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Abstract. Neural networks have led to major improvements in image
classification but suffer from being non-robust to adversarial changes,
unreliable uncertainty estimates on out-distribution samples and their
inscrutable black-box decisions. In this work we propose RATIO, a train-
ing procedure for Robustness via Adversarial Training on In- and Out-
distribution, which leads to robust models with reliable and robust con-
fidence estimates on the out-distribution. RATIO has similar generative
properties to adversarial training so that visual counterfactuals produce
class specific features. While adversarial training comes at the price of
lower clean accuracy, RATIO achieves state-of-the-art l2-adversarial ro-
bustness on CIFAR10 and maintains better clean accuracy.

1 Introduction

Deep neural networks have shown phenomenal success in achieving high accu-
racy on challenging classification tasks [29]. However, they are lacking in terms
of robustness against adversarial attacks [51], make overconfident predictions
[20, 21] especially on out-of-distribution (OOD) data [41, 24] and their black box
decisions are inscrutable [56]. Progress has been made with respect to all these
aspects but there is currently no approach which is accurate, robust, has good
confidence estimates and is explainable. Adversarial training (AT) [34] leads
to models robust against adversarial attacks in a defined threat model and has
recently been shown to produce classifiers with generative capabilities [46]. How-
ever, AT typically suffers from a significant drop in accuracy and is over-confident
on OOD data as we show in this paper. Adversarial confidence enhanced training
(ACET) [21] enforces low confidence in a neighborhood around OOD samples
and can be seen as adversarial training on the out-distribution. ACET leads to
models with good OOD detection performance even in an adversarial setting and
suffers from a smaller loss in clean accuracy compared to AT. However, ACET
models typically are significantly less robust than adversarially trained models.

In this paper we show that combining AT and ACET into RATIO, Robust-
ness via Adversarial Training on In- and Out-distribution, inherits the good
properties of adversarial training and ACET without, or at least with signif-
icantly reduced, negative effects, e.g. we get SOTA l2-robustness on CIFAR10
and have better clean accuracy than AT. On top of this we get reliable confidence
estimates on the out-distribution even in a worst case scenario. In particular AT
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Table 1: Summary: We show clean and robust accuracy in an l2-threat model
with ε = 0.5 and the expected calibration error (ECE). For OOD detection we
report the mean of clean and worst case AUC over several out-distributions in an
l2-threat model with ε = 1.0 as well as the mean maximal confidence (MMC) on
the out-distributions. In light red we highlight failure cases for certain metrics.
Only RATIO-0.25 (R0.25) has good performance across all metrics.
CIFAR10 Plain OE ACET M0.5 AT0.5 AT0.25 JEM-0 R0.5 R0.25

Acc. ↑ 96.2 96.4 94.1 90.8 90.8 94.0 92.8 91.1 93.5
R. Acc.0.5 ↑ 0.0 0.0 52.3 69.3 70.4 65.0 40.5 73.3 70.5
ECE (in %) ↓ 1.0 2.9 2.8 2.6 2.2 2.2 3.9 2.8 2.7

AUC ↑ 94.2 96.5 94.7 81.8 88.9 92.7 75.0 95.6 95.0
WC AUC1.0 ↑ 1.6 8.7 81.9 48.5 57.4 42.0 14.6 83.6 84.3
MMC ↓ 62.0 31.9 39.1 62.7 55.8 55.2 69.7 31.9 33.9

SVHN Plain OE ACET AT0.5 AT0.25 R0.5 R0.25

Acc. ↑ 97.3 97.6 97.8 94.4 96.7 94.3 96.8
R. Acc.0.5 ↑ 0.9 0.3 28.8 68.1 63.0 68.4 64.8
ECE ↓ 0.9 0.9 1.6 1.6 0.8 2.0 1.8

AUC ↑ 96.9 99.6 99.8 91.0 97.0 99.8 99.9
WC AUC1.0 ↑ 8.5 18.2 96.0 51.1 48.3 97.5 97.5
MMC ↓ 61.5 16.3 11.8 67.1 49.1 12.1 11.1

yields highly overconfident predictions on out-distribution images in the absence
of class specific features whereas RATIO only yields high confident predictions
if recognizable features are present. In summary, RATIO achieves high clean ac-
curacy, is robust, calibrated and has generative properties which can be used to
produce high-quality visual counterfactual explanations: see Table 1 for a sum-
mary of our results for CIFAR10 and SVHN and Table 2 for CIFAR100 and
restricted ImageNet [54].

