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Fig. 1: Results of our DOPE approach for 2D-3D whole-body pose estimation.

Abstract. We introduce DOPE, the first method to detect and esti-
mate whole-body 3D human poses, including bodies, hands and faces,
in the wild. Achieving this level of details is key for a number of appli-
cations that require understanding the interactions of the people with
each other or with the environment. The main challenge is the lack of
in-the-wild data with labeled whole-body 3D poses. In previous work,
training data has been annotated or generated for simpler tasks focusing
on bodies, hands or faces separately. In this work, we propose to take
advantage of these datasets to train independent experts for each part,
namely a body, a hand and a face expert, and distill their knowledge into
a single deep network designed for whole-body 2D-3D pose detection. In
practice, given a training image with partial or no annotation, each part
expert detects its subset of keypoints in 2D and 3D and the resulting esti-
mations are combined to obtain whole-body pseudo ground-truth poses.
A distillation loss encourages the whole-body predictions to mimic the
experts’ outputs. Our results show that this approach significantly out-
performs the same whole-body model trained without distillation while
staying close to the performance of the experts. Importantly, DOPE is
computationally less demanding than the ensemble of experts and can
achieve real-time performance. Test code and models are available at
https://europe.naverlabs.com/research/computer-vision/dope.

Keywords: Human pose estimation, human pose detection, 3D pose
estimation, 2D pose estimation, body pose estimation, hand pose esti-
mation, face landmarks estimation
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1 Introduction

Understanding humans in real-world images and videos has numerous potential
applications ranging from avatar animation for augmented and virtual reality [15,
46] to robotics [21, 23]. To fully analyze the interactions of people with each
other or with the environment, and to recognize their emotions or activities, a
detailed pose of the whole human body would be beneficial. This includes 3D
body keypoints, i.e., torsos, arms and legs, that give information on the global
posture of the persons, but also detailed information about hands and faces
to fully capture their expressiveness. The task of whole-body 3D human pose
estimation has been mainly addressed part by part as indicated by the large
literature on estimating 3D body pose [3,24,38,46,48,55], 3D hand pose [10,49,
67, 73] or 3D face landmarks and shape [9, 57] in the wild. These methods now
reach outstanding performances on their specific tasks, and combining them in
an efficient way is an open problem.

More recently, a few approaches have been introduced that capture body,
hands and face pose jointly. Hidalgo et al . [29] extend OpenPose [12] to pre-
dict 2D whole-body poses in natural images. To train their multi-task learning
approach, they partly rely on datasets for which adding 2D pose annotations
is possible, e.g ., adding 2D hand pose annotations [58] to the MPII body pose
dataset [1]. Such annotation scheme is not possible when dealing with 3D poses.
Importantly, they observe global failure cases when a significant part of the tar-
get person is occluded or outside of the image boundaries. Some other works
have leveraged expressive parametric human models composed of body, hand
and face components stitched together such as Adam [37, 64] or SMPL-X [51].
These optimization-based approaches remain sensitive to initialization and are
usually slow to converge. Their performance highly depends on the intermediate
estimation of the 3D orientations of body parts or 2D keypoint locations, and
is therefore limited in cases of occlusions or truncations at the image boundary
compared to more direct approaches.

In this paper, we propose the first learning-based method that, given an
image, detects the people present in the scene and directly predicts the 2D and
3D poses of their bodies, hands and faces, see examples in Figure 1. Inspired
by LCR-Net++ [55], a Faster R-CNN like architecture [53] tailored for in-the-
wild 2D-3D body pose estimation, we design a classification-regression network
where the object categories to detect are body, hand and face pose classes. In a
second step, a class-specific regression is applied to refine body, hand and face
pose estimates by deforming the average pose of each class both in 2D and 3D.

There exists no in-the-wild dataset to directly train our network, i.e., im-
ages with 3D pose annotations for body, hand and face poses. Such data could
only be obtained in specific controlled environments, e.g . in motion capture
rooms or through computer-generation, which would not suit our purpose of
whole-body pose estimation in unconstrained scenarios. However, multiple in-
the-wild datasets are available for each independent task, i.e., for 3D body pose
estimation [38,46], 3D hand pose estimation [25,70,73] or 3D facial landmark es-
timation [9,18]. Task-specific methods trained on these datasets perform well in
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Fig. 2: Overview of our DOPE training scheme. Each training image is processed
by the part experts to detect their specific parts and estimate their 2D and 3D
poses. The resulting detections are combined to obtain the whole-body poses
used as ground-truth for this image when training our network. We show only
2D poses for the sake of clarity but we also distill the 3D poses.

practice but our experiments show that training our single model for whole-body
3D pose estimation on the union of these datasets leads to poor performances.
Each dataset being annotated with partial pose information (i.e., its specific
part), unannotated parts are mistakenly considered as negatives by our detec-
tion framework, burdening the performance of the network.

