
Weight Decay Scheduling and Knowledge
Distillation for Active Learning

Juseung Yun, Byungjoo Kim, and Junmo Kim

KAIST, South Korea
{juseung_yun,junmo.kim}@kaist.ac.kr

byungjoo.kim92@gmail.com

Abstract. Although convolutional neural networks perform extremely
well for numerous computer vision tasks, a considerably large amount
of labeled data is required to ensure a good outcome. Data labeling is
labor-intensive, and in some cases, the labeling budget may be limited.
Active learning is a technique that can reduce the labeling required. With
this technique, the neural network selects on its own the unlabeled data
most helpful for learning, and then requests the human annotator for the
labels. Most existing active learning methods have focused on acquisition
functions for an effective selection of the informative samples. However,
in this paper, we focus on the data-incremental nature of active learn-
ing, and propose a method for properly tuning the weight decay as the
amount of data increases. We also demonstrate that the performance can
be improved by knowledge distillation using a low-performance teacher
model trained from the previous acquisition step. In addition, we present
a novel perspective of the weight decay, which provides a regularization
effect by limiting the number of effective parameters and channels in the
convolutional filter. We validate our methods on the MNIST, CIFAR-10,
and CIFAR-100 datasets using convolutional neural networks of various
sizes.

Keywords: active learning, weight decay, knowledge distillation

1 Introduction

Deep convolutional neural networks (CNNs) have shown a significant in several
computer vision tasks [9,34,29]. However, a large amount of data is needed to
ensure the desirable performance of such networks. Unfortunately, because the
process requires considerable manual effort, it is occasionally difficult to collect a
sufficient amount of labeled data. In certain cases, the budget allowed for label-
ing may be limited. Active learning can be used to mitigate the aforementioned
problem. The goal of active learning is to minimize the labeling budget, while
achieving maximum performance. In this paper, we focus on pool-based active
learning. The process of pool-based active learning starts with completely unla-
beled data. While training, the neural network selects a set of data and requests
the human annotator for their labels. The network is then trained using these

2 J. Yun et al.

labels. Iterative training proceeds until it meets certain constraints, such as the
labeling budget, or the desired performance. Because the selection of data no-
tably affects the performance, it is important to select those informative samples
that are most helpful for training a model from unlabeled pools.

In the existing literature, there are three major approaches used to deter-
mine an informative sample, namely, uncertainty-based methods [26,27,18,6],
distribution-based methods [37], and expected model change methods [5,19,49].
Because it is infeasible and redundant to train neural networks from scratch ev-
ery time we obtain additional labels, a rounding setting or batch mode setting
is widely used, where the neural network requests labels for multiple data at the
same time.

The majority of existing active learning methods focus on sampling the most
informative samples by finding the acquisition functions. However, in our ap-
proach, we address the problem by considering the data incremental nature of
active learning. Few annotations are accessible during the early stage of training,
and the network is easily over-fitted to the annotated data; this degrades the
generalization performance. Therefore, a strong regularization is necessary at
the beginning of the training to prevent over-fitting. As the training progresses,
we obtain additional data, and the total amount of annotated data increases. If
we maintain the strong regularization of the first round during the subsequent
rounds, the performance decreases because the network cannot learn new infor-
mation in an efficient manner. The more data we have, the weaker the regularizer
needed to ensure that the model can learn sufficient information. Thus, in active
learning, the number of data continues to increase and regularization must be
performed in a planned manner.

To this end, we propose a novel method for active learning. We control the
regularization effect by scheduling the weight decay as the amount of data in-
creases. We show that reducing the weight decay inversely proportional to the
amount of data is simple but extremely effective. We also demonstrate that
initializing the network parameters randomly and learning from scratch during
every round is better than initializing the model trained during the previous
round. However, if we re-initialize the network during each round, we are unable
to use any information previously trained by the model. As an alternative, we
use the method of distilling knowledge to a new model, in which the model from
the previous round acts as a teacher. We show that the proposed method is
effective in various CNN architectures and datasets.
Contribution. The three main contributions of our study are as follows.