2 Related Work

Adversarial Robustness. Adversarial attacks are small changes of an image
with respect to some distance measure, which change the decision of a classifier
[51]. Many defenses have been proposed but with more powerful or adapted at-
tacks most of them could be defeated [13, 8, 3, 38]. Adversarial training (AT) [34]
is the most widely used approach that has not been broken. However, adversarial
robustness comes at the price of a drop in accuracy [48, 50]. Recent variations are
using other losses [60] and boost robustness via generation of additional training
data [9, 1] or pre-training [26]. Another line of work are provable defenses, either
deterministic [58, 12, 37, 17] or based on randomized smoothing [33, 30, 11]. How-
ever, provable defenses are still not competitive with the empirical robustness
of adversarial training for datasets like CIFAR10 and have even worse accuracy.
We show that using AT on the in-distribution and out-distribution leads to a
smaller drop in clean accuracy and similar or better robustness.
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Confidence on In- and Out-distribution. Neural networks have been shown
to yield overly confident predictions far away from the training data [41, 24, 32]
and this is even provably the case for ReLU networks [21]. Moreover, large neural
networks are not calibrated on the in-distribution and have a bias to be overcon-
fident [20]. The overconfidence on the out-distribution has been tackled in [31, 21,
25] by enforcing low-confidence predictions on a large out-distribution dataset
e.g. using the 80 million tiny images dataset[25] leads to state-of-the-art results.
However, if one maximizes the confidence in a ball around out-distribution-
samples, most OOD methods are again overconfident [48, 21, 49, 35] and only
AT on the out-distribution as in ACET [21] or methods providing guaranteed
worst case OOD performance [35, 7] work in this worst-case setting. We show
that RATIO leads to better worst case OOD performance than ACET.
Counterfactual Explanations. Counterfactual explanations have been pro-
posed in [56] as a tool for making classifier decisions plausible, since humans
also justify decisions via counterfactuals “I would have decided for X, if Y had
been true” [36]. Other forms are explanations based on image features [22, 23].
However, changing the decision for image classification in image space for non-
robust models leads to adversarial samples [15] with changes that are visually
not meaningful. Thus visual counterfactuals are often based on generative models
or restrictions on the space of image manipulation [45, 42, 10, 18, 61, 57]. Robust
models wrt l2-adversarial attacks [54, 46] have been shown to change their de-
cision when class-specific features appear in the image, which is a prerequisite
for meaningful counterfactuals [6]. RATIO generates better counterfactuals, i.e.
the confidence of the counterfactual images obtained by an l2-adversarial attack
tends to be high only after features of the alternative class have appeared. Es-
pecially for out-distribution images the difference to AT is pronounced.
Robust, reliable and explainable classifiers. This is the holy grail of ma-
chine learning. A model which is accurate and calibrated [20] on the in-distribution,
reliably has low confidence on out-distribution inputs, is robust to adversarial
manipulation and has explainable decisions. Up to our knowledge there is no
model which claims to have all these properties. The closest one we are aware of is
the JEM-0 of [19] which is supposed to be robust, detects out-of-distribution sam-
ples and has generative properties. They state “JEM does not confidently classify
nonsensical images, so instead, ... natural image properties visibly emerge”. We
show that RATIO gets us closer to this ultimate goal and outperforms JEM-0 in
all aspects: accuracy, robustness, (worst-case) out-of-distribution detection, and
visual counterfactual explanations.

