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Abstract. Weakly supervised semantic segmentation with image-level
labels has attracted a lot of attention recently because these labels are
already available in most datasets. To obtain semantic segmentation
under weak supervision, this paper presents a simple yet effective ap-
proach based on the idea of explicitly exploring object boundaries from
training images to keep coincidence of segmentation and boundaries.
Specifically, we synthesize boundary annotations by exploiting coarse lo-
calization maps obtained from CNN classifier, and use annotations to
train the proposed network called BENet which further excavates more
object boundaries to provide constraints for segmentation. Finally gen-
erated pseudo annotations of training images are used to supervise an
off-the-shelf segmentation network. We evaluate the proposed method on
PASCAL VOC 2012 benchmark and the final results achieve 65.7% and
66.6% mIoU scores on val and test sets respectively, which outperforms
previous methods trained under image-level supervision.
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1 Introduction

Deep learning and Convolutional Neural Networks (CNNs) have recently achieved
great success in computer vision, such as semantic segmentation. Driven by the
requirement of scene recognition, various models have been proposed [5, 34] to ac-
curately segment foreground in images. However, manual annotation for training
semantic segmentation network demands massive financial investments and is a
time-consuming effort. To alleviate the heavy dependence on pixel-level annota-
tions, weakly supervised learning for semantic segmentation is adopted, which
uses weak annotations in semantic segmentation, including bounding boxes (i.e.
information of instance location and dimension) [15], scribbles (i.e. a sparse set
of pixels with a category label) [21] and image-level labels (i.e. information of
which object classes are present/absent) [30, 13]. Among all the supervisions
above, image-level label is widely used as it is available in most datasets (e.g.
VOC and MS COCO).
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Even though using image-level label is common and convenient in recent
years, there exists a critical issue when classifying each pixel only with image-
level class labels. The classification task requires translation invariance but the
semantic segmentation task is position-sensitive and requires translation vari-
ance. To address this issue, Class Activation Maps (CAM) [35] is proposed to
overcome the inherent gap between classification and segmentation by adding
a global average pooling (GAP) in the top of fully convolutional network to
get class localization maps. However, this architecture tends to activate most
discriminative object regions and obtains incomplete segmentation results. In
recent works [26, 13, 2, 30], CAM is usually taken as an initial localization tech-
nology followed by additional methods to refine it. However, most approaches
focus on propagating foreground regions but do not consider the coincidence of
segmentation and morphological boundary, which is as the main limitation for
segmentation performance. In many cases, the segmentation might be stretched
into irrelevant regions if its propagation is not properly constrained by object
boundaries.

Although object boundary is an essential factor to influence the segmentation
performance, it is difficult to excavate it without boundary annotation and prior
knowledge. In this paper, we propose boundary exploration based segmentation
(BES) approach, which explicitly explores object boundaries to refine semantic
segmentation of training images. More concretely, we propose a simple scheme
to obtain a small amount of boundary labels by filtering given localization maps,
and then the network BENet trained by synthetic boundary labels is designed to
explicitly explore more object boundaries. Finally, massive explored boundary
information is used to provide constraints for localization maps propagation.

The main contributions of the paper are summarized as follows:

– The proposed BES approach can explicitly explore object boundaries with
only image-level annotation.

– To get reliable initial localization maps, we introduce a module called attention-
pooling to improve the performance of CAM.

– We demonstrate the effectiveness of BES by training DeepLab-v2 [5] with
generated training image segmentations. BES achieves the state-of-the-art
performance on PASCAL VOC 2012 benchmark [8] with 65.7% mIoU on val
set and 66.6% mIoU on test set.

The remainder of this paper is organized as follows. We present related work
in Section 2. The details of BES approach are described in Section 3. In Section 4,
we investigate BES efficiency and compare it to the state-of-the-art approaches.
Finally, Section 5 concludes this work.

2 Related Work

In this section, we firstly present the previous related researches in weakly se-
mantic segmentation, and then describe the literatures of image-level supervision
learning. Additionally, we summarize and analyse the common idea of image-
level supervised semantic segmentation.
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Weakly-supervised Semantic Segmentation. Weakly-supervised method
for semantic segmentation attracts a large interest recently due to the simplicity
and availability of its required labels compared to fully supervision segmentation
learning. Various types of annotations are applied as supervision to address the
data deficiency problem, including image-level label [1, 20, 31], bounding box
[15, 23], scribble [21], and so on. In particular, image-level labels as a simplest
supervision are popularly used since they demand minimum costs and can be
obtained from most visual datasets.

