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Abstract. In this document, we provide additional details to supple-
ment the main text. We first describe additional experiment details
(Sec. 1). Then, we provide additional quantitative results that study
our approach’s generalization performance (Sec. 2.1) and the effect of
the training dataset’s size on final performance (Sec. 2.2). Finally, in
Sec. 3, we present a number of qualitative results that demonstrate the
efficacy of using perception and prediction simulation for testing motion
planning.

1 Additional Experiment Details

1.1 Model Architectures

MultimodalNoise. We implement MultimodalNoise as a Gaussian Mixture
Model with &k = 8 components, each with a full covariance matrix. We use the
Scikit-learn implementation [5]. We also model misdetection noise by fitting a
Bernoulli distribution to the rate of false negative detections in our training split.

ActorNoise. ActorNoise takes as input the actor’s bounding box parameters
(z,y,w, h,0), where (z,y) is the box’s center, (w,h) are the box’s width and
height, and 6 is the box’s heading angle, as well as the actor’s past and future
positions centered at (x,y). This input feature vector is then processed by a
multi-layer perceptron. In particular, we use a model architecture consisting of:
(i) an initial fully-connected layer with 128-dimensional hidden features, ReLU
activations [1], and group normalization [7]; (ii) two fully-connected residual
blocks [3] with 128-dimensional hidden features, ReLU activations, and group
normalization; and (iii) a final fully-connected layer to predict perturbations to
the actor’s bounding box and future states as well as a misdetection score.

* Indicates equal contribution. Work done during Qiang’s internship at Uber ATG.
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Perception Metrics 1 Prediction Metrics |
AP (%) Max Recall (%) ADE (cm) FDE (cm)
Vehicle 0.5 IoU 0.7 IoU 0.5IoU 0.7IoU 70% R 90% R 70% R 90% R
NoNoise 7.2 71.9 98.0 94.5 73 73 141 141
ContextNoise 94.5 88.7 98.4 93.4 54 54 96 92
Pedestrian 0.3 IoU 0.5 IoU 0.3 IoU 0.5 IoU 60% R 80% R 60% R 80% R
NoNoise 474 46.5 82.1 81.4 36 36 64 64
ContextNoise 81.9 78.8 96.7 93.0 37 38 60 61
Bicyclist 0.3 ToU 0.5 10U 0.3 10U 0.5I0U 50% R 70% R 50% R 70% R
NoNoise 47.8 45.2 99.5 96.7 77 77 143 143
ContextNoise 89.6 87.2 99.6 97.8 79 83 132 140

{5 Distance (cm) | Collision Sim. (%) t  Driving Diff. (%) {
0

1.0s 2.0s 3.0s IoU Recall Beh. Jerk Acc.
PLT
NoNoise 1.2 3.5 5.6 70.3 72.8 0.32 0.69 1.71
ContextNoise 0.7 1.7 2.6 85.2 90.4 0.08 0.06 0.01
ACC
NoNoise 1.7 8.0 19.8 62.2 62.6 - 0.26 0.46
ContextNoise 1.4 6.3 15.1 76.8 77.8 - 0.17 0.17

Table 1. Generalization to structured test scenarios. We evaluate NoNoise and
ContextNoise (trained on ATG4D) on 500 logs of structured tests collected at a test
track. R denotes the common recall point at which prediction metrics are computed.

ContextNoise. As we discussed in the main text, ContextNoise consists of
three components: (i) a shared backbone feature extractor; (ii) a perception head
to simulate bounding box outputs; and (iii) a prediction head to simulate future
states outputs. We adapt the backbone network architecture described in [4]
to process raster image inputs and output a 4x downsampled 256-dimensional
feature map. Our perception head is a single 2D convolution layer with 1 x 1
kernels and our prediction head is a multi-layer perceptron adapted from the
architecture used in ActorNoise. We use non-maximum suppression thresholds
of 0.5 IoU for the cars and vehicles and 0.3 IoU for the pedestrians and bicyclists.

2 Additional Quantitative Results

2.1 Generalization to Structured Test Scenarios

In order to study our approach’s generalization performance to novel interesting-
to-test scenarios, we evaluate NoNoise and ContextNoise (trained on ATG4D)
on 500 logs of structured tests collected at a test track. These logs contain rare
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and safety-critical scenarios that are commonly used to evaluate self-driving
vehicles. Note that this dataset is selectively labeled; that is, we only annotate
actors that might interact with the SDV. As such, our noise models are given
only these actors as input. To ensure a fair comparison, we compute metrics
comparing our simulations against real perception and prediction outputs that
are near* an annotated actor.