3 RATIO: Robust, Reliable and Explainable Classifier

In the following we are considering multi-class (image) classification. We have
the logits of a classifier f : [0, 1]d → RK where d is the input dimension and

K the number of classes. With ∆ = {p ∈ [0, 1]K |
∑K
i=1 pi = 1} we denote the

predicted probability distribution of f over the labels by p̂ : Rd → ∆ which

is obtained using the softmax function: p̂f,s(x) = efs(x)∑K
j=1 e

fj(x) , s = 1, . . . ,K. We
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further denote the training set by (xi, yi)
N
i=1 with xi ∈ [0, 1]d and yi ∈ {1, . . . ,K}.

As loss we always use the cross-entropy loss defined as

L(p, p̂f ) =

K∑
j=1

pj log(p̂f,j), (1)

where p ∈ ∆ is the true distribution and p̂f the predicted distribution.

3.1 Robustness via Adversarial Training

An adversarial sample of x with respect to some threat model T (x) ⊂ Rd is a
point z ∈ T (x) ∩ [0, 1]d such that the decision of the classifier f changes for z
while an oracle would unambiguously associate z with the class of x. In particular
this implies that z shows no meaningful class-associated features of any other
class. Formally, let y be the correct label of x, then z is an adversarial sample if

arg max
k 6=y

fk(z) > fy(x), z ∈ [0, 1]d ∩ T (x), (2)

assuming that the threat model is small enough such that no real class change
occurs. Typical threat models are lp-balls of a given radius ε, that is

T (x) = Bp(x, ε) = {z ∈ Rd | ‖z − x‖p ≤ ε}. (3)

The robust test accuracy is then defined as the lowest possible accuracy when
every test image x is allowed to be changed to some z ∈ T (x) ∩ [0, 1]d. Plain
models have a robust test accuracy close to zero, even for “small” threat models.

Several strategies for adversarial robustness have been proposed, but adver-
sarial training (AT) [34] has proven to produce robust classifiers across datasets
and network architectures without adding significant computational overhead
during inference (compared to randomized smoothing [33, 30, 11]).

The objective of adversarial training for a threat model T (x) ⊂ Rd is:

min
f

E(x,y)∼pin

[
max
z∈T (x)

L(ey, p̂f (z))
]
, (4)

where ey is a one-hot encoding of label y and pin(x, y) is the training distribution.
During training one approximately solves the inner maximization problem in
equation 4 via projected gradient descent (PGD) and then computes the gradient
wrt f at the approximate solution of the inner problem. The community has
put emphasis on robustness wrt l∞ but recently there is more interest in other
threat models e.g. l2-balls [53, 44, 46]. In particular, it has been noted [54, 46]
that robust models wrt an l2-ball have the property that “adversarial” samples
generated within a sufficiently large l2-ball tend to have image features of the
predicted class. Thus they are not “adversarial” samples in the sense defined
above as the true class has changed or is at least ambiguous.

The main problem of AT is that robust classifiers suffer from a significant
drop in accuracy compared to normal training [54]. This trade-off [47, 50] can be
mitigated e.g. via training 50% on clean samples and 50% on adversarial samples
at the price of reduced robustness [50] or via semi-supervised learning [55, 39, 9].
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3.2 Worst-case OOD detection via Adversarial Training on the
Out-distribution

While adversarial training yields robust classifiers, similarly to plain models it
suffers from overconfident predictions on out-of-distribution samples. Overconfi-
dent predictions are a problem for safety-critical systems as the classifier is not
reliably flagging when it operates “out of its specification” and thus its confi-
dence in the prediction cannot be used to trigger human intervention.

In order to mitigate over-confident predictions [21, 25] proposed to enforce
low confidence on images from a chosen out-distribution pout(x). A generic out-
distribution would be all natural images and thus [25] suggest the 80 million
tiny images dataset [52] as a proxy for this. While [25] consistently reduce con-
fidence on different out-of-distribution datasets, similar to plain training for the
in distribution one can again get overconfident predictions by maximizing the
confidence in a small ball around a given out-distribution image (adversarial
attacks on the out-distribution [21, 35]).

