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Abstract. Deep neural networks have achieved remarkable successes in
learning feature representations for visual classification. However, deep
features learned by the softmax cross-entropy loss generally show ex-
cessive intra-class variations. We argue that, because the traditional
softmax losses aim to optimize only the relative differences between
intra-class and inter-class distances (logits), it cannot obtain represen-
tative class prototypes (class weights/centers) to regularize intra-class
distances, even when the training is converged. Previous efforts mit-
igate this problem by introducing auxiliary regularization losses. But
these modified losses mainly focus on optimizing intra-class compact-
ness, while ignoring keeping reasonable relations between different class
prototypes. These lead to weak models and eventually limit their per-
formance. To address this problem, this paper introduces a novel Radial
Basis Function (RBF) distances to replace the commonly used inner
products in the softmax loss function, such that it can adaptively assign
losses to regularize the intra-class and inter-class distances by reshap-
ing the relative differences, and thus creating more representative pro-
totypes of classes to improve optimization. The proposed RBF-Softmax
loss function not only effectively reduces intra-class distances, stabilizes
the training behavior, and reserves ideal relations between prototypes,
but also significantly improves the testing performance. Experiments on
visual recognition benchmarks including MNIST, CIFAR-10/100, and
ImageNet demonstrate that the proposed RBF-Softmax achieves better
results than cross-entropy and other state-of-the-art classification losses.
The code is at https://github.com/2han9x1a0release/RBF-Softmax.

1 Introduction

Recent years witnessed the breakthrough of deep Convolutional Neural Networks
(CNNs) on various visual recognition tasks [15, 11, 21, 27, 13]. State-of-the-art
deep learning based classification methods benefit from the following three fac-
tors: large-scale training datasets [23, 7], powerful network architectures [24, 9,
26, 11, 17], and effective training loss functions [33, 4, 29, 36, 20], which make deep
neural networks the dominant model for visual classification. The cross-entropy
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(a) Softmax
(98.74%)

(b) Prototype [1]
(98.93%)

(c) Center Loss [33]
(99.05%)

(d) cos-softmax [32]
(99.04%)

(e) LGM Loss [29]
(98.97%)

(f) RBF-Softmax
(99.20%)

Fig. 1: MNIST 2-D feature visualization of various losses. Intra-class feature dis-
tributions of sub-figure 1(a), 1(b) and 1(d) exhibit that conventional classifica-
tion losses without additional regularization terms suffer from large intra-class
sample-prototype distances (logits). Except proposed RBF-Softmax, class proto-
types of all other losses and centers of their corresponding features have certain
biases more or less.

softmax loss function and some of its variants [29, 4, 36] have been widely adopted
for tackling the classification problem and enhancing the discriminativeness of
the learned representations.

In deep classification tasks, the input image is firstly transformed into high-
dimensional feature vector by Convolutional Neural Networks. To determine its
class label, the similarities or distances between the feature vector and class pro-
totypes (also called class weight vectors, class centers or class representations),
namely sample-prototype distances, are calculated to get the logits. Convention-
ally, metrics including inner product, cosine [18] and Euclidean distance [29, 36]
were exploited to produce logits.

In most existing methods, the logits of an input sample are normalized across
all classes by a softmax function to generate the class probabilities. Besides the
softmax function, other choices include methods like RBF Network [2], Bayesian
formula and Gaussian distribution [29]. During the training process, classification
probabilities of each input sample are optimized towards its ground-truth by the
cross-entropy loss.