1. We propose a weight decay scheduling method for CNNs with batch nor-
malization during active learning to reduce the weight decay inversely pro-
portional to the number of training data. We also verified that the weight
decay method is effective in batch normalization because it regulates the
model complexity by adjusting the number of effective parameters and con-
volutional channels.

2. We show that a network with a low performance and effective capacity can
distill useful knowledge to networks with a higher performance and effec-

WD Scheduling and KD for Active Learning 3

tive capacity. When training a new model after an acquisition, even distill-
ing knowledge from a previous model shows a better performance than the
training alone.

3. We also verified that our method shows an improved performance on the
MNIST, CIFAR-10, and CIFAR-100 datasets when using various CNN ar-
chitectures with batch normalization.

2 Related Work

Active learning. Classic active learning methods can be categorized into the
following three types: an uncertainty-based approach [26,27,18], a diversity-based
approach [33,4,8], and expected model change-based methods [5,19,39]. In an
uncertainty-based approach, entropy [38,30,18], max margin [36], or distance
to the decision boundary [43,45] are used as a proxy for the uncertainty. With
diversity-based approaches, diverse samples are selected that represent the distri-
bution of an unlabeled data space [33]. The method of an expected model change
estimates an expected gradient length or optimal model improvement [5,19]. In
addition, active learning methods have been applied in deep neural networks.
Through an uncertainty-based approach, Wang et al. [46] used entropy in deep
neural networks, and demonstrated its effectiveness. Gal et al. [6] estimated the
uncertainty through a Monte Carlo dropout. Beluch et al. [2] used an ensemble of
CNNs for estimating uncertainty. Sener et al. [37] proposed a distribution-based
approach, in which the core-set covering the feature space of the entire unlabeled
pool is selected. Fianlly, Yoo et al. [49] proposed a loss prediction module and
selected samples that are expected to have the highest loss.

However, in most studies, the incremental data characteristics of active learn-
ing are not considered and the model is trained using the same hyper-parameters
regardless of the increase in the amount of data [13,46,2,37,49]. Some studies
have used a method to reduce the weight decay as the amount of data increases
[21,6]. However, rather than adjusting the weight decay with the rules, the au-
thors heuristically identified an appropriate weight decay during each round and
used CNN without batch normalization.
Weight decay. Weight decay is a regularization method that prevents overfit-
ting by limiting the complexity of parametric models in machine learning [24].
It is also used in modern deep neural networks and acts as a good regularizer
[9,14,41]. However, when weight decay is used with batch normalization [16],
the output of each layer is re-scaled, and the weights can be scaled using a
small factor without changing the network’s prediction. Therefore, Van et al.
[44] suggested that the weight decay does not effectively limit the complexity of
the network. Furthermore, Zhang et al. [51] indicated that the increase in the
effective learning rate leads to a larger gradient noise, which in turn acts as a
stochastic regularizer [32,20,17], which the authors argue is reason why a weight
decay leads to performance gains even when batch normalization is used.
Knowledge distillation. Knowledge distillation is a method for transferring
knowledge to a small student network using a high-capacity model or an ensemble

4 J. Yun et al.

of multiple models as the teacher. The student is trained to imitate the teacher
model in the form of class probabilities [11], feature representation [1,35,22,10],
attention map [50] or inter-layer flow [48]. Most existing methods use highly
complex or high capacity models as the teacher and aim at obtaining small and
fast models. Rometo et al. [35] used a student network deeper than that of the
teacher. However, the numbers of channels and parameters in the student model
are smaller than those of the teacher.

Recently, Xie et al. [47] successfully distilled knowledge to a larger student
model. However, when training the student model, they used strong regularizers
such as RandAugment data augmentation [3], a dropout [42], and stochastic
depth [15]. Therefore, the performance gain was predictable to a certain extent.
By contrast, our method has a large weight decay for the teacher and a small
weight decay for the student. In other words, in our study, we analyze a case in
which the student has a more effective capacity and is trained with no additional
regularizers such as RandAugment [3].