Thus [21] proposed Adversarial Confidence Enhanced Training (ACET) which
enforces low confidence in an entire neighborhood around the out-distribution
samples which can be seen as a form of AT on the out-distribution:

min
f

E(x,y)∼pin

[
L(ey, p̂f (x))

]
+ λE(x,y)∼pout

[
max

‖z−x‖2≤ε
L(1/K, p̂f (z))

]
, (5)

where 1 is the vector of all ones (outlier exposure [25] has the same objective
without the inner maximization for the out-distribution). Different from [21] we
use the same loss for in-and out-distribution, whereas they used the maximal
log-confidence over all classes as loss for the out-distribution. In our experience
the maximal log-confidence is more difficult to optimize, but both losses are
minimized by the uniform distribution over the labels. Thus the difference is
rather small and we also denote this version as ACET.

3.3 RATIO: Robustness via Adversarial Training on In-and
Out-distribution

We propose RATIO: adversarial training on in-and out-distribution. This combi-
nation leads to synergy effects where most positive attributes of AT and ACET
are fused without having larger drawbacks. The objective of RATIO is given by:

min
f

E(x,y)∼pin

[
max

‖z−x‖2≤εi
L(ey, p̂f (z))

]
+ λE(x,y)∼pout

[
max

‖z−x‖2≤εo
L(1/K, p̂f (z))

]
,

(6)
where λ has the interpretation of po

pi
, the probability to see out-distribution po

and in-distribution pi samples at test time. Here we have specified an l2-threat
model for in-and out-distribution but the objective can be adapted to different
threat models which could be different for in- and out-distribution. The surpris-
ing part of RATIO is that the addition of the out-distribution part can improve
the results even on the in-distribution in terms of (robust) accuracy. The reason
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is that adversarial training on the out-distribution ensures that spurious features
do not change the confidence of the classifier. This behavior generalizes to the
in-distribution and thus ACET (adversarial training on the out-distribution) is
also robust on the in-distribution (52.3% robust accuracy for l2 with ε = 0.5 on
CIFAR10). One problem of adversarial training is overfitting on the training set
[43]. Our RATIO has seen more images at training time and while the direct
goal is distinct (keeping one-hot prediction on the in-distribution and uniform
prediction on out-distribution) both aim at constant behavior of the classifier
over the l2-ball and thus the effectively increased training size improves gener-
alization (in contrast to AT, RATIO has its peak robustness at the end of the
training). Moreover, RATIO typically only shows high confidence if class-specific
features have appeared which we use in the generative process described next.

4 Visual Counterfactual Explanations

The idea of a counterfactual explanation [56] is to provide the smallest change of
a given input such that the decision changes into a desired target class e.g. how
would this X-ray image need to look in order to change the diagnosis from X
to Y. Compared to sensitivity based explanations [5, 59] or explanations based
on feature attributions [4] counterfactual explanations have the advantage that
they have an “operational meaning” which couples the explanation directly to
the decision of the classifier. On the other hand the counterfactual explanation
requires us to specify a metric or a budget for the allowed change of the image
which can be done directly in image space or in the latent space of a generative
model. However, our goal is that the classifier directly learns what meaningful
changes are and we do not want to impose that via a generative model. Thus we
aim at visual counterfactual explanations directly in image space with a fixed
budget for changing the image. As the decision changes, features of this class
should appear in the image (see Figure 2). Normally trained models will not
achieve this since non-robust models change their prediction for non-perceptible
perturbations [51], see Figure 1. Thus robustness against (l2-)adversarial pertur-
bations is a necessary requirement for visual counterfactuals and indeed [54, 46]
have shown “generative properties” of l2-robust models.