Image-level Supervised Learning. Image-level class labels provide the multi-
class classification information but no object localization cues. In early works,
Graph-based models [33, 32] which consider superpixels similarity of images
are adopted to do segmentation task. With the development of deep learning,
the problem of semantic segmentation was transferred to the task of assign-
ing class labels for each pixel in images so that neural network framework can
be conveniently employed. The work in [25] utilizes multiple instance learn-
ing (MIL) to train the segmentation model. Papandreou et al. [23] employed
the Expectation-Maximization algorithm to predict object pixels. Both of them
were time-consuming and their performances were not satisfactory. Recently,
some new approaches are proposed which make great progress in benchmark.
In [31], an iterative learning method is adopted, the network is initially trained
using simple images and corresponding saliency maps as labels, and the ability of
segmentation is progressively enhanced by increasing complexity of train data.
[17] proposed a method to train segmentation network with joint loss function
(i.e. seeding, expansion and constrain-to-boundary).

Even if most state-of-the-art methods of weakly semantic segmentation have
different implementation details, they share a similar strategy: coarse-to-fine.
coarse here means to localize object in image and allow the existence of deviation
from ground truth, these mismatch prediction will be refined in fine step.

Coarse-to-fine. Excavating localization cues with only classification annota-
tion available is a challenging task. Early methods like saliency detection [27]
had achieved huge progress. Most recently, researchers notice that CAM [35] is
a good staring-point for segmentation from image-level annotation. The bridge
of classification and localization is usually accomplished by adding a global av-
erage pooling (GAP) or re-designed calculation operation [17, 25] in the top of
fully convolutional network. Object regions will be activated by network and
these pixels contributed to classification score are regarded as foreground, Such
localization technology are usually used in coarse step of weakly semantic seg-
mentation.

However, CAM tends to focus on discriminative parts of object and other
smooth-texture regions will not be activated or with a low response. To address
this issue, additional processes to refine localization results are adopted which is
called fine step. Incomplete object prediction and mismatch with object bound-
aries are two main limitations in the performance of coarse. In [13], coarse local-
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ization maps are regarded as initial seed and then expanded, conditional random
field (CRF) is adopted to keep prediction coincides with boundaries in expand-
ing process. AffinityNet in [2, 1] is used to predict semantic affinities between
pixels, where the pixel-wise affinity is further transformed into transition proba-
bility matrix to direct the propagation of CAM results. [30] uses initial CAM as
erasing masks to force classification network discover more relative regions, and
then fuse each part to get segmentation maps.

Although object boundary is absolutely essential for semantic segmentation,
it is difficult to capture precise boundary information with only image class
annotations. In [30, 31], authors did not take account of object boundary and
just employ dCRF to make segmentation smooth. Some other approaches [1, 2]
implicitly exploit boundary information by calculating affinities between pixels,
which is not accurate enough and usually deviate from the ground truth. In this
paper, we propose BES to explicitly predict object boundary for segmentation
without extra annotations. And BES do not need additional information like
more training samples [12] or salience prior [13, 27]. The most related work to
ours is [1] which implicitly obtains boundaries by predicting affinity between pix-
els. However our BES can predict boundaries in a explicit way and achieves much
more efficiency. Additionally, we provide experimental comparisons to above
methods in Section 4.

3 The Proposed Approach

The BES framework for obtaining semantic segmentation for training images
is illustrated in Figure 1. As the key component in the framework, boundary
exploration targets to predict precise boundary maps with the original training
images as input. Boundary labels are manually synthesized from localization
maps and used to train BENet to predict boundaries. The boundary classification
ability of BENet helps to explore massive boundaries which are then used for
revising localization maps. The other component in framework called attention-
pooling CAM is an improved CAM mechanism to obtain better initial object
localization maps. The details of these two components are described in the
following subsections.

3.1 Boundary Exploration for Localization Maps

In this subsection, we introduce the design of boundary exploration and how
does it used to revise localization maps. We firstly exploit localization maps to
synthesize a small amount of credible boundary labels, and then these are used
to explore more boundary cues through training BENet.

