
To prove e ∈ C(E), it is enough to show that for every edge in p it is also
in C(E). From here, since C respects transitivity, this will follow. Namely,
let there be e′ = (i′, r, j′) ∈ {(ovm , ovm+1

)|m ∈ {1, .., k}}. If e′ ∈ E, then e′ ∈
C(E) and we are done. Otherwise, by the ConverseRelations construction
step, there exists r′ such that (r, r′) ∈ Rconv and (j′, r′, i′) ∈ E. Therefore,
it follows that (j′, r′, i′) ∈ C(E) and e′ ∈ C(E) and we are done.

Proof that C(E) ⊆ Ĉ(E): For every e = (i, r, j) ∈ C(E) we need to show that
e ∈ Ĉ(E). Since e ∈ C(E), e is a relation implied by E. If e ∈ E, since Ĉ does
not drop edges, it holds that e ∈ Ĉ(E) and we’re done. Otherwise, we assume
by contradiction that e /∈ Ĉ(E). let p = (ov1 , ..., ovk) be a directed path from
oi to oj in C(E). Then, there exists e′ = (i′, r, j′) ∈ {(ovi , ovi+1)|i ≤ k} where

e′ /∈ Ĉ(E). Otherwise, if there is no such e′, we get that there is a directed path
between oi to oj and by Transitivity step construction e ∈ Ĉ(E). Therefore,
there must be econv ∈ E, such that econv = (j, r′, i) and (r, r′) ∈ Rconv. However,
from the ConverseRelations step construction, if there exists such edge we get
that e ∈ Ĉ(E), in contrary to the assumption that e /∈ Ĉ(E).

10 Herzig et al.

6 Generalization on Semantically Equivalent Graphs

Results in Table 2 of the main paper demonstrate that the learned WSGC model
is more robust to changes in the scene graph input. In this experiment, we
randomly transform each test sample scene graph into a semantically equivalent
one, and test models on the resulting sample. To generate such samples from a
given scene graph, we start by calculating all the possible location-based relations
for any pair of objects. Then, for each pair of objects we use prior knowledge
to identify pairs of converse relations, and drop one of the edges in such pairs
with probability p = 0.5. After this step, we compute the transitive closure with
respect to each relation and randomly drop (p = 0.5) each edge that does not
change the semantics of the scene graph.

Learning Canonical Representations for Scene Graph to Image Generation 11

Fig. 5: Selected GT layout-to-image generation results on COCO-Stuff dataset on 128×
128 resultion. Here, we compare our AttSPADE model, Grid2Im [1] and LostGAN [11]
on generation from GT layout of masks. (a) GT layout (only masks). (b) GT image. (c)
Generation with LostGAN [11] model. (d) Generation with Grid2Im [1]. (e) Generation
with AttSPADE model (ours).

12 Herzig et al.

Fig. 6: Selected generation results on the COCO-Stuff dataset at 256 × 256 resolution.
Here, we compare our AttSPADE model and Grid2Im [1] in two different settings:
generation from GT layout of masks and generation from scene graphs. (a) GT scene
graph. (b) GT layout (only masks). (c) GT image. (d) Generation with Grid2Im [1]
using the GT layout. (e) Generation with Grid2Im No-att [1] from the scene graph (GT
layout not used). (f) Generation with AttSPADE model (ours) using the GT layout.
(g) Generation with WSGC + AttSPADE model (ours) from the scene graph (GT
layout not used).

Learning Canonical Representations for Scene Graph to Image Generation 13

Fig. 7: Selected scene-graph-to-image results on Visual Genome dataset on 128 × 128
resolution. Here, we compare our AttSPADE model and LostGAN [11] in two different
settings: generation from GT layout of boxes and generation from scene graphs. (a)
GT scene graph. (b) GT layout (only boxes). (c) GT image. (d) Generation using
LostGAN [11] from the GT layout. (e) Generation with the WSGC + LostGAN [11]
from the scene graph (GT layout not used). (f) Generation with the AttSPADE model
(ours) from the GT Layout. (g) Generation with the WSGC + AttSPADE model (ours)
from the scene graph (GT layout not used).

14 Herzig et al.

Fig. 8: Selected scene-graph-to-image results on the Visual Genome dataset at 256×256
resolution. Here, we test our AttSPADE model in two different settings: generation from
GT layout of boxes and generation from scene graphs. (a) GT scene graph. (b) GT
layout (only boxes). (c) GT image. (d) Generation with the AttSPADE model (ours)
from the GT Layout. (e) Generation with the WSGC + AttSPADE model (ours) from
the scene graph (GT layout not used).

Learning Canonical Representations for Scene Graph to Image Generation 15

References

1. Ashual, O., Wolf, L.: Specifying object attributes and relations in interactive scene
generation. In: Proceedings of the IEEE International Conference on Computer
Vision. pp. 4561–4569 (2019)

2. Johnson, J., Gupta, A., Fei-Fei, L.: Image generation from scene graphs. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

3. Johnson, J., Hariharan, B., van der Maaten, L., Fei-Fei, L., Zitnick, C.L., Girshick,
R.: Clevr: A diagnostic dataset for compositional language and elementary visual
reasoning. In: CVPR (2017)

4. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

5. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: Int. Conf.
on Learning Representations (2015)

6. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

7. Lim, J.H., Ye, J.C.: Geometric gan. arXiv preprint arXiv:1705.02894 (2017)
8. Mao, X., Li, Q., Xie, H., Lau, Y.R., Wang, Z., Smolley, S.P.: Least squares gener-

ative adversarial networks. In: Proc. Int. Conf. Comput. Vision (2017)
9. Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for

generative adversarial networks. In: Int. Conf. on Learning Representations (2018)
10. Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with

spatially-adaptive normalization. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition. pp. 2337–2346 (2019)

11. Sun, W., Wu, T.: Image synthesis from reconfigurable layout and style. In: The
IEEE International Conference on Computer Vision (ICCV) (October 2019)

12. Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-
resolution image synthesis and semantic manipulation with conditional gans. In:
Proc. Conf. Comput. Vision Pattern Recognition (2018)

13. Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative ad-
versarial networks. In: Int. Conf. Mach. Learning (2019)