To handle this problem, we propose to train independent experts for each
part, namely body, hand and face experts, and distill their knowledge to our
whole-body pose detection network designed to perform the three tasks jointly.
In practice, given a training image with partial or no annotation, each part
expert detects and estimates its subset of keypoints, in 2D and 3D, and the
resulting estimations are combined to obtain whole-body pseudo ground-truth
poses for the whole-body network. Figure 2 illustrates this training scheme. A
distillation loss is applied on the network’s output to keep it close to the experts’
predictions. We name our method DOPE for Distillation Of Part Experts. Our
unified DOPE model performs on par with the part experts when evaluating
each of the three tasks on dedicated datasets, while being computationally less
demanding than the ensemble of experts and achieving real-time performances.
In summary, we propose (a) a new architecture that can detect and estimate
the whole-body 2D-3D pose of multiple people in the wild in real-time and (b) a
novel and effective training scheme based on distillation that leverages previous
data collection efforts for the individual subtasks.

This paper is organized as follows. After reviewing the related work (Sec-
tion 2), we present our DOPE method in Section 3. Finally, experimental results
for body, hand and face pose estimation are reported in Section 4.
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2 Related work

The problem of 3D human whole-body pose estimation has been mainly tackled
by breaking the body into parts and focusing on the pose inference of these
parts separately. In the following, we briefly review the state of the art for each
of these subtasks, before summarizing the few approaches that predict the 3D
pose of the entire body, and finally discussing existing distillation methods.
3D body pose estimation. Two basic categories of work can be found in the
recent literature: (a) approaches that directly estimate the 3D body keypoints
from an input image [46,48,52,54,55] and (b) methods that leverage 2D human
pose estimation [6,13,38,45]. The latter ones rely on a previous localization of the
body keypoints in the image, through an off-the-shelf 2D pose detector [12,19,27],
and lift them to 3D space [13,45] or, as in [6,38], use them to initialize the opti-
mization procedure of a parametric model of the human body such as SMPL [43].
For our body expert, we employ LCR-Net++ [55] that jointly estimates 2D and
3D body poses from the image and has demonstrated robustness to challenging
in-the-wild scenarios, i.e., showing multiple interacting persons, with cluttered
backgrounds and/or captured under severe occlusions and truncations.
3D hand pose estimation. 3D hand pose estimation from depth data has
been studied for many years and state-of-the-art results on this task are now
impressive as shown in a recent survey [60]. RGB-based 3D hand pose estimation
is more challenging, and has gained interest in recent years. Regression-based
techniques try to directly predict 3D location of hand keypoints [66] or even the
vertices of a mesh [22] from an input image. Some methods incorporate priors
by regressing parameters of a deformable hand model such as MANO [8,26,56],
and many techniques leverage intermediate representations such as 2D keypoints
heatmaps to perform 3D predictions [10,49,71,73]. However, pose estimation is
often performed on an image cropped around a single hand, and hand detection
is performed independently. For our hand expert, we therefore use the detector
of [55] (adapted to hands) that recently achieved outstanding performances in
RGB-based 3D hand pose estimation under hand-object interaction [2].
3D face pose estimation. As with hands, the recovery of the pose of a face
is typically performed from an image crop, by detecting particular 2D facial
landmarks [63]. To better perceive the 3D pose and shape of a face, some works
propose to fit a 3D Morphable Model [5,7,72] or to regress dense 3D face repre-
sentations [17, 20, 34]. In this work, we also adopt [55] as face expert, resulting
in an hybrid model-free approach that regresses 3D facial landmarks indepen-
dently from their visibility, as in the approach introduced for the Menpo 3D
benchmark [18].
3D Whole-body pose estimation. The few existing methods [51, 64] that
predict the 3D pose of the whole-body all rely on parametric models of the
human body, namely Adam [37] and SMPL-X [51]. These models are obtained
by combining body, hand and face parametric models. Adam stitches together
three different models: a simpler version of SMPL for the body, an artist-created
rig for the hands, and the FaceWarehouse model [11] for the face. In the case of
SMPL-X, the SMPL body model is augmented with the FLAME head model [40]
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and MANO [56]. A more realistic model is obtained in the case of SMPL-X by
learning the shape and pose-dependent blend shapes. Both methods are based
on an optimization scheme guided by 2D joint locations or 3D part orienta-
tions. Monocular Total Capture [64] remains limited to a single person while for
SMPL-X [51], the optimization strategy is applied independently on each person
detected by OpenPose [12]. Optimizing over the parameters of such models can
be time-consuming and the performance often depends on a correct initializa-
tion. Our approach is the first one that predicts whole-body 3D pose without
relying on the optimization of a parametric model and can make real-time pre-
dictions of multiple 3D whole-body poses in real-world scenes. In addition, our
DOPE training scheme can leverage datasets that do not contain ground-truth
for all the parts at once.
Distillation. Our learning procedure is based on the concept of distillation
which was proposed in the context of efficient neural network computation by
using class probabilities of a higher-capacity model as soft targets of a smaller
and faster model [30]. Distillation has been successfully employed for several
problems in computer vision such as object detection [14], video classification [4],
action recognition [16], multi-task learning [42] or lifelong learning [32]. In addi-
tion to training a compact model [4, 14], several works [16, 31] have shown that
distillation can be combined with privileged information [61], also called general-
ized distillation [44] in order to train a network while leveraging extra modalities
available for training, e.g . training on RGB and depth data while only RGB is
available at test time. In this paper, we propose to use distillation in order to
transfer the knowledge of several body-part experts into a unified network that
outputs a more complete representation of the whole human body.