3 Method

In this section, we describe the active learning problem, along with our proposed
method. In Section 3.1, we present an overview of the entire active learning pro-
cedure. Next, we introduce our weight decay scheduling method in Section 3.2,
and knowledge distillation in Section 3.3.

3.1 Entropy-based Active Learning

We consider a C-class classification problem. In addition, following previous stud-
ies [2,37,49,31], we consider active learning in a batch setting, i.e, the neural net-
work requests labels for multiple data at the same time. During initial round, we
randomly sample K data points from an unlabeled data pool D, and ask a hu-
man oracle to annotate them to create an initial labeled dataset DL

0 = {(x, y)}K ,
where x ∈ X is an input, and y ∈ Y = {1, 2, ..., C} is its label. The subscript 0
denotes the initial round. Let DU

0 = D \ DL
0 be the rest of the unlabeled pool.

Subsequently, we train the initial CNN, f0(x;θ), using the labeled dataset DL
0

with a weight decay λ0. After the initial training, we evaluate all data points in
the unlabeled pool DU

0 using an acquisition function a
(
DU , f

)
. Finding a good

acquisition function was not the focus of our study, however, and we therefore
used entropy as a

(
DU , f

)
, which is simple but achieves a good performance [46].

Once the network f outputs a probabilistic class posterior p(c|x,θ) for a sample
x over a class c, the entropy H(p) can be calculated as follows:

H(p) = −
C∑

c=1

p(c|x,θ)log (p(c|x,θ)) . (1)

Subsequently, we select K samples with the largest entropy from DU
0 and request

the human annotator for labels. The labeled dataset is then updated and DL
1

WD Scheduling and KD for Active Learning 5

is obtained. Next, we train the CNN f1(x;θ) over DL
1 , and select K samples

with the largest entropy from the DU
1 = D\DL

1 . We repeat this process until the
desired performance is achieved or the labeling budget is exhausted.

3.2 Weight Decay Scheduling

With active learning, the amount of training data in the first round is small
and increases as the learning progresses. An over-fitting is likely to occur as the
amount of data is initially small, and therefore, a strong regularizer is needed in
the initial stages of training. By contrast, the more data we have, the weaker the
regularizer needed to ensure that the model can learn sufficient information. If we
keep using a strong regularizer through the training, the network suffers during
the learning. We propose a method for controlling the degree of regularization by
scheduling a weight decay in the network, which contains a batch normalization
layer [16].

Assume that we train a neural network with N1 labeled samples to minimize
the cross-entropy loss, LCE , and L2 weight decay. The total loss, L, is then
expressed as follows:

L = LCE +
1

2
λ1 ‖θ‖22 , (2)

where λ denotes the weight decay parameter. Because we train the network
with a mini-batch, kN1 iterations are required for the entire training process.
Here, k is a proportional constant, which is determined by the size of the mini-
batch and the total number of epochs. The optimizations over LCE and ‖θ‖22
are closely related. In general, reducing the L2 norm to a significant extent
will not effectively reduce the cross-entropy loss, and vice versa. However, when
the network contains a batch normalization layer, it is shown that the weights
can be scaled by a small factor without changing the prediction of the network
[44,51,28,12]. Formally, let θl be the learnable weights for a convolutional layer.
Assume that the output of the layer feeds in to a batch norm layer, and let
BN (x;θl) denote the output of that batch norm layer. Suppose that, as a result
of a L2 penalty term, we scale θl by a factor of 0 < κ < 1. Then, the new output
of the batch norm layer is as follows:

BN (x;κθl) = BN (x;θl) . (3)

This implies that scaling the weights by κ has a negligible effect on the output.
Therefore, we can consider the effect of the weight decay term, 1

2λ1 ‖θ‖
2
2, inde-

pendent of the cross-entropy loss. Because we are using the stochastic gradient
descent (SGD) optimizer with an initial parameter θ0, and learning rate η, the
update by the weight decay proceeds as follows:

θ1 = θ0 − ηλ1θ0 = (1− ηλ1)θ0 (4)
θ2 = (1− ηλ1)θ1 = (1− ηλ1)2θ0 (5)