Synthesizing Boundary Labels. As localization maps represented by pixel-
wise class probability are inconvenience for boundary label synthesis, we firstly
convert probability to a certain class label for each pixel. Suppose P ci is the
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Fig. 1. The proposed BES framework. First, coarse localization maps are obtained
through the attention-pooling CAM. Then, boundary labels are synthesized to train
BENet which is able to excavate more object boundaries. Finally, semantic segmen-
tation is generated by applying predicted boundary information to revise localization
maps.

probability of pixel i belonging to class c ∈ C. The classification result ŷi for
pixel i is obtained by a thresholding operation as following:

ŷi =


arg max

c∈C
(P ci ) if max

c∈C
(P ci ) > θfg

0 if max
c∈C

(P ci ) < θbg

255 otherwise

, (1)

where 0 and 255 mean background label and uncertain label, respectively, while
θfg and θbg are thresholds for foreground and background respectively in order
to filter uncertain pixels. An additional dCRF operation is used to refine reliable
foreground and background regions.

We notice that though localization maps exist some misclassified pixels, it
works well in regions near the boundaries. In other words, the classification
results for pixels in the border of background and foreground are much reliable.
According to the definition of boundary, we assume that there exist boundaries
where adjacent regions contain approximate numbers of identical foreground
and background pixels. Following this idea, we use a sliding window to count
numbers of local identical pixels and employ statistics information to determine
whether the pixel in the center of window is boundary or not. Given a sliding
window centered at pixel i with size w, we use N c

i to denote the number of pixels
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Fig. 2. Visualization of synthesizing boundary labels. A sliding window is used to cap-
ture local statistics information for each pixel, and then boundary labels are synthesized
based on statistics.

assigned with label c in the window. The statistical proportion of the window
for each class is denoted as Sci :

Sci =
N c
i

w × w
∀c ∈ C ∪ {0}. (2)

The pixel will be regraded as boundary if it satisfies the following two con-
ditions. First, There should exist sufficient identical pixels in the window to
support inference. Second, the area size of foreground region and background
region in the window need to be close enough. Formally, the boundary label B̂i
for pixel i is computed as follows:

B̂i =



0 if min{max
c∈C

Sci , S
0
i } > 2 θscale

and |max
c∈C

Sci − S0
i | ≥ 2 θdiff

1 if min{max
c∈C

Sci , S
0
i } > θscale

and |max
c∈C

Sci − S0
i | < θdiff

255 otherwise

, (3)

where θscale and θdiff are thresholds for two conditions, respectively. 255 means
that the pixel’s boundary label is uncertain.

Pixels near boundaries are usually difficult to discriminate and may cause
bad influence on BENet training. Therefore, the Equation (3) is designed as
a discontinuous discriminant so that pixels near boundaries will be assigned
with uncertain labels and not provide any supervision in the training phase.
Figure 2 shows the process of synthesizing boundary labels. We calculate local
statistics information for each pixel in the localization map and accordingly
obtain boundary labels.

Relax Boundary Classification Loss for BENet Training. We employ
BENet to directly predict a boundary map B ∈ [0, 1]w×h for input image under
the supervision of synthesized boundary labels. In training phase, the numbers
of boundary, foreground and background pixels exist notable differences, and
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the imbalance of training samples would make the model prediction tend to
suppress boundary responses. To address this issue, we divide the training data
into three parts: boundary pixels, foreground pixels and background pixels. The
cross-entropy for each part is calculated respectively and aggregated into the
final boundary loss function:

LB = −
∑
i∈Φbry

Wi log(Pi)

|Φbry|
− 1

2
(
∑
i∈Φc

log(1− Pi)
|Φc|

+
∑
i∈Φbg

log(1− Pi)
|Φbg|

), (4)

where Φbry = {i|B̂i = 1}, Φc = {i|B̂i = 0,max
c∈C

Sci > S0
i }, Φbg = {i|B̂i = 0, S0

i >

max
c∈C

Sci } are pixel sets of boundary, foreground and background respectively, Pi

is the boundary probability predicted by BENet for pixel i. To reduce the heavy
dependence on synthetic boundary labels which may contain some misclassified
samples, we relax the assumption that all boundary labels are reliable by adding
a weight parameter Wi in the boundary loss term. In practice, Wi is set to

√
Pi

for online training. Consider a pixel labeled as boundary, i.e. i ∈ Φbry, if its
boundary probability estimated by BENet is a low value (which indicates that
it is like background or foreground), its contribution weight for loss function will
be decreased to reduce its influence for training.