3 DOPE for 2D-3D whole-body pose estimation

After introducing our architecture for multi-person whole-body pose estimation
(Section 3.1), we detail our training procedure based on distillation (Section 3.2).

3.1 Whole-body pose architecture

We propose a method that, given an image, detects the people present in the
scene and directly predicts the 2D and 3D poses of their bodies, hands and faces.
Our network architecture takes inspiration from [55], which extends a Faster R-
CNN like architecture [53] to the problem of 2D-3D body pose estimation and
has shown to be robust in the wild. We thus design a Localization-Classification-
Regression network where the objects to be detected are bodies, hands and
faces with respectively JB , JH and JF keypoints to be estimated in 2D and 3D.
Figure 3 shows an overview of this architecture.
Localization. Given an input image, convolutional features (ResNet50 [28] up
to block3 in practice) are computed and fed into a Region Proposal Network
(RPN) [53] to produce a list of candidate boxes containing potential body, hand
or face instances. Although they might belong to the same person, we specifically
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Fig. 3: Overview of our whole-body pose estimation architecture. Given an in-
put image, convolutional features are computed and fed into a Region Proposal
Network (RPN) to produce a list of candidate boxes. For each box, after RoI-
Align and a few additional layers, 6 final outputs are computed (2 for each part).
The first one returns a classification score for each anchor-pose corresponding
to this part (including a background class not represented for clarity) while the
second one returns refined 2D-3D pose estimates obtained through class-specific
regression from the fitted anchor pose.

treat the parts as separate objects to be robust to cases where only a face, a hand
or a body is visible in the image. Our network can also output whole-body poses
of multiple people at once, when their different parts are visible. The candidate
boxes generated by the RPN are used to pool convolutional features using RoI
Align, and after a few additional layers (block4 from ResNet50 in practice), they
are fed to the classification and regression branches, 6 in total: one classification
and one regression branch per part.

Classification. Classification is performed for the three sub-tasks: body, hand
and face classification. As in [55], pose classes are defined by clustering the
3D pose space. This clustering is applied independently in the 3 pose spaces,
corresponding to the 3 parts, obtaining respectively a set of KB , KH and KF

classes for bodies, hands and faces. Note that to handle left and right hands with
the same detector, we actually consider 2×KH hand classes, KH for each side.
For each classification branch, we also consider an additional background class
to use the classifier as a detector. Therefore, each candidate box is classified into
KB + 1 labels for body classes, 2KH + 1 for hands and KF + 1 for faces.