A visual counterfactual for the original point x classified as c = arg max
k=1,...,K

fk(x),

a target class t ∈ {1, . . . ,K} and a budget ε is defined as

x(t) = arg max
z∈[0,1]d, ‖x−z‖2≤ε

p̂f,t(z), (7)

where p̂f,t(z) is the confidence for class t of our classifier for the image z. If t 6= c
it answers the counterfactual question of how to use the given budget to change
the original input x so that the classifier is most confident in class t. Note that
in our definition we include the case where t = c, that is we ask how to change
the input x classified as c to get even more confident in class c. In Figure 2 we
illustrate both directions and show how for robust models class specific image
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Table 2: Summary for CIFAR100 and R. ImageNet (see Table 1 for details).
CIFAR100 Plain OE ACET AT0.5 AT0.25 R0.5 R0.25

Acc. ↑ 81.5 81.4 - 70.6 75.8 69.2 74.4
R. Acc.0.5 ↑ 0.0 0.0 - 43.2 37.3 45.6 42.4
ECE ↓ 1.2 7.2 - 1.3 1.5 3.2 2.0

AUC ↑ 84.0 91.9 - 75.6 79.4 87.0 86.9
WC AUC1.0 ↑ 0.4 14.6 - 29.9 24.8 55.5 54.5
MMC ↓ 51.1 21.8 - 45.8 47.1 24.4 31.0

R.Imagenet Plain OE ACET M3.5 AT3.5 AT1.75 R3.5 R1.75

Acc. ↑ 96.6 97.2 96.2 90.3 93.5 95.5 93.9 95.5
R. Acc.3.5 ↑ 0.0 0.0 6.2 47.7 47.7 36.7 49.2 43.0
ECE ↓ 0.6 1.8 0.9 0.7 0.9 0.5 0.3 0.7

AUC ↑ 92.7 98.9 97.74 83.6 84.3 86.5 97.2 97.8
WC AUC7.0 ↑ 0.0 1.8 87.54 44.2 37.5 16.3 90.9 90.6
MMC ↓ 67.9 20.6 34.85 69.2 75.2 81.8 33.6 32.3

features appear when optimizing the confidence of that class. This shows that
the optimization of visual counterfactuals can be done directly in image space.

Model Orig. ε = 0.5 ε = 1.0 ε = 1.5 ε = 2.0 ε = 2.5 ε = 3.0

P
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ship: 1.00
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ship: 1.00
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ship: 1.00
car: 0.00
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ship: 1.00
car: 0.00

ship: 1.00
car: 0.00

ship: 0.00
car: 1.00

ship: 0.00
car: 1.00

ship: 0.00
car: 1.00

ship: 0.00
car: 1.00

ship: 0.00
car: 1.00

ship: 0.00
car: 1.00

Fig. 1: Failure of a visual counterfactual for a plain model. The targeted attack
immediately produces very high confidence in both classes but instead of class
features only high-frequency noise appears because plain models are not robust.