Revising Localization Maps with Explored Boundaries. Trained BENet
is able to excavate object massive boundaries. Then, we use predicted boundary
maps as constraints to direct the propagation of coarse localization maps and get
semantic segmentation. Compared to some flood-fill based propagation methods
[13], random walk [3, 1] is an elegant method to revise localization maps. We
adopt the methodology used in [1] to transfer boundary maps B ∈ [0, 1]w×h

to semantic affinity matrix. In the matrix, the affinity between pixel i and j
is denoted as aij , which depends on the maximum boundary confidences in the
path from i to j. To improve the computational efficiency, affinity will be treated
positive only if distance of two pixels is less than a threshold γ:

aij =

{
(1− max

k∈Πij

Bk)
β

if P (i, j) < γ

0 otherwise
, (5)

where Πij is a set of pixels in the path from i to j, P (i, j) is euclidean distance
between i and j, and the hyper-parameter β is a value greater than 1 to control
how conservative the random walk propagation is.

To simulate random walk process, element value aij in semantic affinity ma-
trix is regraded as transition probability. Then propagation is accomplished by
multiplying matrix to the localization maps, the simulation will be performed
iteratively until predefined number of iterations is reached. Finally, dense Con-
ditional Random Field (dCRF) [18] is applied to further slightly improves the
quality of segmentation.
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3.2 Attention-Pooling CAM to Obtain Localization Maps

Initial localization maps play an essential role in BES approach, which is not only
used as seed region for revisiting, but also used to synthesize boundary labels.
A common solution to obtain localization maps is to employ CAM technology
which utilizes GAP after a fully convolutional network. However, as mentioned
in [25, 7, 17], GAP used in CAM takes average value in the class localization map
as classification score which implicitly assigns equal weights to each pixel vote.
This will encourage response of irrelevant regions. Inspired by this motivation, we
propose a new calculation called attention-pooling to replace GAP component
in CAM.

Attention-Pooling for CAM. We preserve the fully convolutional network
(FCN [22]) architecture used in CAM to capture object’s spatial information, and
change the calculation for obtaining classification scores by applying attention-
pooling which can dynamically assign different weight for pixels. Let denote
the localization map for class c ∈ C as M c, which is embedded by convolutional
layers, while M c

i is the activation value at position i in M c. The attention map Ac

is generated for each class localization map M c
i , the attention value in position

i of Ac is denoted as Aci which represents the contribution weight of M c
i to

classification score sc. sc is the computed by summing up responses over all
pixel positions, as follows:

sc =
∑
i

(M c
i ×Aci ) ∀c ∈ C. (6)

The attention masks Ac is generated by utilizing the softmax function on
relevant class localization map M c:

Aci =
exp(kM c

i )∑
j∈J

exp(kM c
j )

∀c ∈ C, (7)

where J is the set of pixels in M c, and k is a hyper-parameter to adjust the
intensity of attention. When k is set as zero, the attention-pooling will assign
equal weight for every pixel. As the value k increases, the attention tends to
focus on pixels with high response values. Generally, attention-pooling will be
similar to global average pooling if k is close to zero, and be similar to global
max pooling if k is high enough.

After training, the attention-pooling will be removed and localization maps
are normalized to obtain class probability P ci :

P ci =
M c
i

max
j∈J

M c
j

∀c ∈ C. (8)

As described above, BES generates semantic segmentation for each training
image. In Section 4, we demonstrate effectiveness of BES approach.
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4 Experiments

In this section, we evaluate the efficacy of BES on the Pascal VOC 2012 semantic
segmentation dataset [8] by training DeepLab-ASPP [5] with generated semantic
segmentation of training images.

4.1 Implementation Details

Datasets. The benchmark of Pascal VOC 2012 has 21 different classes including
background. The images in dataset are divided into three parts: 1464 images
for training, 1449 images for validation and 1456 images for testing. Following
common practice, we augment training part by adding training data from SBD
[9]. In total, 10,582 images and relative image-level class labels are used for
training. We use mean intersection-over-union (mIoU) as evaluation metric to
measure semantic segmentation performance.