Euclidean distance is often used as the similarity metric for feature vectors
because it is easy to calculate, and has clear geometric meaning. The learned im-
age feature distributions are often expected to have small intra-class distances
and sufficiently large inter-class distances. However, the existing softmax loss
and its variants do not directly optimize the Euclidean distances, but rather the
relative differences between the intra-class logits and inter-class logits. Specifi-
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cally, when the distance between a sample to its corresponding class prototype
is relatively smaller than its distances to other class prototypes, the penalty
from the softmax loss will be small, but the distance to its corresponding class
prototype might still be large. Therefore, contrastive loss [3] and triplet loss [10]
were proposed to directly optimize the Euclidean distance and yielded better
performance in practice. But such losses are subject to difficulties in mining
effective sample pairs and training convergence, and thus cannot completely re-
place the traditional softmax losses. Subsequently, DeepID2 [25], center loss [33]
and range loss [37] jointly utilized the metric loss and traditional softmax loss
for supervision, and achieved great success in face recognition. Along this direc-
tion, CPL [36] and LGM [29] algorithms added intra-class distance regularization
terms into the softmax function to regularize the feature distributions. However,
such terms still face the challenge of extra unstable regularization losses. Fig. 1
shows MNIST 2-D feature distributions of some of these losses. Moreover, in
section 4.1 we will fully exhibit that most of these variants improve the discrim-
inativeness of class prototypes rather than their semantic representativeness, by
which we mean the reasonable relations between class prototypes.

In this paper, we propose a Radial Basis Function softmax (RBF-Softmax)
loss function for visual classification. The key idea is to reshape the Euclidean
distances between the sample features and class prototypes with RBF kernel,
before feeding them into the softmax function for normalization. RBF-Softmax
loss function can more effectively minimize intra-class Euclidean distances, and
increase expansion of multi-class distribution with keeping reasonable class re-
lations simultaneously.

On the one hand, for optimizing the intra-class Euclidean distances, the pro-
posed RBF kernel can provide more balanced supervisions in the early training
stages and distance-sensitive supervisions in the later training stages. In the early
training stage, all features of the same class are likely to be scattered sparsely
in the feature space due to the random initialization, leading to large intra-class
variations with large logits. With the RBF kernel, the samples in the same class
would have similar penalties no matter whether they have different Euclidean
distances to the class prototypes, leading to stable convergence behavior. When
the training is close to convergence, existing loss functions tend to provide very
few supervision due to the relatively large inter-class distances. For features be-
longing to the same class, they still have the potential to be closer to the class
prototype. The sample-to-prototype similarities by the RBF kernel have greater
change rates than their original Euclidean distances or inner products to the
class prototype, which are able to provide sufficient supervisions even close to
convergence.

On the other hand, our proposed RBF kernel logits can effectively reshape
and bound the logits, and then results in more balanced ratios between intra-class
and inter-class logits. And the resulting class prototypes are more representative
and, in turn, lead to better classification performance.

Extensive experiments on validating the effectiveness of the proposed RBF-
Softmax loss has been tested on multiple visual recognition benchmarks, includ-
ing MNIST [16], CIFAR-10/CIFAR-100 [14] and ImageNet [23]. Experiments
show that the RBF-Softmax outperforms state-of-the-art loss functions on vi-
sual classification on all the tested benchmarks.
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The contributions of this paper could be summarized in to three-fold: (1)
We argue that the main defect caused by biased loss allocations of conventional
softmax loss can lead to weak models and imperfect class prototypes; (2) We
therefore proposed an effective RBF-Softmax loss to address aforementioned
defect by using RBF kernel to control loss allocations; (3) We proved that RBF-
Softmax can generate ideal class prototypes as well as improve classification
performance through extensive experiments.

2 Related Works

Classification losses. Visual classification is the fundamental problems in com-
puter vision and the advances of visual classification also promote related re-
search directions One of its major components is how to design effective classi-
fication loss functions. The designs of classification losses are usually dependent
on the classification criterion during inference. In face recognition, the testing
phase requires to calculate the cosine similarity between face images. Based on
this demand, a series of cosine based softmax losses [6, 31] and their margin-
based variants [32, 30, 4] were proposed and achieved great success. In prototype
learning, samples need to be abstracted into feature vectors with one or more
centers in a high-dimensional space. [1] and CPL [36] directly adopt the Eu-
clidean distance as the classification score of prototype metrics.

