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Fig. 1: Each set of four images contains (left to right) a content input, a style
input, a standard style transfer output, and our proposed method’s output.
Sources of used images are available in the supplementary material.

Abstract. Both geometry and texture are fundamental aspects of vi-
sual style. Existing style transfer methods, however, primarily focus on
texture, almost entirely ignoring geometry. We propose deformable style
transfer (DST), an optimization-based approach that jointly stylizes the
texture and geometry of a content image to better match a style im-
age. Unlike previous geometry-aware stylization methods, our approach
is neither restricted to a particular domain (such as human faces), nor
does it require training sets of matching style/content pairs. We demon-
strate our method on a diverse set of content and style images including
portraits, animals, objects, scenes, and paintings. Code has been made
publicly available at https://github.com/sunniesuhyoung/DST.

Keywords: Neural style transfer, geometric deformation, differentiable
image warping

1 Introduction

The goal of style transfer algorithms is to re-render the content of one image
using the style of one or several other images. Most modern approaches [7, 18,
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2, 8, 14, 9, 20, 21, 17] capture a definition of “style” that focuses on color and
texture. Art historians and other experts on image creation, however, define
style more broadly and almost always consider the shapes and geometric forms
present in an artwork as integral parts of its style [13, 6]. Shape and form play
a vital role in recognizing the distinctive style of many artists in painting (e.g.
Picasso, Modigliani, El Greco), sculpture (e.g., Botero, Giacometti), and other
forms of media. While the results of style transfer algorithms thus far have been
impressive and have captured the public’s attention, we propose a method of
extending style transfer to better match the geometry of an artist’s style.

Style transfer methods that do not explicitly include geometry in their defi-
nition of style almost always keep the geometry of the content unchanged in the
final output. This results in the outputs of these algorithms being easily iden-
tified as altered or “filtered” versions of the content image, rather than novel
images created using the content image as a reference. Our focus in this work is
to integrate shape and geometry as important markers of style and loosen the
constraints on content as a receptive canvas. We achieve this by introducing a
domain-agnostic geometric deformation of the content image, optimized jointly
with standard style transfer losses.

Our proposed method, deformable style transfer (DST), takes two images
as the input: a content image and a style image. We assume these two images
share a domain and have some approximate alignment (e.g. both are images
of sitting animals). This is a general scenario likely to arise in recreational or
artistic uses of style transfer, as well as in tasks such as data augmentation. The
nature of this problem makes learning to transfer style challenging since the
variation in unconstrained domains and styles can not be reasonably presumed
to be captured in any feasible training set. Therefore, like other style transfer
work in this setting, we develop an optimization-based method, leveraging a pre-
trained and fixed feature extractor derived from a convolutional network (CNN)
trained for ImageNet classification.

There has been recent work on learning geometric style, using an explicit
model of landmark constellations [25] or a deformation model representing a
specific style [23]. These methods require a collection of images in the chosen
style, and work only in a specific domain (often faces, due to their importance
in culture and applications). Hence, they are not applicable to our more general
scenario. Nonetheless, we compare our results to those of the aforementioned
methods in their specific domain of faces in Section 5, and find that our method
produces equally aesthetically pleasing results despite it being more general.

In this work we propose the first, to our knowledge, method for incorpo-
rating geometry into one-shot, domain-agnostic style transfer. The key idea of
DST is to find a smooth deformation, or spatial warping, of the content image
that brings it into spatial alignment with the style image. This deformation is
guided by a set of matching keypoints, chosen to maximize the feature similarity
between paired keypoints of the two images. After roughly aligning the paired
keypoints with a rigid rotation and scaling, a simple `2 loss encourages warping
our output image in such a way that the keypoints become spatially aligned. This
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deformation loss is regularized with a total variation penalty to reduce artifacts
due to drastic deformations, and combined with the more traditional style and
content loss terms. DST’s joint, regularized objective simultaneously encourages
preserving content, minimizing the style loss, and obtaining the desired defor-
mation, weighing these goals against each other. This objective can be solved
using standard iterative techniques.

To summarize the contributions of this work:

– We propose an optimization-based framework that endows style transfer
algorithms with the explicit ability to deform a content image to match the
geometry of a style image. Our flexible formulation also allows explicit user
guidance and control of stylization tradeoffs.