Regression. In a third step, a class-specific regression is applied to estimate
body, hand and face poses in 2D and 3D. First, for each class of each part, we
define offline the ‘anchor-poses’, computed as the average 2D and 3D poses over
all elements in the corresponding cluster. After fitting all the 2D anchor-poses
into each of the candidate boxes, we perform class-specific regressions to deform
these anchor-poses and match the actual 2D and 3D pose in each box. This
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operation is carried out for the 3 types of parts, obtaining 5× JB ×KB outputs
for the body part, 5× 2× JH ×KH for the hands and 5× JF ×KF for the face.
The number 5 corresponds to the number of dimensions, i.e., 2D+3D.

Postprocessing. For each body, hand or face, multiple proposals can overlap
and produce valid predictions. As in [55], these pose candidates are combined,
taking into account their 2D overlap, 3D similarity and classification scores. To
obtain whole-body poses from the independent part detections produced by our
network, we simply attach a hand to a body if their respective wrist estimations
are close enough in 2D, and similarly for the face with the head body keypoint.

3.2 Distillation of part experts

Even if in-the-wild datasets with 3D pose annotations have been produced for
bodies, hands and faces separately, there exists no dataset covering the whole-
body at once. One possibility is to employ a union of these datasets to train our
whole-body model. Since the datasets specifically designed for pose estimation
of one part do not contain annotations for the others, e.g . body datasets do not
have hand and face annotations and vice-versa, unannotated parts are therefore
considered as negatives for their true classes in our detection architecture. In
practice, this deteriorates the detector’s ability to detect these parts and leads
to worse overall performances (∼10% drop for hands and faces, and ∼2% for
bodies). To leverage the multiple part-specific datasets, we therefore propose to
train independent experts for each part, namely body, hand and face experts, and
distill their knowledge into our whole-body pose network designed to perform
the three tasks jointly.

Part experts. To ease the distillation of the knowledge, we select our 3 experts
to match the structure of the classification-regression branches of our whole-
body pose estimation architecture and consider the same anchor poses as for the
individual tasks. We therefore selected the Localization-Classification-Regression
network from LCR-Net++ [55] as body expert and estimate JB = 13 body
joints with KB = 10 classes. We also used the hand detection version of this
architecture [2], replacing the KB body pose classes by KH = 5 hand anchor-
poses for each side and using the standard number of JH = 21 hand joints: 1
keypoint for the wrist plus 4 for each finger. Finally, to obtain our face expert, we
adapted the same architecture to detect 2D-3D facial landmarks. We used the 84
landmarks defined in the 3D Face Tracking Menpo benchmark [69] that include
eyes, eyebrows, nose, lips and facial contours. We defined KF = 10 anchor-poses
by applying K-means on all faces from the training set.

Training via distillation. We propose to distill the knowledge of our three
part experts to our whole-body pose detection model. Let B, H and F be the
training datasets used for the three individuals tasks, i.e., body, hand, and face
pose detection, respectively. They are associated with ground-truth (2D and 3D)
pose annotations for bodies b, hands h and faces f , respectively. In other words,
the body expert is for instance trained on B = {Ii, bi}i, i.e., a set of images Ii
with body ground-truth annotations bi, and similarly for the other parts.
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To train our network, we need ground-truth annotations w for the whole
body. We propose to leverage the detections made by the experts in order to
augment the annotations of the part-specific datasets. We denote by b̂i, ĥi and
f̂i the detections obtained when processing the images Ii with our expert for
body, hands and face respectively. We train our DOPE network on:

WDOPE = {Ii, wi}i∈B∪H∪F where wi =


{bi, ĥi, f̂i} if i ∈ B ,
{b̂i, hi, f̂i} if i ∈ H ,

{b̂i, ĥi, fi} if i ∈ F .

(1)

The detections b̂i, ĥi and f̂i estimated by the experts are therefore considered
as pseudo ground-truth for the missing keypoints in 2D and 3D. In practice,
ground-truth annotations are completed using these estimations, for example
when some annotations have been incorrectly labeled or are simply missing. Note
that training images with no annotation at all could also be used to train our
network, using only pseudo ground-truth annotations [39], i.e., wi = {b̂i, ĥi, f̂i}.
The training scheme is illustrated in Figure 2.
Loss. Our loss L to train the network combines the RPN loss LRPN as well as
the sum of three terms for each part p ∈ {body,hand,face}: (a) a classification
loss Lp

cls, (b) a regression loss Lp
reg, (c) a distillation loss Lp

dist:

L = LRPN +
∑

p∈{body,hand,face}

Lp
cls + Lp

reg + Lp
dist , (2)

where LRPN is the RPN loss from Faster R-CNN [53]. The classification loss Lp
cls

for each part p is a standard softmax averaged over all boxes. If a box sufficiently
overlaps with a ground-truth box, its ground-truth label is obtained by finding
the closest anchor-pose from the ground-truth pose. Otherwise it is assigned a
background label, i.e., 0.