Euclidean distance based losses. Metric learning has been an important
research area of machine learning and deep learning. Commonly used Euclidean
distance based losses include contrastive loss [3] and triplet loss [10]. Specifically,
Euclidean losses take distances among samples as optimization objectives and
strive to reduce distances between samples within the same classes while enlarge
distances between samples across different classes. However, such a design can
cause difficulties in mining efficient sample pairs or triplets. [34] showed that
the different sampling methods have significants impact on networks’ training
behavior as well as the final performances. Therefore, Euclidean distance based
losses are often used for fine-tuning rather than training from scratch.

Regularization for classification based losses. The joint supervision of
classification loss and Euclidean distance based loss was adopted to train deep
neural networks. Such combinations of loss terms results in more stable train-
ing behaviors. The success of Center Loss [33], Range Loss [37], Ring Loss [38],
CPL [36], g-Softmax [20] and LGM [29] in face recognition and visual classifi-
cation have proven that such joint supervision is a better trade-off in training
deep models.

3 Radial Basis Function Softmax Loss

In this section, we will first recall the significance of class prototypes and analyze
two problems in the conventional softmax cross-entorpy loss and its variants [1]
(Sec. 3.1). Then we will introduce the proposed RBF-Softmax in details in Sec.
3.2. How RBF-Softmax solve defects faced by traditional softmax loss is further
explained and discussed to demonstrate its effectiveness in visual classification
(Sec. 3.3).
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3.1 Analysis of the Softmax Cross-entropy Losses and Prototypes

Considering a classification task with C-class where the traditional softmax loss
is used. xi is the feature vector of one specific sample belonging to class yi ∈
[1, C], its softmax cross entropy loss is calculated as

LSoftmax(xi) = − logPi,yi = − log
efi,yi∑C
k=1 e

fi,k
, (1)

where Pi,yi is the probability that xi being assigned to its ground-truth class
yi, and the logit fi,j represents the affinity between the sample feature xi and
class prototypes W j . Particularly, when j = yi, logit fi,yi is the affinity be-
tween sample feature xi to its corresponding class prototype W yi , which is
called the intra-class sample-prototype distance or intra-class logit in this paper.
Conversely, when j 6= yi, logit fi,j is named as the inter-class sample-prototype
distance or inter-class logit. To measure the similarity between a sample feature
and class prototypes, inner product and Euclidean distance were widely used, for
example fi,j = W j

Txi in Softmax loss and fi,j = −α‖xi −W j‖22 in prototype
learning [1] and CPL [36].

In these losses, a prototype can be seen as the representation of all sample
features in a specified class. Intuitively, an ideal prototype should be the geomet-
ric center of all corresponding feature vectors. Therefore, prototype is required
to have significant representativeness, which includes two aspects:

1. Prototypes should effectively discriminate and categorize samples from dif-
ferent classes. The inter-class distances are larger than intra-class distances;

2. Prototypes should demonstrate the relations among classes, which means
similar classes is more closer than absolutely different classes.

These aspects can be demonstrate in Fig. 2(a). In this figure, there are three
different classes: hamsters, squirrels, and tables. Hamsters and squirrels are sim-
ilar, while both of them are very different from tables. Therefore, ideal sampels
and prototypes distribution should ensure that every class is separable with other
classes, but keep some similar classe prototypes closer.

During training, network parameters are gradually optimized to minimize
the loss functions. The final feature distributions highly rely on prototypes as
well as the losses used. The above mentioned existed logit calculations may lead
to two defects in properly supervising the feature learning.