Our results are shown in Table 1. They indicate that ContextNoise general-
izes to these novel scenarios and produces more realistic perception and predic-
tion simulations than NoNoise. Importantly, they also show that ContextNoise
enables more realistic testing of motion planning in simulation. This gives us
confidence to use perception and prediction simulation to evaluate motion plan-
ning in many variations of these scenarios created by adding or removing actors,
varying their speeds, changing the underlying map, etc. It is cost-prohibitive and
unsafe to do the same with real-world testing.

2.2 Effect of Training Dataset Size

We also study the effects of training dataset sizes on the fidelity of our simula-
tions. To this end, we train five ContextNoise models on progressively smaller
subsets of the ATG4D training split, starting from 2500 scenarios (100%) to 125
scenarios (5%), and we evaluate their performance on the full ATG4D validation
split. We also evaluate NoNoise, which serves as a baseline for a method that
does not require training.

Table 2 shows our results. Unsurprisingly, ContextNoise’s simulation fidelity
is positively correlated with the size of the training dataset. It is worth noting,
however, that even with much less training data, ContextNoise still retains good
simulation fidelity. For example, IoU., decreases by just 0.9% (resp., 1.2%) in
absolute terms for PLT (resp., ACC) when the training dataset is halved. We also
observe that the effect of the training dataset’s size on validation performance
varies by class—ContextNoise requires much fewer training scenarios in order
to outperform NoNoise on common classes like vehicles than on rare classes like
bicyclists.

3 Additional Qualitative Results

In Figs. 1 to 5, we exhibit a number of qualitative results on the ATG4D dataset.
Each figure depicts the perception, prediction, and motion planning outputs for
one frame of a scenario, which we unroll over three seconds. We depict perception
and prediction outputs as purple boxes and the SDV as a red box. We also
depict perfect perception and prediction as black boxes and the HD map as gray
elements.

The top row of each figure shows the outputs from the PLT planner [6]
given real perception and prediction outputs from PnPNet [4]. These outputs

4 A detected actor is near an annotated actor if the intersection-over-union between
their bounding boxes exceed 0.1%.
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represent the oracle for our task since they are precisely what our simulations
aim to emulate. Note that we obtain these outputs by passing real sensor data
through PnPNet and PLT. This is possible since ATG4D provides both sensor
data and our scenario representation (bounding boxes and trajectories) for every
scenario. We emphasize, however, that our simulation approach does not require
sensor data.

The middle and bottom row of each figure similarly depicts simulations ob-
tained using NoNoise and ContextNoise respectively. NoNoise represents the
prevalent approach of using perfect perception and prediction to test motion
planning in simulation [2] whereas ContextNoise is our best simulation model.

Simulating mispredictions. In Fig. 1, we show an example of ContextNoise
simulating a misprediction due to multi-modality. Here, both PnPNet and Con-
textNoise depict the highlighted vehicle as going straight, when it is in fact
turning right. Since NoNoise assumes perfect perception and prediction, it falsely
depicts the highlighted vehicle as turning right.

Simulating misdetections. In Fig. 2, we show an example where ContextNoise
faithfully simulates a misdetection due to occlusion. In particular, both PnPNet
and ContextNoise depict the highlighted pedestrians as a parked vehicle. By
contrast, NoNoise fails to simulate this misdetection.