5 Experiments

Comparison, Training and Attacks. We validate our approach on SVHN
[40], CIFAR10/100 [28] and restricted ImageNet [46]. On CIFAR10 we compare
RATIO to a pretrained JEM-0 [19] and the AT model [16] with l2 = 0.5 (M0.5)
(both not available on the other datasets). As an ablation study of RATIO we
train a plain model, outlier exposure (OE) [25], ACET [21] and AT with l2 = 0.5
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(AT0.5) and l2 = 0.25 (AT0.25), using the same hyperparameters as for our RA-
TIO training. On SVHN we use a ResNet18 architecture for all methods and on
the other datasets we use ResNet50, both with standard input normalization.
For ACET on CIFAR10 we use ResNet18 since for ResNet50 we could not obtain
a model with good worst case OOD performance as the attack seemed to fail at
some point during training (on CIFAR100 this was even the case for ResNet18
and thus we omit it from comparison). In general ACET is difficult to train. For
RATIO the additional adversarial training on the in-distribution seems to stabi-
lize the training and we did not encounter any problems. As out-distribution for
SVHN and CIFAR we use 80 million tiny images [52] as suggested in [25] and
for restricted ImageNet the remaining ImageNet classes. For the out-distribution
we always use l2-attacks with radius εo = 1 for SVHN/CIFAR and εo = 7 on
restricted ImageNet (both ACET and RATIO) whereas on the in-distribution we
use εi = 0.25 and εi = 0.5 and εi = 1.75 and εi = 3.5, respectively (both AT and
RATIO). Therefore RATIO/AT models are labeled by εi. For further training
details see the Appendix. For the adversarial attacks on in- and out-distribution
we use the recent Auto-Attack [13] which is an ensemble of four attacks, includ-
ing the black-box Square Attack [2] and three white-box attacks (FAB-attack
[14] and AUTO-PGD with different losses). For each of the white-box attacks,
a budget of 100 iterations and 5 restarts is used and a query limit of 5000 for
Square attack. In [13] they show that Auto-Attack consistently improves the
robustness evaluation for a large number of models (including JEM-x).
Calibration on the in-distribution. With RATIO we aim for reliable con-
fidence estimates, in particular no overconfident predictions. In order to have
comparable confidences for the different models we train, especially when we
check visual counterfactuals or feature generation, we first need to “align” their
confidences. We do this by minimizing the expected calibration error (ECE) via
temperature rescaling [20]. Note that this rescaling does not change the classifi-
cation and thus has no impact on (robust) accuracy and only a minor influence
on the (worst case) AUC values for OOD-detection. For details see the Appendix.
(Robust) Accuracy on the in-distribution. Using Auto-Attack [13] we eval-
uate robustness on the full test set for both CIFAR and r. Imagenet and 10000
test samples for SVHN. Tables 1 and 2 contain (robust l2) accuracy, detailed re-
sults, including l∞ attacks, can be found in the Appendix. On CIFAR10, RATIO
achieves significantly higher robust accuracy than AT for l2-and l∞-attacks. Thus
the additional adversarial training on the out-distribution with radius εo = 1
boosts the robustness on the in-distribution. In particular, RATIO0.25 achieves
better l2-robustness than AT0.5 and M0.5 at ≈ 2.7% higher clean accuracy. In ad-
dition, R0.5 yields new state-of-the-art l2-robust accuracy at radius 0.5 (see [13]
for a benchmark) while having higher test accuracy than AT0.5, M0.5. Moreover,
the l2-robustness at radius 1.0 and the l∞-robustness at 8/255 is significantly
better. Interestingly, although ACET is not designed to yield adversarial ro-
bustness on the in-distribution, it achieves more than 50% robust accuracy for
l2 = 0.5 and outperforms JEM-0 in all benchmarks. However, as our goal is to
have a model which is both robust and accurate, we recommend to use R0.25 for
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CIFAR10 which has a drop of only 2.6% in test accuracy compared to a plain
model while having similar robustness to M0.5 and AT0.5. Similar observations
as for CIFAR10 hold for CIFAR100 and for Restricted ImageNet, see Table 2,
even though for CIFAR100 AT and RATIO suffer a higher loss in accuracy. On
SVHN, RATIO outperforms AT in terms of robust accuracy trained with the
same l2-radius but the effect is less than for CIFAR10. We believe that this is
due to the fact that that the images obtained from the 80 million tiny image
dataset (out distribution) do not reflect the specific structure of SVHN numbers
which makes (worst case) outlier detection an easier task. This is supported by
the fact that ACET achieves better clean accuracy on SVHN than both OE and
the plain model while it has worse clean accuracy on CIFAR10.
Visual Counterfactual Generation. We use 500 step Auto-PGD [13] for a
targeted attack with the objective in equation 7. However, note that this non-
convex optimization problem has been shown to be NP-hard [27]. In Figure 2, 3
and 4 and in the Appendix we show generated counterfactuals for all datasets.
For CIFAR10 AT0.5 performs very similar to RATIO0.25 in terms of the emer-
gence of class specific image features. In particular, we often see the appearance
of characteristic features such as pointed ears for cats, wheels for cars and trucks,
large eyes for both cats and dogs and the antlers for deers. JEM-0 and ACET
perform worse but for both of them one observes the appearance of image fea-
tures. However, particularly the images of JEM-0 have a lot of artefacts. For
SVHN RATIO0.25 on average performs better than AT0.25 and ACET. It is in-
teresting to note that for both datasets class-specific features emerge already
for an l2-radius of 1.0. Thus it seems questionable if l2-adversarial robustness
beyond a radius of 1.0 should be enforced. Due to the larger number of classes,
CIFAR100 counterfactuals are of slightly lower quality. For Restricted ImageNet
the visual counterfactuals show class-specific features but can often be identified
as synthetic due to misaligned features.
Reliable Detection of (Worst-case) Out-of-Distribution Images. A re-
liable classifier should assign low confidence to OOD images. This is not the
case for plain models and AT. As the 80 million tiny image dataset has been
used for training for ACET and RATIO (respectively other ImageNet classes for
Restricted ImageNet), we evaluate the discrimination of in-distribution versus
out-distribution on other datasets as in [35], see the Appendix for details. We use
maxk p̂f,k(x) as feature to discriminate in-and out-distribution (binary classifi-
cation) and compute the AUC. However, it has been shown that even state-of-
the-art methods like outlier exposure (OE) suffer from overconfident predictions
if one searches for the most confident prediction in a small neighborhood around
the the out-distribution image [35]. Thus we also report the worst-case AUC by
maximizing the confidence in an l2-ball of radius 1.0 (resp. 7.0 for R. ImageNet)
around OOD images via Auto-PGD [13] with 100 steps and 5 random restarts.
Figure 5 further shows that while RATIO behaves similar to AT around sam-
ples from the data distribution, which explains similar counterfactuals, it has a
flatter confidence profile around out-distribution samples.
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Fig. 2: Visual Counterfactuals (CIFAR10): The dog image on the left is
misclassified by all models (confidence for true and predicted class are shown).
The top row shows visual counterfactuals for the correct class (how to change
the image so that it is classified as dog) and the bottom row shows how to change
the image in order to increase the confidence in the wrong prediction for different
budgets of the l2-radius (ε = 0.5 to ε = 3). More examples are in the appendix.