Biased loss allocation at the beginning of training. The class proto-
type vector W j can be considered to be the mean representation of all samples
in class j. Since the network in early training stages are not fully optimized, W j

as well as xi tend to be somewhat random and do not have valid semantic infor-
mation. Therefore, distances between features xi and their corresponding class
prototypes W yi cannot correctly represent their similarities. This fact indicates
that samples should receive constrained training losses to avoid the negative
impact of outliter (see illustration in Fig. 2(b)). Tabel 1 shows the intra-class
sample-class distances in early-stage intra-class have large variances, which result
in significant differences in loss for intra-class samples.
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Fig. 2: Fig (a) is sampels and prototypes demonstration. Black spots represent
prototypes of classes and solid color spots represent sample features. Sample
features and prototypes of similar classes (hamster and squirrel) are separable,
but have much closer distances than absolutely different class (table). Fig 2(b)
is feature distribution at early training stage. Since features have not been well
embedded at this stage, the loss value of each sample should be relatively similar.
However, there might be large variances in different samples’ loss values. Fig 2(c)
is feature distribution diagram of late stage. The intra-class sample-prototype
distance dintra of the annotated xi is relatively larger than other samples in its
class yi. Therefore its expected loss value should also be large. However, since
dinters are much larger than dintra, resulting in a rather small loss, so xi can
not be further optimized.

Eventually, such biased loss allocation may hinder the models training be-
havior and cause significant bias between class prototypes and real feature dis-
tribution centers.

Table 1: Intra-class sample-prototype distance at early training stage. For differ-
ent feature dimensions, the range as well as the variances of intra-class sample-
prototype distances are very large at the early training stage on the MNIST
dataset with a 6-layer convolutional network.

Feat. Dim.
Early Intra-class sample-prototype distance
Min. Max. Avg. Variance

2 0.01 59.52 6.59 146.65
32 8.08 206.17 54.27 1186.8
128 15.72 271.18 69.97 2284.84

Large intra-class sample-prototype distance at late training stage.
During late training stage, softmax loss also leads to problematic phenomenons.
As shown in Fig. 2(c), when a sample xi’s inter-class sample-prototype distances
(For example its distances to other class prototypes, fi,j for j 6= yi) are signif-
icantly larger than its intra-class logit fi,yi , this sample will receive small loss
value and thus small gradients during optimization even when the intra-class
logit fi,yi is large. Compared to other samples in class yi, feature xi needs a
larger loss in order to get close to its corresponding class prototype W yi . How-
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ever, since the softmax loss focuses on optimizing relative differences between
intra-class and inter-class logits and cannot generate enough penalty for this
case.

To further illustrate this issue, we analyze from the perspective of the sample
gradient. According to Eq. (1), the gradient w.r.t. feature vector xi is

∂L(xi)

∂xi
=

C∑
j=1

(Pi,j − 1(yi = j)) · ∂fi,j
∂xi

, (2)

where 1 is the indicator function and fi,j is the logit between xi and W j . The
classification probability Pi,j is calculated by the softmax function. When j = yi,
if the relative difference between inter-class and intra-class logit of xi is large
enough, Pi,yi will be very close to 1 and then the gradient of xi will be small.
At this time, the intra-class logit may still be large.

According to the above analysis, existing softmax cross-entropy loss has the
problems of biased loss allocation at early training stages and large intra-class
sample-prototype distance at late training stages. Therefore, we argue that solv-
ing these two defects by designing a new loss function can effectively optimize
the model training.

3.2 RBF-Softmax loss function

To fix the above mentioned defects in existing softmax loss functions, we propose
a distance named Radial Basis Function kernel distance (RBF-score) between xi

and W j to measure the similarities between a sample feature xi and different
classes’ weights W j ,

Ki,j = KRBF(xi,W j) = e−
di,j
γ = e−

‖xi−W j‖
2
2

γ , (3)

where di,j is the Euclidean distance between xi and W j , and γ is a hyperpa-
rameter. Compared to the Euclidean distance and inner product that are un-
bounded, RBF-score decreases as the Euclidean distance increases and its values
range from 0 (when di,j → ∞) to 1 (when xi = W j). Intuitively, RBF-score
well measures the similarities between xi and W j and can be used as the logits
in the softmax cross-entropy loss function.