Detecting collisions in simulation. In Figs. 3 to 5, we show scenarios in
which the PLT planner outputs a trajectory that results in a collision due to
misprediction errors. Figs. 3 and 4 show examples of collisions with vehicles
whereas Fig. 5 shows an example of a collision with a pedestrian. By faithfully
simulating these misprediction errors with ContextNoise, we are able to identify
these collision scenarios in simulation. In contrast, when given perfect perception
and prediction, the motion planner safely (but unrealistically) avoids all colli-
sions. These examples attest to our ability to realistically test motion planning
using simulated outputs from ContextNoise.
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Perception Metrics 1 Prediction Metrics |
% of Training Split AP (%) Max Recall (%) ADE (cm) FDE (cm)
Vehicle 0.5 IoU 0.7 IoU 0.5 IoU 0.7 IoU 70% R 90% R 70% R 90% R
NoNoise (0%) 61.1 54.3 93.1 87.8 70 70 132 131
5% 88.0 80.3 93.8 87.4 74 77 123 127
10% 89.3 82.7 94.6 88.6 64 69 108 114
25% 90.6 84.6 95.1 89.5 53 57 86 91
50% 91.1 85.5 95.2 89.8 46 52 73 81
100% 91.7 86.9 95.4 90.7 44 49 70 76
Pedestrian 0.3 IoU 0.5 IoU 0.3 IoU 0.5 IoU 60% R 80% R 60% R 80% R
NoNoise (0%) 50.8 47.4 82.8 80.0 40 40 69 69
5% 69.6 59.0 84.7 75.8 50 52 78 82
10% 70.2 61.1 85.2 77.6 43 45 66 69
25% 71.4 63.1 85.2 77.2 36 38 55 57
50% 73.4 65.7 86.0 78.7 34 35 51 53
100% 75.2 68.6 86.6 80.3 33 34 51 52
Bicyclist 0.3 IoU 0.5 IoU 0.3 IoU 0.5 IoU 50% R 70% R 50% R 70% R
NoNoise (0%) 33.4 29.8 83.2 78.3 49 48 88 87
5% 62.4 47.8 89.4 74.3 126 118 204 190
10% 68.0 55.0 90.6 77.5 90 81 146 129
25% 70.5 60.6 91.0 81.4 64 62 101 96
50% 72.5 63.7 92.2 82.7 55 51 87 78
100% 74.1 64.0 92.4 82.5 49 46 75 70

{2 Distance (cm) | Collision Sim. (%) 1 Driving Diff. (%) |

% of Training Split 1.0s 2.0s 3.0s IoU Recall Beh. Jerk Acc.
PLT

NoNoise (0%) 1.2 3.9 7.5 58.5  65.7 0.16 0.29 0.41
5% 1.1 3.6 6.7 64.9 77.0 0.11 0.26 0.16
10% 1.2 4.1 7.9 67.0 83.2 0.14 0.91 0.10
25% 0.8 2.6 4.9 69.2 86.0 0.10 0.07 0.12
50% 0.7 2.4 4.6 74.0 83.2 0.09 0.34 0.23
100% 0.7 2.2 4.2 74.9 854 0.07 0.22 0.20
ACC

NoNoise (0%) 1.4 7.3 18.5 52.3 53.3 - 0.40 0.27
5% 1.7 9.1 229 581 68.9 - 0.93 0.15
10% 1.5 7.9 20.0 59.5 73.6 - 0.36 0.04
25% 1.3 6.8 16.8 63.1 74.1 - 0.10 0.15
50% 1.1 5.8 14.7 63.1 88.2 - 0.84 0.36
100% 1.1 5.6 14.2 64.3 82.3 - 0.38 0.29

Table 2. Ablation of training dataset size on ATG4D validation.
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Fig. 1. Simulating mispredictions. We demonstrate ContextNoise’s ability to simu-
late mispredictions due to multi-modality. Here, both PnPNet and ContextNoise depict
the highlighted vehicle as going straight when it is in fact turning right. NoNoise cannot
simulate such mispredictions.
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Fig. 2. Simulating misdetections. We demonstrate ContextNoise’s ability to sim-
ulate misdetections due to occlusion. In particular, both PnPNet and ContextNoise
depict the highlighted pedestrians as a parked vehicle. NoNoise fails to simulate this
misdetection.
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Fig. 3. Detection collisions in simulation. We show an example in which the PLT
motion planner outputs a trajectory that results in a collision with a vehicle due to
misprediction errors. Using simulated outputs from ContextNoise, we can identify this
collision in simulation. In contrast, when given perfect perception and prediction, the
motion planner safely (but unrealistically) avoids the collision.
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Fig. 4. Detection collisions in simulation. We show an example in which the PLT
motion planner outputs a trajectory that results in a collision with a vehicle due to
misprediction errors. Using simulated outputs from ContextNoise, we can identify this
collision in simulation. In contrast, when given perfect perception and prediction, the
motion planner safely (but unrealistically) avoids the collision.
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Fig. 5. Detection collisions in simulation. We show an example in which the PLT
motion planner outputs a trajectory that results in a collision with a pedestrian due
to misprediction errors. Using simulated outputs from ContextNoise, we can identify
this collision in simulation. In contrast, when given perfect perception and prediction,

the motion planner safely (but unrealistically) avoids the collision.