Adversarial Robustness on In- and Out-Distribution Improves Explainability 11

Model Orig. ε = 0.5 ε = 1.0 ε = 1.5 ε = 2.0 ε = 2.5 ε = 3.0

A
T

-0
.2

5
5: 0.03
6: 0.83

5: 0.94
6: 0.02

5: 1.00
6: 0.00

5: 1.00
6: 0.00

5: 1.00
6: 0.00

5: 1.00
6: 0.00

5: 1.00
6: 0.00

5: 0.00
6: 1.00

5: 0.00
6: 1.00

5: 0.00
6: 1.00

5: 0.00
6: 1.00

5: 0.00
6: 1.00

5: 0.00
6: 1.00

R
A

T
IO

-0
.2

5

5: 0.09
6: 0.14

5: 0.19
6: 0.25

5: 0.89
6: 0.04

5: 1.00
6: 0.00

5: 1.00
6: 0.00

5: 1.00
6: 0.00

5: 1.00
6: 0.00

5: 0.05
6: 0.65

5: 0.00
6: 0.99

5: 0.00
6: 1.00

5: 0.00
6: 1.00

5: 0.00
6: 1.00

5: 0.00
6: 1.00

Fig. 3: Visual Counterfactuals (SVHN): The 5 on the left is misclassified by
all models. We show counterfactuals for the true class the predicted class (see
Figure 2). RATIO consistently produces samples with fewer artefacts than AT.