Formally, we define the Radial Basis Function Softmax loss (RBF-Softmax)
as

L(xi)RBF-Softmax = − logPi,yi = − log
es·KRBF(xi,W yi

)∑C
k=1 e

s·KRBF(xi,W k)

= − log
es·e

−
di,yi
γ∑C

k=1 e
s·e−

di,k
γ

,

(4)

where di,j = ‖xi −W j‖22, j ∈ {1, · · · , C} and the hyperparameter s is a scale
parameter in order to enlarge the range of RBF-scores. Similar hyperparameter
has been extensively discussed in some cosine-based softmax losses [18, 19, 31,
31, 32, 4], in order to enlarge the range of RBF-scores.
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3.3 Analysis of RBF-Softmax

In this subsection, we analyze two aspects of our proposed RBF-Softmax loss
function: (1) the mechanism how the RBF-Softmax overcome two defects men-
tioned above; (2) the effects of two hyperparameters in RBF-Softmax.

Overcome the inappropriate penalties. RBF-Softmax essentially solves
the above mentioned problems by adopting the original inner products or Eu-
clidean distances as logits in a more reasonable way. On the one hand, it is
important to balance each sample’s intra-class logits at the early training stage.
The initial values of intra-class logits are generally all very large. By adopting
the RBF-score, the RBF kernel can map the very large Euclidean distances to
very small RBF-scores as logits, thereby significantly reducing the intra-class
variance. Then, due to the small variances of the intra-class RBF-score at early
training stage, the loss allocation of samples belonging to the same classes is
unbiased. On the other hand, at the late training stage, traditional softmax
probabilities easily reach 1 on corresponding classes (gradients become 0), while
RBF probabilities are much more difficult to reach 1 and can continually pro-
vide gradients for training.In this way, the proposed RBF-Softmax can better
aggregate samples to their corresponding class centers, thereby improving the
performance of model.

Effects of hyperparameters. Hyperparameters (γ and s) of the proposed

RBF-Softmax affect the training of model to some extent. Let Ki,yi = e−
di,yi
γ

be the RBF-score between feature xi and its corresponding class prototype Wyi ,
di,yi = ‖xi −W yi‖22 is the Euclidean distance, and Pi,yi is the probability of xi
being assigned to its corresponding class yi.
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Fig. 3: Fig 3(a) is curves of Ki,yi w.r.t. di,yi when choosing different γ parameters.
Fig 3(b) and Fig 3(c) are curves of Pi,yi w.r.t. di,yi and Ki,yi when choosing
different scale s parameters.

Fig. 3(a) shows the mapping of di,yi to Ki,yi under different γ hyperparam-
eters. When γ is larger, RBF-score Ki,yi obtained by the specified di,yi will be
larger, and the similarity between the sample and their corresponding class pro-
totypes would be higher, which means that the task becomes easier. Fig 3(b) and
Fig 3(c) shows the mapping of di,yi and Ki,yi to Pi,yi under different s hyperpa-
rameters. Our experiments show that when j 6= yi, di,j is generally much larger,
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causing the value of Ki,j to be close to 0. Moreover, s controls the range of pi,yi ,
and the difficulty of the classification task: for the fixed di,yi or Ki,yi , smaller s
leads to narrower range and smaller value of Pi,yi , making the classification task
harder.

The same conclusion can be drawn from the perspective of the gradient. The
corresponding gradients of RBF-Softmax are as follows:

∂LRBF-Softmax

∂xi
=

C∑
j=1

(Pi,j − 1(yi = j)) · s ·Ki,j
∂di,j
∂xi

, (5)

∂LRBF-Softmax

∂W j
= (Pi,j − 1(yi = j)) · s ·Ki,j

∂di,j
∂W j

, (6)

where Ki,j = e−
di,j
γ and di,j = ‖xi −W j‖22. In these gradients, RBF-scores

are factors of gradients and determine their lengths. Therefore the change in
hyperparameters can affect the norm of gradients and eventually the performance
of models.