Attention-Pooling CAM Setting. In practice, we utilize ResNet50 as back-
bone network and replace the last fully connected layer with a 1x1 convolution
layer. The stride in last stage is reduced from 2 to 1 so that more spatial infor-
mation can be preserved. Therefore, resolution of output localization maps drop
down to 1

16 of input resolution after passing through the network.

Acceleration for Synthesizing Boundary Labels. Iteratively counting local
numbers for every pixel would increase GPU memory usage and is very time-
consuming. A simply way to compute statistics is to realize sliding window with
the average pooling layer which has been implemented in common deep learning
frameworks like PyTorch [24].

BENet Setting. BENet is based on ReNet50 [10] pretrained on ImageNet [6].
To fuse different level features of image, the features from shallow layers and
deep layers are combined by concatenating resized feature maps from five stages
with 1 × 1 convolution layers. In training phase, the parameters of network
are optimized via batched stochastic gradient descent (SGD) for about 3,500
iterations, with a batch size 16. The learning rate is initially set to 0.1, and the
momentum and weight decay are set to 0.9 and 0.0001 respectively. The training
images are resized with a random ratio from (0.5, 1.5), and then augmented
with horizontal flip after normalization, finally it is randomly cropped into size
of 513×513.

Hyper Parameter Setting. Parameter k in Equation (7) is set to 0.001. θfg
and θbg in Equation (1) are fixed to 0.30 and 0.07 respectively. To generate
boundary labels, we set the size of search window w to 13, θscale to 0.35 and
θdiff to 0.10. For random walk parameters in revising stage, we use the setting
given in [1] except setting the parameter β in Equation (5) to 5. For dCRF, we
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Table 1. Ablation study on PASCAL VOC 2012 training set.

CAM Attention-Pooling CAM Boundary Exploration dCRF mIoU

X 49.6
X 50.4

X X 65.7
X X 66.4
X X X 67.2

follow the setting in [1] for CAM refinement, and θα is set to 20 for pseudo labels
post-processing as shown in following equation:

k (fi, fj) = wg exp

(
−|pi − pj |

2θ2α
− |Ii − Ij |

2θ2β

)
+ wrgb exp

(
−|pi − pj |

2

2θ2γ

)
. (9)

4.2 Analysis of the BES

In this subsection, we firstly perform an ablation study to illustrate effective of
each parts. Then, we evaluate the impact of various parameters values. Finally,
we objectively analyse the quality of proposed BES approach.

Ablation Experiment. To demonstrate the efficiency of the BES method, we
report the influence of each step in Table 1 with mIoU as the evaluation met-
ric. Comparing to CAM baseline which achieves 49.6%, the proposed attention-
pooling CAM improves mIoU by 0.8% and this improvement is remained even
after revising process. Applying boundary exploration, the localization maps
performance is significantly improved from 50.4% to 66.4%. Additionally, post
process dCRF brings extra 0.8% improvement. In experiments, we employ set-
ting in last line which achieves 67.2% mIoU in VOC 2012 training set.

Hyper Parameter Effects. We evaluate the impact of hyper parameters for
semantic segmentation in training set and report the results in Figure 3. For
boundary label synthesis, we evaluate the influence of θdiff and θscale in Equa-
tion (3) on the segmentation performance. As shown in Figure 3(a), BES ap-
proach is robust to various parameters values. For attention-pooling CAM, Fig-
ure 3(b) illustrates the effect of attention intensity parameter k in Equation
(7). Compared to GAP-based CAM, the proposed attention-pooling CAM gets
slightly improvement when attention intensity parameter k is set to a small
value, but further increasing of k value makes performance drop down quickly.

Boundaries Evaluation. To better demonstrate the efficiency of boundary
exploration, we evaluate the generated boundary maps on SBD benchmark [9],
which contains semantic boundary annotations from 11355 images taken from
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θscale

θdiff 0.20 0.25 0.30 0.35 0.40 0.45

0.10 65.4 66.0 66.0 66.4 66.1 65.6
0.15 65.4 65.7 66.2 66.1 66.2 65.9
0.20 65.0 65.6 66.1 66.0 66.4 65.7

(a) (b)

Fig. 3. The performance when employing different parameter values in VOC 2012 train-
ing set.(a) The performance of semantic segmentation for different values of parameter
θdiff and θscale in boundary exploration. (b) The performance of attention-pooling
CAM with various values of parameter k.