– We demonstrate, for the first time, geometry-aware style transfer in a one-
shot scenario. In contrast to previous works that are limited to human faces,
DST works for images in other domains, with the assumption that they share
a domain and have some approximate alignment.

– We evaluate DST on a range of style transfer instances, with images of
faces, animals, vehicles, and landscapes, and through a user study demon-
strate that our framework can augment existing style transfer algorithms to
dramatically improve the perceived stylization quality, at minimal cost to
the percieved content preservation.

2 Related Work

Early style transfer methods relied on hand-crafted features and algorithms [10–
12, 5]. Gatys et al. [7] introduced Neural Style Transfer and dramatically im-
proved the state-of-the-art by leveraging the features of a pretrained CNN. Neu-
ral Style Transfer represents “style” using the Gram matrix of features extracted
from the shallow layers of a CNN and “content” using feature tensors extracted
from the deeper layers. The pixels of a stylized output image are directly opti-
mized to simultaneously match the style representation (of the style image) and
content representation (of the content image). Subsequent works improve upon
[7] with different complementary schemes, including spatial constraints [22], se-
mantic guidance [3], and Markov Random Field priors [18]. Other work has
improved upon [7] by replacing the objective function, style representation,
and/or content representation [20, 9, 17].

Optimization-based methods produce high quality stylizations, but they can
be computationally expensive as they require backpropagation at every itera-
tion and gradually change the image, usually at a pixel level, until the desired
statistics are matched. To overcome this limitation, model-based neural meth-
ods were introduced. These methods optimize a generative model offline, and at
test time produce a stylized image with a single forward pass. These methods
fall into two families with different tradeoffs relative to optimization-based style
transfer. Some methods [21] trade flexibility for speed and quality, quickly pro-
ducing excellent stylizations but only for a predetermined set of styles. Other
methods [15, 14] trade off quality for speed, allowing for fast transfer of arbitrary
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styles, but typically produce lower quality outputs than optimization-based style
transfer. Each family of method excels in a different regime, and in this work we
prioritize flexibility and quality over speed.

Until recently, style transfer methods could not transfer geometric style and
were limited to transferring color and texture. In much work outside the do-
main of style transfer, however, geometric transformation has been applied to
images via automatic warping. Early work required predicting a set of global
transformation parameters or a dense deformation field. Cole et al. [4] enabled
fine-grained local warping by proposing a method that takes a sparse set of con-
trol keypoints and warps an image with spline interpolation. The introduced
warping module is differentiable and thus can be trained as part of an end-to-
end system, although [4] requires pre-detected landmarks as input for its face
synthesis task.

Several recent works have attempted to combine image warping with neural
networks to learn both textural and geometric style of human portraits. Cari-
GAN [19] translates a photo to a caricature by training a Generative Adversarial
Network (GAN) that models geometric transformation with manually annotated
facial landmarks and another GAN that translates the usual non-geometric style
appearances. Face of Art (FoA) [25] trains a neural network model to automat-
ically detect 68 canonical facial landmarks in artistic portraits and uses them
to warp a photo so that the geometry of the face is closer to that of an artis-
tic portrait. WarpGAN [23], on the other hand, adds a warping module to the
generator of a GAN and trains it as part of an end-to-end system by optimizing
both the locations of keypoints and their displacements, using a dataset that
contains a caricature and photo pair for each identity.

The main distinction of our work from these efforts is that ours is not lim-
ited to human faces (or any other particular domain) and does not require of-
fline training on a specially prepared dataset. In terms of methodology, FoA
separates transferring “texture” and transferring geometry, while DST transfers
them jointly. WarpGAN treats texture and geometry jointly, but it has to learn
a warping module with paired examples in the face caricature domain while DST
does not. We show in Section 5 that results of our more general method, even
when applied to faces, are competitive with results of these two face-specific
methods.

For finding correspondences between images, two recent efforts use CNN-
based descriptors to identify matching points between paired images outside the
domain of human faces. Fully Convolutional Self-Similarity [16] is a descriptor for
dense semantic correspondence that uses local self-similarity to match keypoints
among different instances within the same object class. Neural Best-Buddies
(NBB) [1] is a more general method for finding a set of sparse cross-domain cor-
respondences that leverages the hierarchical encoding of features by pre-trained
CNNs. We use NBB in our method with post-processing, as described in detail
in the next section.
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3 Geometry Transfer via Correspondences

One path for introducing geometric style transfer is establishing spatial associ-
ations between the content and style images, and defining a deformation that
brings the content image into (approximate) alignment with the style image.
Assuming they share a domain and have similar geometry (e.g. both are images
of front-facing cars), we can aim to find meaningful spatial correspondences to
define the deformation. The correspondences would specify displacement “tar-
gets”, derived from the style image, for keypoints in the content image. Thin-
plate spline interpolation [4] can extend this sparse set of displacements to a full
displacement field specifying how to deform every pixel in the output image.