4 Experiments

In this section, we first exhibit several exploratory experiments on different pro-
totypes, and then investigate the effectiveness and sensetiveness of different hy-
perparameters s and γ on the MNIST [16] dataset in Sec. 4.2. After that we
evaluate the performances of proposed RBF-Softmax and compare with sev-
eral state-of-the-art loss functions on CIFAR-10/100 [14] (in Sec. 4.3) and Ima-
geNet [23] (in Sec. 4.4).

4.1 Exploratory Experiments on Prototypes

In order to analyze the prototypes of different softmax losses, here we use Word-
Net [5] and CIFAR-100 [14] as demonstrations. WordNet [5] is a widely used
electronic lexical database, which can calculate the similarities between different
English words from the perspective of computational linguistics. CIFAR-100 [14]
dataset contains 100 classes which can be grouped into 20 superclasses, such as
reptiles, flowers and etc. In each superclasses, there are 5 different but similar
subclasses. Therefore, we can get a similarity matrix of all 100 classes in CIFAR-
100 [14] by using WordNet [5] similarities. Fig. 4(a) exhibits such 100 × 100
WordNet [5] similarity matrix of CIFAR-100 [14], where the indexes of subclasses
from the same superclass are continuous. Here we use WUP similarities [35] to
measure the relations of classes. Paler block color means the two corresponding
classes are more similar while darker color means two classes are more different.
The WordNet [5] similarity matrix can be seen as the groundtruth. Then we
trained ResNet-50 [9] models with conventional softmax loss and cosine based
softmax loss [18] on CIFAR-100 [14], and computed their class prototype similar-
ity matrices respectively. Fig. 4(b) and Fig. 4(c) imply that the relations among
classes are not reserved by prototypes in these loss functions.
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(a) WordNet (b) Softmax (c) Cos-Softmax [18] (d) RBF-Softmax

Fig. 4: Prototypes similarity matrices of WordNet [5] and different losses. The
color of every block represents the degree of similarity between classes. Lighter
block color means higher similarity.

To further explore the representativeness of class prototypes in these losses,
we introduce two indicators: comparisons between similarity matrices and Calinski-
Harabaz index of all 100 subclasses. By calculating the comparisons of similarity
matrices, the differences between prototype similarity matrices and WordNet [5]
similarity matrices can evaluate weather trained prototypes can reserve semantic
information. Calinski-Harabaz (CH) index is a widely used validation of cluster
algorithm. We expect subclasses in a same superclass are compact while differ-
ent superclasses are separable. Tab.2 exhibits all result of these two indicators.
We first measure the similarities between matrix in Fig. 4(a) and other matri-
ces in Fig. (b), (c), and (d). Matrix of RBF-Softmax is more similar to Word-
Net [5] matrix. Moreover, prototypes in RBF-Softmax have significantly higher
Calinski-Harabaz index. These results preliminarily tell that models trained with
RBF-Softmax are more representative.

Table 2: Representativeness experiments on CIFAR-100 [14] prototypes. Sim-
ilartities between WordNet matrix and others show whether prototypes keep
reasonable class relations. CH indexes indicate whether classes under the same
superclass is gathered.

Losses Similarity of Simi. Mat. Calinski-Harabaz Index

WordNet [5] 1.00 Not Appliable
Softmax 0.17 ± 0.05 2.81 ± 0.21
Cos-Softmax [18] 0.09 ± 0.04 1.68 ± 0.10
RBF-Softmax 0.36 ± 0.11 7.33 ± 0.25
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4.2 Exploratory Experiments on MNIST

We first use MNIST [16] to investigate RBF-Softmax. All experiments of MNIST [16]
are trained with a simple 6-layer CNN, where all convolutinal kernels are 5× 5
and the activation function is PReLU [8].

Table 3: Recognition accuracy (%) on MNIST with different s and γ hyperpa-
rameters and feature dimensions.