on 1024 points from each out-distribution (300 points for LSUN CR). Using
the worst case confidences of these points we find empirical upper bounds on the
worst-case AUC under our threat model. We report both the average-case AUCs
as well as the worst-case AUCs in the Appendix.The average AUC over all OOD
datasets is reported in Tables 1 and 2. The AT-model of Madry et. al (M0.5)
perform worse than the plain model even on the average case task. However, we
see that with our more aggressive data augmentation this problem is somewhat
alleviated (AT0.5 and AT0.25). As expected ACET, has good worst-case OOD
performance but is similar to the plain model for the average case. JEM-0 has
bad worst-case AUCs and we cannot confirm the claim that “JEM does not
confidently classify nonsensical images”[19]. As expected, OE has state-of-the-
art performance on the clean task but has no robustness on the out-distribution,
so it fails completely in this regime. Our RATIO models show strong performance
on all tasks and even outperform the ACET model which shows that adversarial
robustness wrt the in-distribution also helps with adversarial robustness on the
out-distribution. On SVHN the average case OOD task is simple enough that
several models achieve near perfect AUCs, but again only ACET and our RATIO
models manage to retain strong performance in the worst case setting. The worst-
case AUC of AT models is significantly worse than that of ACET and RATIO.
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Fig. 4: Visual Counterfactuals top: RATIO-0.25 for CIFAR100 and bottom:
RATIO-1.75 for RestrictedImageNet.

Feature Generation on OOD images. Finally, we test the abilities to
generate image features with a targeted attack on OOD images (taken from
80m tiny image dataset resp. ImageNet classes not belonging to R. ImageNet).
The setting is similar to the visual counterfactuals. We take some OOD image
and then optimize the confidence in the class which is predicted on the OOD
image. The results can be found in Figure 7 and 6 and additional samples are
attached in the Appendix. For CIFAR10 all methods are able to generate image
features of the class but the predicted confidences are only reasonable for ACET
and RATIO0.25 whereas AT0.5 and JEM-0 are overconfident when no strong class
features are visible. This observation generalizes to SVHN and mostly CIFAR100
and r. Imagenet, i.e. RATIO generally has the best OOD-confidence profile.
Summary. In summary, in Table 1 and 2 we can see that RATIO0.25 resp.
RATIO1.75 is except for CIFAR100 the only model which has no clear failure
case. Here the subjective definition of a failure case (highlighted in red) is an
entry which is “significantly worse” than the best possible in this metric. Thus we
think that RATIO succeeds in being state-of-the-art in generating a model which
is accurate, robust, has reliable confidence and is able to produce meaningful
visual counterfactuals. Nevertheless RATIO is not perfect and we discuss failure
cases of all models in the Appendix.
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Fig. 5: (a) Mean confidence in true label as a function of the attack l2-radius
around CIFAR10 test images. RATIO and AT0.5 have a reasonable decay of the
confidence. (b) Mean of maximal confidence around OD-data (tiny images) over
the attack l2-radius. All methods except RATIO and ACET are overconfident.
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Fig. 6: Feature Generation for out-distribution images top: RATIO-0.25
for CIFAR100 and bottom: RATIO-1.75 for R.ImageNet

6 Conclusion and Outlook

We have shown that adversarial robustness on in-distribution and out-distribution
(as a proxy of all natural images) gets us closer to a classifier which is accurate,
robust, has reliable confidence estimates and is able to produce visual counter-
factual explanations with strong class specific image features. For the usage in
safety-critical in systems it would be ideal if these properties can be achieved in
a provable way which remains an open problem.
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Fig. 7: Feature Generation for out-distribution images (CIFAR10 (top),
SVHN (bottom)): targeted attacks towards the class achieving highest confi-
dence on original image for different budgets of the l2-radius ranging from ε = 0.5
to ε = 3. RATIO-0.25 generates the visually best images and in particular has
reasonable confidence values for its decision. While AT-0.5/AT-0.25 generates
also good images it is overconfident into the target class.
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