...
θkN1

= (1− ηλ1)kN1θ0. (6)

6 J. Yun et al.

If we train another network with N2 labeled samples, the weight θkN2
becomes

θkN2
= (1− ηλ2)kN2θ0. For an identical effect of the weight decay regularization

on the networks, we have the following:

(1− ηλ2)kN2θ0 = (1− ηλ1)kN1θ0 (7)

λ2 =
1

η

{
1− (1− ηλ1)

N1
N2

}
(8)

≈ 1

η

{
1−

(
1− N1

N2
ηλ1

)}
(9)

=
N1

N2
λ1. (10)

In Equation (9), we only approximate the first two terms from the binomial
expansion, because η and λ are much smaller than 1. This result shows that when
training a CNN with batch normalization, reducing the weight decay inversely
proportional to the number of data can approximately have the same effect on
the weight. Therefore, we set λ0 during the initial round and reduce it to a value
inversely proportional to the number of data from the second round onward.
In addition, because the initial parameters are assumed to be the same when
deriving the equation, the model should be randomly initialized during every
round. Note that the weight values do not have to be exactly the same, but
they only need to be initialized to a distribution of equal size. If we initialize the
model using the model trained in the previous round, the effect of the weight
decay will be more significant than desired because the weight is already reduced
by the weight decay during the previous round.

3.3 Knowledge Distillation

If we re-initialize the model during every round and train from scratch, the in-
formation learned by the previous model ft−1 is only used to select a new sample
and form DL

t ; it is not applied to train the new model ft. Some previous studies
have initialized ft with ft−1 to employ previously learned information[40,31,46,49,21].
However, we found that, without re-initialization, the effect of the weight decay
will be so large that the performance will decrease, even if the same weight de-
cay scheduling is used. This is consistent with the findings of Hu et al. [13]. We
discuss this in more detail in Section 5.1.

As an alternative to initializing ft to ft−1, we propose a transfer of knowledge
of ft−1 to ft using a knowledge distillation technique. We follow the knowledge
distillation proposed by Hinton et al. [11]. In the first round, we train the model
without a teacher network. From the second round onward, we train the student
model ft by distilling knowledge from the teacher model ft−1. We experimented
using two cases: distilling all DL

t and distilling only DL
t−1 that the teacher model

previously used for training. For the former, the total loss Lt used to train the

WD Scheduling and KD for Active Learning 7

student model, ft, is as follows:

LKD1
t =

1− α∣∣DL
t

∣∣ ∑
x∈DL

t

LCE (y, σ (zt(x)))

+
αT 2∣∣DL

t

∣∣ ∑
x∈DL

t

LKL

(
σ

(
zt−1(x)

T

)
, σ

(
zt(x)

T

))
+

1

2
λt ‖θ‖22

(11)
where zt is the logits output by the network ft, T is the temperature, σ is the
softmax function, LKL is the Kullback Leibler (KL) divergence, and |·| represents
the cardinality, the latter of which is as follows:

LKD2
t =

1− α∣∣DL
t

∣∣ ∑
x∈DL

t

LCE (y, σ (zt(x)))

+
αT 2∣∣DL
t−1
∣∣ ∑
x∈DL

t−1

LKL

(
σ

(
zt−1(x)

T

)
, σ

(
zt(x)

T

))
+

1

2
λt ‖θ‖22 .

(12)
The overall framework for knowledge distillation is the same as that of [11].
However, Hinton et al. [11] focused on compressing and speeding up the model
by transferring knowledge of a larger model to a smaller model. By contrast,
our goal was to identify knowledge distillation from the teacher model, which
shows a reduced performance and has a low effective complexity. Note that
reducing the KL divergence with a lower performing teacher can interfere with
the training and cause a performance degradation as compared to when training
alone without teacher.