Precision(%) Recall(%) MF(%)

46.4 45.5 45.9

(a) (b)

Fig. 4. Performance of boundary exploration, evaluated on the SBD trainval set. (a)
The sample of predicted boundary map and the corresponding boundary label. (b) The
boundary evaluation result.

the PASCAL VOC 2011 dataset. Since predicted boundary maps are class-
agnostic and do not satisfy the semantic boundary requirement of SBD bench-
mark, we transform the ground-truth semantic boundary labels into class-agnostic
labels. The precision, recall and maximal F-measure of the generated 11355
boundary maps are reported in Fig 4.

Quality Analysis. DeepLab-ASPP [5] trained by pseudo labels is employed
to evaluate the proposed approach. Table 2 and 3 record concrete performance
in VOC 2012 val and test set. We get substantial performance improvement
compared to other methods, especially in large-scale object (e.g., bus and car)
segmentation tasks.

We also analyse our failure cases and show it in Figure 5. The segmentation
performance of BES is not good enough when dealing some objects (e.g., bike
and chair) with complicated structures. We argue that it is due to two main
factors. First, the BENet makes judgement for each pixel separately, and the
discrete boundary prediction is hard to output consecutive boundary to provide
effective constraint for propagation. Second, as the inherent limitation of neural
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network, it is difficult to capture exact location of small object components like
bike pedals or table legs.

Table 2. Semantic segmentation performance in PASCAL VOC 2012 val set.

Method bkg aero bike bird boat bottle bus car cat chair cow table dog horse mbk person plant sheep sofa train tv mean

EM-Adapt [23] 67.2 29.2 17.6 28.6 22.2 29.6 47.0 44.0 44.2 14.6 35.1 24.9 41.0 34.8 41.6 32.1 24.8 37.4 24.0 38.1 31.6 33.8
MIL+seg[25] 79.6 50.2 21.6 40.9 34.9 40.5 45.9 51.5 60.6 12.6 51.2 11.6 56.8 52.9 44.8 42.7 31.2 55.4 21.5 38.8 36.9 42.0
SEC [17] 82.4 62.9 26.4 61.6 27.6 38.1 66.6 62.7 75.2 22.1 53.5 28.3 65.8 57.8 62.3 52.5 32.5 62.6 32.1 45.4 45.3 50.7
TPL[16] 82.8 62.2 23.1 65.8 21.1 43.1 71.1 66.2 76.1 21.3 59.6 35.1 70.2 58.8 62.3 66.1 35.8 69.9 33.4 45.9 45.6 53.1
PSA[2] 88.2 68.2 30.6 81.1 49.6 61.0 77.8 66.1 75.1 29.0 66.0 40.2 80.4 62.0 70.4 73.7 42.5 70.7 42.6 68.1 51.6 61.7
SSDD[26] 89.0 62.5 28.9 83.7 52.9 59.5 77.6 73.7 87.0 34.0 83.7 47.6 84.1 77.0 73.9 69.6 29.8 84.0 43.2 68.0 53.4 64.9

BES (Ours):
DeepLab-ASPP 88.9 74.1 29.8 81.3 53.3 69.9 89.4 79.8 84.2 27.9 76.9 46.6 78.8 75.9 72.2 70.4 50.8 79.4 39.9 65.3 44.8 65.7

Table 3. Semantic segmentation performance in PASCAL VOC 2012 test set.

Method bkg aero bike bird boat bottle bus car cat chair cow table dog horse mbk person plant sheep sofa train tv mean

EM-Adapt [23] 76.3 37.1 21.9 41.6 26.1 38.5 50.8 44.9 48.9 16.7 40.8 29.4 47.1 45.8 54.8 28.2 30.0 44.0 29.2 34.3 46.0 39.6
MIL+seg [25] 78.7 48.0 21.2 31.1 28.4 35.1 51.4 55.5 52.8 7.8 56.2 19.9 53.8 50.3 40.0 38.6 27.8 51.8 24.7 33.3 46.3 40.6
SEC [17] 83.5 56.4 28.5 64.1 23.6 46.5 70.6 58.5 71.3 23.2 54.0 28.0 68.1 62.1 70.0 55.0 38.4 58.0 39.9 38.4 48.3 51.7
TPL [16] 83.4 62.2 26.4 71.8 18.2 49.5 66.5 63.8 73.4 19.0 56.6 35.7 69.3 61.3 71.7 69.2 39.1 66.3 44.8 35.9 45.5 53.8
PSA [2] 89.1 70.6 31.6 77.2 42.2 68.9 79.1 66.5 74.9 29.6 68.7 56.1 82.1 64.8 78.6 73.5 50.8 70.7 47.7 63.9 51.1 63.7
SSDD [26] 89.5 71.8 31.4 79.3 47.3 64.2 79.9 74.6 84.9 30.8 73.5 58.2 82.7 73.4 76.4 69.9 37.4 80.5 54.5 65.7 50.3 65.5