Fig. 2: Illustration of our method
using keypoints taken from FoA
(rows 1-3) or generated manually
(row 4). Keypoints are overlayed
on the content and style images
with matching points in the same
color. Naive warp indicates out-
put of standard style transfer
warped by moving source points
to target points. Figure is best
viewed zoomed-in on screen.

3.1 Finding and Cleaning Keypoints

If we fix a domain and assume availability of a training set drawn from the do-
main, we may be able to learn a domain-specific mechanism for finding salient
and meaningful correspondences. This can be done through facial landmark de-
tection [25] or through learning a data-driven detector for relevant points [16,
23]. Alternatively, we can expect a user interacting with a style transfer tool to
manually select points they consider matching in the two images. If matching
points are provided by such approaches, they can be used in DST as we show
in Figure 2. However, we are interested in a more general scenario, a one-shot,
domain-agnostic setting where we may not have access to such points. Hence we
use NBB, a generic method for point matching between images.

NBB finds a sparse set of correspondences between two images that could be
from different domains or semantic categories. It utilizes the hierarchy of deep
features of a pre-trained CNN, i.e. the characteristic that deeper layers extract
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high-level, semantically meaningful, and spatially invariant features and shallow
layers encode low-level features such as edges and color features. Starting from
the deepest layer, NBB searches for pairs of correspondences that are mutual
nearest neighbors, filters them based on activation values, and percolates them
through the hierarchy to narrow down the search region at each level. At the end
of the algorithm, it clusters the set of pixel-level correspondences into k spatial
clusters and returns k keypoint pairs.

The keypoint pairs returned by NBB, however, are often too noisy and not
sufficiently spread out to use them as they are. To provide better guidance for
geometric deformation, we modify NBB to get a cleaner and better spatially-
distributed set of pairs. Specifically, we remove the final clustering step and
return all pixel-level correspondences, usually on the order of hundreds of cor-
respondence pairs. Then we use a greedy algorithm that selects a keypoint with
the highest activation value (calculated by NBB) that is at least 10 pixels away
from any already selected keypoint. We select up to 80 keypoint pairs and filter
out keypoints with activation values smaller than 1. After the initial selection, we
map the keypoints in the style image onto the content image by finding a simi-
larity transformation that minimizes the squared distance between the two point
clusters [24]. We then additionally clean up the selected keypoints by removing
keypoints pairs that cross each other, to prevent a discontinuous warp field. (If
keypoints are provided by FoA, manual selection, or other non-NBB methods,
we skip the cleaning process and only transform the style image keypoints appro-
priately.) We refer to the keypoints in the content image as the “source points”
and the corresponding keypoints in the style image mapped onto the content
image as the “target points.” This process is illustrated in Figure 3.

3.2 Differentiable Image Warping

We specify an image deformation by a set of source keypoints P = {p1, . . . , pk}
and the associated 2D displacement vectors θ = {θ1, . . . , θk}. θ specify for each
source keypoint pi, the destination coordinates pi+θi. Following [23] we use thin-
plate spline interpolation [4] to produce a dense flow field from the coordinates of
an unwarped image I to a warped image W (I, θ). This is a closed-form procedure

which finds parameters w, v, b that minimize
∑k
i=1 ||fθ(pi + θi) − pi||2 subject

to a curvature constraint. With these parameters, we have the inverse mapping
function

fθ(q) =

k∑
i=1

wiφ(||q − pi − θi||) + vT q + b (1)

where q denotes the location of a pixel in the warped image and φ is a kernel
function which we choose to be φ(r) = r2 log(r). fθ(q) gives the inverse mapping
of the pixel q in the original image; i.e. the pixel coordinates in the unwarped
image from which we should derive the color of pixel q in the warped image. The
color of each pixel can then be generated through bilinear sampling. This entire
warping module is differentiable with respect to θ, allowing it to be optimized
as part of an end-to-end system.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3: An image can be spatially deformed by moving a set of source points
to a set of target points. Matching keypoints are indicated by color. (a) Con-
tent image with all correspondences. (b) Style image with all correspondences.
(c) Content image with original NBB keypoints. (d) Style image with original
NBB keypoints. (e) Content image with our selected keypoints. (f) Style image
with our selected keypoints. (g) Content image with keypoints aligned by just
matching the centers. (h) Content image warped with keypoints aligned by a
similarity transformation. The lines indicate where the circle source points move
to (square target points). Figure is best viewed zoomed-in on screen.