The regression loss Lp
reg is a standard L1 loss on the offset between ground-

truth 2D-3D poses and their ground-truth anchor-poses, averaged over all boxes.
Note that the regression is class-specific, and the loss is only applied on the
output of the regressor specific to the ground-truth class for each positive box.

The distillation loss Lp
dist is composed of two elements, one for the distillation

of the classification scores Lp
dist cls and another one, Lp

dist reg, for the regression:

Lp
dist = Lp

dist cls + Lp
dist reg . (3)

Given a box, the goal of the distillation loss is to make the output of the whole-
body network as close as possible to the output of the part expert p. The classifi-
cation component Lp

dist cls is a standard distillation loss between the predictions
produced by the corresponding part expert and those estimated by the whole-
body model for part p. In other words, Lp

dist cls is the soft version of hard label
loss Lp

cls. The regression component Lp
dist reg is a L1 loss between the pose pre-

dicted by the part expert and the one estimated by the whole-body model for
the ground-truth class. Note that the pseudo ground-truth pose is obtained by
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averaging all overlapping estimates made by the part expert. While Lp
reg is de-

signed to enforce regression of this pseudo ground-truth pose, Lp
dist reg favors

regression of the exact same pose predicted by the part expert for a given box.
In practice, proposals generated by the RPNs of part experts and whole-body

model are different but computing distillation losses requires some proposals to
coincide. At training, we thus augment the proposals of the whole-body model
with positive boxes from the part experts to compute these losses. In summary,
given a training image, we: (a) run each part expert, keeping the positive boxes
with classification scores and regression outputs, (b) run the whole-body model,
adding the positive boxes from the experts to the list of proposals. Losses based
on pseudo ground-truths are then averaged over all boxes while distillation losses
are averaged only over positive boxes from the part experts.

3.3 Training details

Data. We train our body expert on the same combination of the MPII [1],
COCO [41], LSP [35], LSPE [36], Human3.6M [33] and Surreal [62] datasets
augmented with pseudo 3D ground-truth annotations as in [55]. We applied
random horizontal flips while training for 50 epochs. We train our hand expert
on the RenderedHand (RH) dataset [73] for 100 epochs, with color jittering,
random horizontal flipping and perspective transforms. KH = 5 anchor poses
are obtained by clustering the 3D poses of right and flipped left hands from
the training set. Finally, we train the face expert for 50 epochs on the Menpo
dataset [69] with random horizontal flips and color jittering during training.
Implementation. We implement DOPE in Pytorch [50], following the Faster R-
CNN implementation from Torchvision. We consider a ResNet50 backbone [28].
We train it for 50 epochs, using the union of the datasets of each part expert,
simply doubling the RH dataset used for hands as the number of images is
significantly lower than for the other parts. The same data augmentation strategy
used for training each part expert is employed for the whole-body network. We
use Stochastic Gradient Descent (SGD) with a momentum of 0.9, a weight decay
of 0.0001 and an initial learning rate of 0.02, which is divided by 10 after 30 and
45 epochs. All images are resized such that the smallest image dimension is 800
pixels during training and testing and 1000 proposals are kept at test time.
Runtime. DOPE runs at 100ms on a single NVIDIA T4 GPU. When reducing
the smallest image size to 400px and the number of box proposals to 50, and
using half precision, it runs at 28 ms per image, i.e., in real-time at 35 fps, with
a 2-3% decrease of performance. For comparison, each of our experts runs at
a similar framerate as our whole-body model since only the last layers change.
Optimization-based 3D whole-body estimation methods [51, 64] take up to a
minute to process each person.

4 Experiments

Given that there is no dataset to evaluate whole-body 3D pose estimation in the
wild, we evaluate our method on each task separately. After presenting datasets
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and metrics (Section 4.1), we compare the performance of our whole-body model
to the experts (Section 4.2) and to the state of the art (Section 4.3).