BES (Ours):
DeepLab-ASPP 89.0 72.7 30.4 84.6 47.5 63.0 86.8 80.7 85.2 30.1 76.5 56.4 81.8 79.9 77.0 67.8 48.6 82.3 57.2 54.0 46.7 66.6

Image Prediction GT Image Prediction GT

Fig. 5. Examples of failure cases in semantic segmentation.

4.3 Comparisons to the State-of-the-Art

In Table 4, we can observe that semantic labels generated by BES help the
DeppLab-ASPP outperform all the listed image-level supervised methods both in
val and test set. And even competitive with works [15] relying on bounding box.
For fair comparison, we additionally provide DeepLab-CRF-LargeFOV [4] based
result which uses VGG-16 [28] as backbone. We believe that other segmentation
networks trained by our generated annotations can also achieve considerable
performance.
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Table 4. Comparison of semantic segmentation methods on PACAL VOC 2012 val
and test set. The supervision types (Sup.) indicate: B–bounding box label, S–scribble
label, F–pixel-level label, and I–image-level class label.

Methods Sup. Backbone Training val test

WSSL [23] B VGG-16 10K 60.6 62.2
SDI [15] B VGG-16 10K 65.7 67.5

Scribblesup [21] S VGG-16 10K 63.1 -

FCN [22] F VGG-16 10K - 62.2
DeepLab-v1 [4] F VGG-16 10K 67.6 70.3
PSPNet [34] F ResNet-101 10K - 85.4

STC [31] I VGG-16 50k 49.8 51.2
TransferNet [11] I VGG-16 70K 52.1 51.2
AE PSL [30] I VGG-16 10K 55.0 55.7
GAIN [20] I VGG-16 10K 55.3 56.8
CrawlSeg [12] I VGG-16 970K 58.1 58.7
MCOF [29] I ResNet-101 10K 60.3 61.2
DSRG [13] I ResNet-101 10K 61.4 63.2
IRNet [1] I ResNet-50 10K 63.5 64.8
FickleNet [19] I ResNet-101 10K 64.9 65.3
SSDD [26] I ResNet-38 10K 64.9 65.5
OOA [14] I ResNet-101 10K 65.2 66.4

BES (Ours):
DeepLab-CRF-LargeFOV I VGG-16 10K 60.1 61.1
DeepLab-ASPP I ResNet-101 10K 65.7 66.6

Finally, we compare the BENet with IRNet, which predicts pixel affinity to
implicitly capture boundary information. Figure 6 illustrates the training im-
ages and its corresponding semantic segmentation. Compared to IRNet results,
boundary maps predicted by BENet precisely activates boundary pixels and
suppresses foreground/background regions, which presents a better boundary
discrimination ability. The semantic segmentation results demonstrate the ben-
efit of explicitly exploring sufficient object boundaries.

5 Conclusion

To address the problem of weakly supervised semantic segmentation, we propose
BES approach to explicitly explore object boundaries to refine coarse localization
maps for training images. We design an attention-pooling CAM to get better
object localization maps as seed region, then BENet is created to explore object
boundaries and direct the propagation of semantic segmentation. On PASCAL
VOC 2012 benchmark, BES performance outperforms the previous state-of-the-
art methods. Extensive evaluation of ablation study and experiments validate the
effectiveness and the robust of proposed BES. In the future, we plan to extend
proposed approach to develop an end-to-end semantic segmentation framework.
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 6. Qualitative generated semantic segmentation on PASCAL VOC 2012 training
set. (a) Original images. (b) Ground-truth. (c) Boundary maps of IRNet. (d) IRNet
results. (e) Boundary maps of BES. (f) BES results.
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