4 Spatially Guided Style Transfer

The input to DST consists of a content image Ic, a style image Is, and aligned
keypoint pairs P (source) and P ′ (target). Recall that these points don’t have
to be infused with explicit domain- or category-specific semantics. DST opti-
mizes the stylization parameters (usually the pixels of the output image) X and
the deformation parameters θ. The final output is the warped stylized image
W (X, θ).

4.1 Content and Style Loss Terms

DST can be used with any one-shot, optimization-based style transfer method
with a content loss and a style loss. In this work, we demonstrate our framework
with two such methods: Gatys et al. [7] and Kolkin et al. [17], which we will
refer to as Gatys and STROTSS, respectively. Each method defines a content
loss Lcontent(Ic, X) and a style loss Lstyle(Is, X). These aim to capture the vi-
sual content of Ic and the visual style of Is in the output X. Below we briefly
summarize the content/style loss of these methods. For more details, we direct
the reader to [7, 17].

Gatys represents “style” in terms of the Gram matrix of features extracted
from multiple layers of a CNN and “content” as the feature tensors extracted
from another set of layers. It defines Lcontent as the squared-error between the
feature representation of the content image and that of the output image. Sim-
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ilarly, it defines Lstyle as the weighted sum of the squared-error between the
Gram matrix of the style image and that of the output image.

STROTSS, inspired by the concept of self-similarity, defines Lcontent as the
absolute error between the normalized pairwise cosine distance between fea-
ture vectors extracted from the content image and those of the output image.
STROTSS’s Lstyle is composed of three terms: the Relaxed Earth Movers Dis-
tance (EMD), the moment matching term, and the color matching term. Relaxed
EMD helps transfer the structural forms of the style image to the output image.
The moment matching term, which aims to match the mean and covariance of
the feature vectors in the two images, combats over-or under-saturation. The
color matching term, defined as the Relaxed EMD between pixel colors, encour-
ages the output image and the style image to have a similar palette.

When using DST with a base style transfer method, we do not change any-
thing about Lcontent. The style loss of DST is composed of two terms

Lstyle(Is, X) + Lstyle(Is,W (X, θ)). (2)

The first loss term is between the style image Is and the unwarped stylized
image X. The second term is between Is and the spatially deformed stylized
image W (X, θ), with θ defining the deformation as per Section 3. Minimizing
Eq. (2) is aimed at finding a good stylization both with and without spatial
deformation. This way we force the stylization parameters X and the spatial
deformation parameters θ to work together to produce a harmoniously stylized
and spatially deformed final output W (X, θ).

4.2 Deformation Loss Term

Given a set of k source points P and matching target points P ′, we define the
deformation loss as

Lwarp(P, P ′, θ) =
1

k

k∑
i=1

‖p′i − (pi + θi)‖2, (3)

where pi and p′i are the i-th source and target point coordinates. Minimizing
Eq. (3) with respect to θ seeks a set of displacements that move the source
points to the target points. This term encourages the geometric shape of the
stylized image to become closer to that of the style.

Aggressively minimizing the deformation loss may lead to significant arti-
facts, due to keypoint match errors or incompatibility of the content with the
style geometry. To avoid these artifacts, we add a regularization term encour-
aging smooth deformations. Specifically, we use the (anisotropic) total variation
norm of the 2D warp field f normalized by its size

RTV(f) =
1

W×H

W∑
i=1

H∑
j=1

‖fi+1,j − fi,j‖1 + ‖fi,j+1 − fi,j‖1. (4)

This regularization term smooths the warp field by encouraging nearby pixels
to move in a similar direction.
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4.3 Joint Optimization

Putting everything together, the objective function of DST is

L(X, θ, Ic, Is, P, P
′) = αLcontent(Ic, X) (5)

+ Lstyle(Is, X) + Lstyle(Is,W (X, θ))