4 Experiments

In this section, we first verify the method of adjusting a weight decay inversely
proportional to the number of training data (Section 4.1). We also evaluated the
proposed active learning method on the MNIST [25], CIFAR-10, and CIFAR-100
[23] datasets using CNNs of various architectures (Section 4.2 ∼ 4.4).
Comparison targets. We initialize a labeled dataset DL

0 through random sam-
pling. For each method, we repeat the same experiment five times with different
initially labeled images. In addition, for a fair comparison, all methods use the
same random seed for each of the five experiments. We consider three acquisition
methods for comparison:

– Random indicates a random sampling regardless of the active learning method.
– Entropy is the most frequently compared method in active learning [2,6,37,49].

We use entropy for all of our methods because the acquisition function is not
our focus.

– In LL [49], samples that are expected to have the highest loss are selected
using the loss prediction module. To the best of our knowledge, this method
achieves a state-of-the-art performance on the CIFAR-10 dataset.

8 J. Yun et al.

Table 1: Accuracy(%) of (a) 5-layer CNN with various fixed weight decays on the
MNIST dataset where the number of training data varies from 200 to 10,000 and
(b) Resnet18 with various fixed weight decays on the CIFAR-10 dataset where
the number of training data varies from 1,000 to 50,000.

(a) MNIST

Number of labeled images
WD 200 500 1k 2k 5k 10k
0.2 92.37 94.86 95.64 95.81 93.84 94.50
0.1 92.46 95.75 96.75 96.94 96.67 96.82
0.04 91.82 96.30 97.12 97.68 98.17 98.26
0.02 91.00 96.03 97.29 97.96 98.54 98.71
0.01 89.97 95.06 97.25 98.03 98.58 98.94
0.004 89.94 94.50 96.70 97.91 98.70 98.97
0.002 89.25 94.25 96.42 97.63 98.60 98.98
0.001 89.67 94.18 96.17 97.45 98.54 98.90

(b) CIFAR-10

Number of labeled images
WD 1k 2k 5k 10k 20k 50k
0.02 52.44 54.25 33.03 19.58 17.66 10.00
0.01 62.84 71.80 75.83 74.60 71.91 61.75
0.005 58.46 73.93 81.50 84.06 83.47 83.37
0.002 54.12 70.83 83.15 87.54 90.42 92.05
0.001 53.30 67.63 83.05 88.26 92.00 94.48
0.0005 52.1 65.34 81.37 88.13 92.23 95.18
0.0002 49.47 63.56 79.23 86.56 91.39 95.26
0.0001 50.18 64.06 78.50 85.76 90.91 94.84

We also consider distilling all DL
t and distilling only DL

t−1 learned by the teacher,
which we denote as KD1 and KD2, respectively.

4.1 Results for Weight Decay VS the Number of Data

Table 1 shows the test accuracy (%) of the networks according to the fixed
weight decay at each number of labeled training data. We use a 5-layer CNN
for MNIST, and Resnet18 for the CIFAR-10 dataset. The implementation de-
tails are described in Sections 4.2 and 4.3. For each number of data, bold values
represent the highest accuracy; the corresponding weight decay decreases in-
versely proportional to the number of data. The more data we have, the weaker
the regularizer we need to ensure that the model can learn a sufficient amount
of information. If the strong weight decay of the first round is maintained in
the subsequent rounds, the performance deteriorates. The optimal weight decay
changes depending on the number of data. Thus, to reach the target perfor-
mance with the minimum number of data, it is necessary to continuously adjust
the optimal weight decay. For this reason, we propose a scheduling weight decay;
a fixed weight decay is unsuitable for active learning.

4.2 Results for Active Learning on MNIST

Implementation details. For the MNIST dataset, we use a 5-layer CNN, which
is composed of four convolutional layers followed by stride-2 max pooling and the
last fully connected layer. Each convolutional layer has 32, 64, 64, and 64 chan-
nels. Following [9], we used three consecutive operations for the convolutional
layers: a 3×3 convolution with a stride of 1 without padding, batch normaliza-
tion [16], and a rectified linear unit (ReLU) [7]. For all methods, we train models
for 100 epochs with the initial learning rate 0.01 decayed by a factor of 0.1 at