4.1 Evaluation datasets and metrics

MPII for 2D body pose estimation. As in [55], we remove 1000 images from
the MPII [1] training set and use them to evaluate our 2D body pose estimation
results. We follow the standard evaluation protocol and report the PCKh@0.5
which is the percentage of correct keypoints with a keypoint being considered as
correctly predicted if the error is smaller than half the size of the head.
MuPoTs for 3D body pose estimation. MuPoTs-3D [46] (Multi-person Pose
estimation Test Set in 3D) is composed of more than 8,000 frames from 20 real-
world scenes with up to three subjects. The ground-truth 3D poses, obtained
using a multi-view MoCap system, have a slightly different format than the one
estimated by our body expert and whole-body model. To better fit their 14-joint
skeleton model, we modified the regression layer of our networks to output 14
keypoints instead of 13 while freezing the rest of the network. We finetuned this
last layer only on the MuCo-3DHP dataset [46], the standard training set when
testing on MuPoTs. We report the 3D-PCK, i.e., the percentage of joint predic-
tions with less than 15cm error, per sequence, and averaged over the subjects
for which ground truth is available.
RenderedHand for 3D hand pose estimation. RenderedHand (RH) test
set [73] consists of 2,728 images showing the hands of a single person. We report
the standard AUC (Area Under the Curve) metric when plotting the 3D-PCK
after normalizing the scale and relative translation between the ground-truth
and the prediction. Note that while state-of-the-art methods evaluate hand pose
estimation given ground-truth crops around the hands, we instead perform an
automatic detection but miss around 2% of the hands.
Menpo for facial landmark estimation. We report results for facial land-
mark evaluation using the standard 3D-aware 2D metric [18] on the 30 videos
from the test set of the ICCV’17 challenge [69]. Given a ground truth-matrix
s ∈ MN,2(R) representing the 2D coordinates in the image of the N = 84
landmarks of a face, and a facial landmark prediction ŝ ∈ MN,2(R), this 2D
normalized point-to-point RMS error is defined as:

ε(s, ŝ) =
‖s− ŝ‖2√
Ndscale

, (4)

where dscale is the length of the diagonal of the minimal 2D bounding box of s.

4.2 Comparison to the experts

Table 1 presents a comparison of the performances obtained by the part experts
and our DOPE model, for body, hand and face pose estimation tasks.

We first compare the part experts to a baseline where our whole-body net-
work is trained on the partial ground-truth available for each dataset, e.g . only
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Table 1: Comparison between our part experts and our whole-body model

MPII MuPoTs RH test Menpo
(PCKh@0.5) (PCK3D) (AUC) (AUC)

body expert 89.6 66.8 - -
hand expert - - 87.1 -
face expert - - - 73.9

whole-body trained on gt 88.3 66.6 81.1 61.7

DOPE without Lp
dist 88.3 66.4 83.5 75.2

DOPE with Lp
dist 88.8 67.2 84.9 75.0

body annotations are available on images from body datasets, etc. The per-
formance degrades quite significantly compared to those of the hand and face
experts (-6% AUC for hand on the RH dataset and -12% for face landmarks).
This is explained by a lower detection rate of the detector due to the fact that,
for instance, unannotated faces present in the body datasets are considered as
negatives during training. The performance of this model on body pose estima-
tion is quite similar to the one of the body expert: as bodies are not observed too
much in hand and face datasets, there are almost no missing body annotations.

We then compare the experts to a first version of our DOPE model without
the distillation loss Lp

dist. The performance on body pose estimation remains
similar but, for hands and faces, a significant gain is obtained, in particular
for faces, where the whole-body network performs even better than the expert.
This might be explained by the fact that the whole-body network is trained on
a larger variety of data, including images from body and hands datasets with
many additional faces. In contrast, the hand component performs slightly lower
than the expert. One hypothesis is that many hands in the body datasets are too
small to be accurately estimated, leading to noisy pseudo ground-truth poses.
However, the performance remains close to that of the hand expert.