Hyperparameter
Feature Dimension

2-D 10-D 32-D

γ = 1.0
s = 2.0 99.20% 99.68% 99.71%
s = 4.0 99.29% 99.65% 99.69%
s = 8.0 99.25% 99.56% 99.61%

s = 2.0
γ = 1.00 99.20% 99.68% 99.71%
γ = 1.3 99.15% 99.54% 99.65%
γ = 2.0 99.03% 99.36% 99.42%

Tables 3 exhibit the impacts of hyperparameter s and γ on models perfor-
mance respectively. Fig. 5 partly visualizes the feature distributions of different
s parameters. According to these results, we find that fixing s to 2.0 and γ to
1.0 for model can outshine other configurations. Results in Table 4 compares
the performances of state-of-the-art loss functions on MNIST [16]. The only dif-
ference of these models is their loss functions, where RBF-Softmax follows the
mentioned setting. In the MNIST [16] dataset, our RBF-Softmax outperforms
all other losses. According to Sec. 3.3, both γ and s can change the constraint
of RBF-Softmax. These experiments shows that too strong or too weak con-
straint can lead to performance degradation and RBF-Softmax is not sensitive
to hyperparameters selected within a reasonable range.

Table 4: Recognition accuracy (%) on MNIST with different compared losses.
The are all trained with a 6-layer CNN and different losses for three times to
obtain the average accuracies. The feature dimension is 32.

Method 1st 2nd 3rd Avg. Acc.

Softmax 99.28% 99.27% 99.25% 99.27%
RBF Networks [2] 97.42% 97.07% 97.36% 97.28%
Center Loss [33] 99.66% 99.64% 99.64% 99.65%
Ring Loss [38] 99.56% 99.59% 99.58% 99.58%
ArcFace [4] 99.60% 99.55% 99.62% 99.59%
LGM [29] 99.41% 99.35% 99.40% 99.39%
RBF-Softmax 99.70% 99.73% 99.75% 99.73%
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(a) s = 1 (99.18%) (b) s = 2 (99.20%) (c) s = 4 (99.29%) (d) s = 8 (99.25%)

Fig. 5: MNIST 2-D feature visualization when trained with different hyperpa-
rameters s.

4.3 Experiments on CIFAR-10/100

CIFAR-10 and CIFAR-100 [14] each contains 50, 000 training images and 10, 000
testing images, which are 32 × 32 color images. For the data augmentation
scheme, horizon flipping (mirroring) and 32× 32 random cropping after 4-pixel
zero-padding on each side are adopted to all the training procedures [9].

Table 5: Recognition accuracy rates (%) on CIFAR-10 using ResNet-20 [9] and
DenseNet-BC (k = 12) [12] models with different loss functions.

Loss Functions
Accuracy on CIFAR-10

Settings
ResNet-20 [9] DenseNet-BC (k = 12) [12]

Softmax 91.25% 95.49% [9, 12]
G-CPL [36] 91.63% – [36]

Center Loss [33] 91.85% 95.77% [33]

RBF-Softmax

92.26% 95.83% γ=2, s=3
92.42% 95.95% γ=2, s=4
92.61% 96.13% γ=1.8, s=4
92.77% 96.11% γ=1.6, s=4

For CIFAR-10 [14], we train the ResNet-20 [9] and DenseNet-BC (k = 12) [12]
with different loss functions. All ResNet-20 [9] models are trained with a batch
size of 256 for 300 epochs. The initial learning rate is 0.1 and is then divided by 2
every 60 epochs. In DenseNet-BC (k = 12) [12] models, we use batch size 128 for
300 epochs, and the learning rate is set to 0.1 and then divided by 10 at the 150th
epoch and the 225th epoch respectively. The recognition accuracy are exhibited
in Table 5. For ResNet-20 [9] and DenseNet-BC (k = 12) [12], our RBF-Softmax
achieves state-of-the-art 92.77% and 96.13% accuracy respectively.