WD Scheduling and KD for Active Learning 9

500 1000 1500 2000 2500
Number of labeled images

94

95

96

97

98

99

Acc
ura

cy
(%

)

method
Random(0.004)
Random(0.04)
Entropy(0.004)
Entropy(0.04)
Entropy+init(0.004)
Entropy+init(0.04)
WS(0.04)
WS+init(0.04)
WS+init+KD1(0.04)
WS+init+KD2(0.04)

200 400 600 800 1000
Number of labeled images

90

92

94

96

98

Acc
ura

cy
(%

)

method
Random(0.01)
Random(0.1)
Entropy(0.01)
Entropy(0.1)
Entropy+init(0.01)
Entropy+init(0.1)
WS(0.1)
WS+init(0.1)
WS+init+KD1(0.1)
WS+init+KD2(0.1)

(a) K = 500 (b) K = 200

Fig. 1: Performance comparison on MNIST

50 epochs and use no data augmentation. The batch size is set to 32. For distil-
lation, we use an α of 0.5 and T of 6. We test five rounds and sample K images
every round. The CNN is trained using 5K data during the final round. We use
two budget settings, i.e., K = 500 and K = 200, for the experiments.
Results. Figure 1 shows the results. For a fixed weight decay, the value in
parentheses for each method represents the weight decay value. For the weight
decay scheduling method, which we note as WS, the number in parentheses rep-
resents the initial value. The method of random re-initialization in each round
is denoted by init. Shaded areas represent 95% confidence intervals by perform-
ing 1000 bootstrap resampling. During the initial round, the methods with WS
show outstanding performance because of their well-tuned weight decay. As the
weight decay decreases, the performance gap is reduced. When the number of
labeled images is 2,500, Entorpy(0.004) and Entorpy+init(0.004) show 99.12%
and 99.17% respectively. WS+init+KD1 and WS+init+KD2 show 99.27% and
99.29% respectively, and they outperform all the other methods regardless of la-
beling budget. The two distillation methods show similar performance and there
is no significant difference in trend.

4.3 Results for Active Learning on CIFAR-10

Implementation details. For the CIFAR-10 dataset, we use Resnet18 [9] and
Densenet100 [14]. For Resnet18, we train the models for 350 epochs with an
initial learning rate 0.1 decayed by factor of 0.1 at epochs 150 and 250. The
batch size is set to 128. For Densenet100, we train for 300 epochs with an initial
learning rate 0.1 decayed by factor 0.1 at epochs 150 and 225. The batch size is
set to 64. We use the standard augmentation setting such as resizing, cropping,
and flipping for both architectures. For distillation, we use an α of 0.5 and T of
6. We test ten rounds and sample K images every round. The CNN is trained
with 10K data during the final round. We experiment on two budget settings,
i.e., K = 1000 and K = 250.

10 J. Yun et al.

2000 4000 6000 8000 10000
Number of labeled images

50

60

70

80

90

Ac
cu

ra
cy

 (%
) method

Random(0.0008)
Entropy(0.0008)
Entropy(0.0001)
Entropy+init(0.0008)
LL(0.0005)
WS(0.008)
WS+init(0.008)
WS+init+KD1(0.008)
WS+init+KD2(0.008)

500 1000 1500 2000 2500
Number of labeled images

30

40

50

60

70

80

Ac
cu

ra
cy

 (%
) method

Random(0.0032)
Entropy(0.0032)
Entropy(0.0001)
Entropy+init(0.0032)
LL(0.0005)
WS(0.032)
WS+init(0.032)
WS+init+KD1(0.032)
WS+init+KD2(0.032)

(a) (b)

2000 4000 6000 8000 10000
Number of labeled images

50

55

60

65

70

75

80

85

90

Ac
cu

ra
cy

 (%
) method

Random(0.0003)
Entropy(0.0003)
Entropy(0.0001)
Entropy+init(0.0003)
LL(0.0001)
WS(0.003)
WS+init(0.003)
WS+init+KD1(0.003)
WS+init+KD2(0.003)

500 1000 1500 2000 2500
Number of labeled images

30

40

50

60

70

80

Ac
cu

ra
cy

 (%
) method

Random(0.0012)
Entropy(0.0012)
Entropy(0.0001)
Entropy+init(0.0012)
LL(0.0001)
WS(0.012)
WS+init(0.012)
WS+init+KD1(0.012)
WS+init+KD2(0.012)