With the addition of the distillation loss, the accuracy increases for hand
pose estimation (+1.4%) and slightly for body pose estimation (+0.5% on MPII,
+0.8% on MuPoTs), bringing the performance of the whole-body network even
closer to the experts’ results. Sometimes, DOPE even outperforms the part ex-
pert as observed on MuPoTs for multi-person 3D pose estimation or on Menpo
for facial landmark detection. Figure 4 presents some qualitative results for the
part experts and our proposed DOPE model trained with distillation loss. Two
additional examples of our model’s results can be found in Figure 1. DOPE pro-
duces high-quality whole-body detections that include bodies, hands and faces.
In the example on the left in Figure 4, our whole-body network correctly detects
and estimates the pose of three hands, misdetecting only the lady’s right hand.
By contrast, the hand expert only finds one hand in this image. Note that our
method is holistic for each part: if a part is sufficiently visible in the image, a
prediction is made for every keypoint of the part despite partial occlusions or
truncations, as shown for the bodies in this same example. However, if a part is
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Fig. 4: Each column shows an example with the results of the 3 experts on the
first three rows (we show only the 2D for clarity). The last two rows show the
results obtained by our proposed DOPE approach in 2D and in 3D respectively.

not visible, no prediction is made. This is the case for the occluded hands in the
middle and right examples in Figure 4. Overall, these examples illustrate that
our method can be applied in the wild, including scenes with multiple interacting
people, varied background, severe occlusions or truncations.

4.3 Comparison to the state of the art

Comparison on individual tasks. In Figure 5, we compare our DOPE ap-
proach to the state of the art for each individual task. Note that our main goal
is not to outperform the state of the art on each of these tasks but rather to
unify 3 individual models into a single one while still achieving a competitive
performance. DOPE is among the top performing methods for all three tasks,
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(a) (b)

method PCK3D

VNect [47] 65.0
XNect [46] 70.4

LCRNet++ [55] 70.6

body expert 66.8
DOPE 67.2

method RH (PCK2D) Menpo (PCK2D)

Experts 78.1 94.5
DOPE 71.0 94.9

[12] 36.1 88.0
[29] 23.5 71.5

(c) (d)

Fig. 5: Comparison to the state of the art: (a) PCK3D on RH for varying error
threshold (hand). (b) Percentage of images with correct face detections for vary-
ing 3DA-2D thresholds on Menpo (face). (c) PCK3D on MuPoTs (body). (d)
2D PCK at a threshold of 10% of the tight bounding box’s largest size on RH
(hand) and 5% on Menpo (face). The higher the better.

i.e., hand (a), face (b) and body (c) 3D pose estimation, while being the first
and only method to report on these three tasks together. Additionally, our de-
tection network tackles a more difficult task than most of our competitors who
assume that a bounding box around the ground-truth hands [10, 59, 71, 73] or
faces [17, 18, 65, 68] is given at test time. We also compare with existing whole-
body 2D pose estimation methods (d).

Qualitative comparison to [51,64]. Since there is no dataset to numerically
compare the performances of our learning-based approach in the wild against the
optimization-based pipelines such as [51,64], we show some qualitative examples
in Figure 6. We find that Monocular Total Capture [64] performs quite poorly
on static images (second row), in particular due to occlusions. It greatly benefits
from temporal information when processing the sequences from which the images
are extracted (third row). However, there are still some errors, especially in case
of occlusions (e.g . legs in the left column image). For [51] (fourth row), in the first
example, OpenPose [12] does not estimate the 2D location of the feet that fall out
of the field of view, impacting the optimization of the model’s legs. In our case,
the pose of the legs is correctly estimated. The same phenomenon happens in
the second example where a little girl is kneeling and the self-occlusions prevent
her feet from being detected. Finally, in the third example, the optimization gets
stuck in a local minimum while our estimation is more robust. In addition of
its robustness in the wild, our learning-based approach is also about 1000 times
faster than [51] which takes about a minute per person in an image.
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Fig. 6: Three examples with from top to bottom the original image, the results
from MTC [64] from static image or the video, SMPLify-X [51] and ours.

5 Conclusion

We have proposed DOPE, the first learning-based method to detect and esti-
mate whole-body 3D human poses in the wild, including body, hand and face
2D-3D keypoints. We tackled the lack of training data for this task by leverag-
ing distillation from part experts to our whole-body network. Our experiments
validated this approach showing performances close to the part experts’ results.

Our method allows training a network on a more diverse set of in-the-wild
images, potentially without any pose annotations. In future work, we will inves-
tigate if our model could benefit from additional unlabeled training data.



DOPE: Distillation Of Part Experts for whole-body 3D pose 15

References

1. Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.: 2D human pose estimation:
New benchmark and state of the art analysis. In: CVPR (2014)

2. Armagan, A., Garcia-Hernando, G., Baek, S., Hampali, S., Rad, M., Zhang, Z., Xie,
S., Chen, M., Zhang, B., Xiong, F., Xiao, Y., Cao, Z., Yuan, J., Ren, P., Huang, W.,
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