+ βLwarp(P, P ′, θ)

+ γRTV(fθ),

where X is the stylized image and θ parameterizes the spatial deformation.
Hyperparameters α and β control the relative importance of content preservation
and spatial deformation to stylization. Hyperparameter γ controls the amount
of regularization on the spatial deformation. The effect of varying α is analyzed
in [7, 17]. The effect of changing β and γ is illustrated in Figure 4. We use
standard iterative techniques such as stochastic gradient descent or L-BFGS to
minimize Eq. (5) with respect to X and θ. Implementation details can be found
in the supplementary material and the published code. 1

Fig. 4: DST outputs with varying β and γ using STROTSS as the base method.
Image in the upper right corner (low β, high γ) has the least deformation, and
the image in the bottom left corner (high β, low γ) has the most deformation.

5 Results

We observe that DST often captures the geometric style of the target style im-
age. One visually striking effect is that the resulting images no longer look like
“filtered” versions of the original content, as they often do with standard style
transfer methods. We show results of DST with Gatys and STROTSS in Fig-
ures 5 and 6. For a pair of content and style images, we show the output of

1 https://github.com/sunniesuhyoung/DST
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DST and the output of Gatys/STROTSS that doesn’t have the spatial defor-
mation capability. To highlight the effect of the DST-learned deformation, we
also provide the content image warped by DST and the Gatys/STROTSS out-
put naively warped with the selected keypoints without any optimization of the
deformation. While naive warping produces undesirable artifacts, DST finds a
warp that harmoniously improves stylization while preserving content.

As a simple quantitative evaluation, we calculated the (STROTSS) style loss
on 185 pairs of DST and STROTSS outputs. Surprisingly, we found that on
average this loss was 7% higher for DST outputs than STROTSS ones, even
for examples we show in Figure 6. While the loss difference is small, this is a
mismatch with the human judgment of stylization quality shown in Section 5.2.

Fig. 5: DST results with Gatys. ?Naively warped by moving source points to
target points. †Warp learned by DST applied to the content image.

5.1 Comparison with FoA and WarpGAN

While, so far as we are aware, DST is the first work to allow open-domain
geometry-aware style transfer, other work has tackled this problem in the domain
of human faces. To compare performance, we show results of DST and results of
FoA [25] and WarpGAN [23] on the same content-style pairs in Figure 7. Note
that both of these methods require training a model on a dataset of stylized
portraits or caricatures, while DST operates with access to only a single content
and single style image.
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Fig. 6: DST results with STROTSS. ?Naively warped by moving source points
to target points. †Warp learned by DST applied to the content image.

Content Style DST FoA Content Style† DST WarpGAN
(a) (b)

Fig. 7: Comparison of DST with (a) FoA and (b) WarpGAN. †: Note that Warp-
GAN’s does not use a specific style image, so this style image is only used by
DST; see text for details.
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DST jointly optimizes the geometric and non-geometric stylization parame-
ters, while FoA transfers geometric style by warping the facial landmarks in the
content image to a specific artist’s (e.g. Modigliani) canonical facial landmark
pattern (with small variations added) learned by training a model on a dataset
of stylized portraits. FoA then separately transfers textural style with a stan-
dard style transfer method (e.g. Gatys, STROTSS). When we compare DST and
FoA in Figure 7, we demonstrate “one-shot FoA” since the style images used to
produce the outputs in [25] are unavailable. That is, we assume that we have
access to one content image, one style image, and the trained FoA landmark de-
tector. Using the detector, we find 68 facial landmarks in the content and style
images and transform the style image landmarks, as described in Section 3, to
get the target points. Then we follow FoA’s two-step style transfer and transfer
the textural style by STROTSS and transfer the geometric style by warping the
output image by moving the source points to the target points.

The biggest difference between WarpGAN and DST is that DST is a one-shot
style transfer method that works with a single content image and a single style
image. WarpGAN, on the other hand, is trained on a dataset of paired pictures
and caricatures of the same identities, and generates a caricature for an input
content image from its learned deformation model. To compare the performance
of WarpGAN and DST, we used content/style image pairs from [23] and ran
DST. In Figure 7, we show the outputs of DST and the outputs of WarpGAN
taken from [23]. Despite the lack of a learning component, DST results are
competitive and sometimes more aesthetically pleasing than results of FoA and
WarpGAN.