For CIFAR-100 [14], we train VGGNet-19 [24] with different loss functions.
All RBF-softmax trainings follow the same setting: models are trained with batch
size 128 for 600 epochs; the initial learning rate is 0.1, and is divided by 2 at the
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Table 6: Recognition accuracy rates (%) on CIFAR-100 using VGGNet-19 [24]
models with different loss functions and hyperparameter settings.

Loss Functions
Accuracy on CIFAR-100

Settings
VGGNet-19 [24]

Softmax 72.23% -

Center Loss [33] 73.02% [33]
G-CPL [36] 72.88% [36]

RBF-Softmax

72.72%±0.03% γ=2.2, s=10
73.98%±0.02% γ=2.2, s=14
72.62%±0.05% γ=1.0, s=12
71.77%±0.04% γ=4.0, s=12

100th, 300th and 500th epoch, and by 5 at 200th, 400th and 600th epoch. The
results of CIFAR-100 [14] are shown in Table 6 and RBF-Softmax again shows
state-of-the-art performances on VGGNet-19 [24] architectures.

4.4 Experiments on ImageNet

We investigate the performance of proposed RBF-Softmax on large-scale visual
classification task using the ImageNet [23] dataset (ILSVRC2012). In order to
show that the proposed RBF-Softmax is effective on various network architec-
tures, the performed experiments using both manually designed mdoels (like
ResNet [9]) and automatically searched architectures (like EfficientNet [28]). In
all ImageNet [23] experiments, models are combined with conventional softmax
loss and our RBF-Softmax, respectively.

Table 7: Recognition accuracy (%) on ILSVRC2012 [23].

Networks Methods Single-crop Top-1 Acc. Settings

ResNet-50 [9]
Softmax 76.8% -
RBF-Softmax 77.1% s = 8; γ = 4

EfficientNet-B0 [28]
Softmax 75.1% -
RBF-Softmax 75.3% s = 35; γ = 16

EfficientNet-B1 [28]
Softmax 75.9% -
RBF-Softmax 76.6% s = 35; γ = 16

EfficientNet-B4 [28]
Softmax 78.8% -
RBF-Softmax 79.0% s = 35; γ = 16

All models are trained on 8 NVIDIA GeForce GTX TITAN X GPUs on 1.28
million images and evaluated for both top-1 and top-5 accuracies on the 50k
validation images. Most of the training processes follow settings in [22]. For
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training ResNet [9], the input images are single-cropped to 224× 224 pixels. For
EfficientNet [28], the training image size varies following its original paper. We
use simple training processes without any training enhancements, like DropOut,
DropConnect, AutoAugment, and etc. We apply SGD with momentum of 0.9
as optimization method and generally train for 100 epochs. During training, we
use cosine schedule with 5 epoch gradual warmup as learning rate policy. The
initial learning rate of ResNet [9] is 0.1, and 0.2 for EfficientNet [28]. The batch
size of most models is 256 except EfficientNet-B4 [28]. Because of the limitation
of GPU memory, batch size of EfficientNet-B4 is 96. The results are expressed in
Table 7, where RBF-Softmax beats conventional softmax loss for both manually
designed models and automatically searched models.

5 Conclusions

In this paper, we identify biased loss allocation and large intra-class logits
(scores) as two primary defects prevent some conventional softmax losses from
achieving ideal class prototypes and accurate classification performances. To
address this problem, we propose Radial Basis Function softmax loss (RBF-
Softmax) which applies RBF-kernel logits to the softmax cross-entropy loss in
order to reasonably allocate losses and optimize intra-class distributions. Our
RBF-Softmax is simple but highly effective and insightful. We demonstrate its
effectiveness by demonstrating prototype experiments and appling it in close-set
image classification tasks (MNIST [16], CIFAR-10/100 [14], and ImageNet [23]).
Results shows that RBF-Softmax achieves state-of-the-art performances on all
the evaluated benchmarks.
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