5.2 Human Evaluation

Quantitatively evaluating and comparing style transfer is challenging, in part
because of the subjective nature of aesthetic properties defining style and visual
quality, and in part due to the inherent tradeoff between content preservation
and stylization [26, 17]. Following the intuition developed in these papers, we
conducted a human evaluation study using Amazon Mechanical Turk on a set
of 75 diverse style/content pairs. The goal was to study the effect of DST on
the stylization/content preservation tradeoff, in comparison to the base style
transfer methods. The evaluation was conducted separately for STROTSS and
Gatys-based methods. We considered three DST deformation regimes: low (β =
0.3,γ = 75), medium (β = 0.5,γ = 50), and high (β = 0.7,γ = 10) for STROTSS;
low (β = 3,γ = 750), medium (β = 7,γ = 100), and high (β = 15,γ = 100) for
Gatys. So for each base method, we compare four stylized output images. The
effect of varying β and γ is illustrated in Figure 4.

To measure content preservation, we asked MTurk users the question: “Does
image A represent the same scene as image B”, where A referred to the content
image and B to the output of style transfer. The users were forced to choose one
of four answers: “Yes”, “Yes, with minor errors”, “Yes, with major errors” and
“No”. Converting these answers to numerical scores (1 for “No”, 4 for “Yes”) and
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averaging across content/style pairs and users, we get a content score between
1 and 4 for each of the four methods.

To evaluate the effect of the proposed deformable framework, we presented
the users with a pair of outputs, one from the base method (Gatys or STROTSS)
and the other from DST, along with the style image. The order of the first two is
randomized. We asked the users to choose which of the two output images better
matches the style. The fraction of time a method is preferred in all comparisons
(across methods compared to, users, content/style pairs) gives a style score be-
tween 0 and 1. 0.7 means that the method “wins” 70% of all comparisons it was
a part of. The evaluation interfaces are provided in the supplementary material.

In total, there were 600 unique content comparisons: 4 questions×75 images
for Gatys and an equal number for STROTSS. 123 users participated in the
evaluation, and each comparison was evaluated by 9.55 users on average. The
standard deviation of the content choice agreement was 0.79 (over a range of 1
to 4). For stylization, there were 450 unique comparisons in total: 3 comparisons
between the base method and each of the 3 DST deformation regimes×75 images
for Gatys and likewise for STROTSS. 103 users participated in the stylization
evaluation, and each comparison was evaluated by 8.76 users on average. For
each comparison, 6.47 users agreed in their choice on average.

Results of this human evaluation are shown in Figure 8. Across the deforma-
tion regimes (low, medium, high), for both STROTSS and Gatys, DST signifi-
cantly increases the perceived stylization quality, while only minimally reducing
the perceived content preservation. Note that some reduction to the content score
can be expected since we intentionally alter the content more by deforming it,
but our evaluation shows that this drop is small.

Fig. 8: Human evaluation re-
sults, comparing DST in dif-
ferent deformation regimes with
STROTSS (green) and Gatys
(blue). DST provides a much
higher perceived degree of style
capture without a significant sac-
rifice in content preservation.
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5.3 Limitations

In Figure 9, we show unsuccessful examples of DST where the output image did
not deform towards having a similar shape as the style image or deformed only
partially. We observed that bad deformations often stem from poorly matching or
too sparse set of keypoints. We expect finding better matching keypoints between
images and making the method more robust to poor matches will improve results.

Fig. 9: Examples of DST failures. We
observed that stylization failures are
often due to correspondence errors
or overly complex scene layout.

6 Conclusion

Prior work on style transfer has largely ignored geometry and shape, despite
the role these play in visual style. We present deformable style transfer (DST), a
novel approach that combines the traditional texture and color transfer with spa-
tial deformations. Our method incorporates deformation targets, derived from
domain-agnostic point matching between content and style images, into the ob-
jective of an optimization-based style transfer framework. This is to our knowl-
edge the first effort to develop a one-shot, domain-agnostic method for capturing
and transferring geometric aspects of style.

Still many aspects of geometric style transfer remain unexplored. Narrow-
ing this might involve developing more robust keypoint matching algorithms for
highly stylized images. Furthermore, it is by no means certain that modifying
geometry using warp fields driven by paired keypoints is the most effective ap-
proach to this problem. We hope that future work will continue to explore how to
represent geometric style more flexibly, and more accurately encode the artistic
extraction and abstraction of shape and form.
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