(c) (d)

Fig. 2: Performance comparison on CIFAR-10: (a) Resnet18, K = 1000, (b)
Resnet18, K = 250, (c) Densenet100, K = 1000, and (d) Densenet100, K = 250

Results. Except for Entropy(0.0001) and LL, the methods are set to have the
same weight decay during the last round. If we set the weight decay of Entropy
to the same initial value of the WS method, the CNN does not converge as the
round proceeds. This occurs because an excessive weight decay interferes with
the model training. Here, 0.0001 is the value used in the original paper on both
Resnet [9] and Densenet [14]. For the LL method [49], we also follow the weight
decay value from the original paper.

Figure 2 shows the results. In Figure 2 (a), WS+init (0.008) and Entropy+init
(0.0008) are 91.68% and 91.51%, respectively, during the last round. In addi-
tion, in Figure 2 (c), WS+init (0.003) and Entropy+init (0.0003) are 89.96%
and 90.43% respectively during the last round. Note that the WS+init and En-
tropy+init methods have the same weight decay value during the last round.
Nevertheless, the performance of WS+init is better than that of Entropy+init
for all four cases. This shows that, although the same acquisition function is
used, a well-tuned CNN can select more informative samples. Therefore, ap-
propriately scheduling the weight decay in each round seems important for the
sampling, as well as for the performance of the current model. In addition, by
simply adjusting the weight decay and applying a random initialization on each
round, Entropy+init(0.0008) shows a better performance than LL(0.0005).

WD Scheduling and KD for Active Learning 11

2000 4000 6000 8000 10000
Number of labeled images

10

20

30

40

50

60

Ac
cu

ra
cy

 (%
) method

Random(0.0008)
Entropy(0.0008)
Entropy(0.0001)
Entropy+init(0.0008)
LL(0.0005)
WS(0.008)
WS+init(0.008)
WS+init+KD1(0.008)
WS+init+KD2(0.008)

2000 4000 6000 8000 10000
Number of labeled images

10

20

30

40

50

Ac
cu

ra
cy

 (%
) method

Random(0.0003)
Entropy(0.0003)
Entropy(0.0001)
Entropy+init(0.0003)
LL(0.0001)
WS(0.003)
WS+init(0.003)
WS+init+KD1(0.003)
WS+init+KD2(0.003)

(a) (b)

Fig. 3: Performance comparison on CIFAR-100 for K = 1000: (a) Resnet18, and
(b) Densenet100

In Figure 2 (d), Random achieves a better performance than Entropy during
the early stage. During the third round, Random (0.0012) and Entropy (0.0012)
achieve rates of 51.37% and 49.31% respectively. However, during the last round,
Entropy (0.0012) shows a better performance. It appears that, if the number of
training data is too small, applying only difficult samples hinders the training.

In most cases, initializing with a pre-trained model from the previous round
degrades the performance. In particular, WS suffers from a significant degrada-
tion in the performance. We discuss this phenomenon in Section 5.1.

4.4 Results for Active learning on CIFAR-100

Implementation details. For the CIFAR-100 dataset, we also use Resnet18
[9] and Densenet100 [14]. All settings are the same as with CIFAR-10, except for
K. If we set K to 250, there might be some classes that are not selected during
the initial round, and thus we only experiment using K = 1000.
Results. Figure 3 shows the result. There is an inconsistency in the behaviors
of the methods when switching from CIFAR-10 to CIFAR-100. During the last
round, WS+init (0.008) and Entropy+init (0.0008) achieve results of 57.38%
and 57.43%, respectively (Figure 3 (a)). In addition, WS+init (0.003) and En-
tropy+init (0.0003) achieve rates of 54.88% and 55.23%, respectively (Figure 3
(b)). The accuracy of WS+init is worse than that of Entropy+init during the
last round. Even Random shows a better result than Entropy. For the CIFAR-
100 dataset, the accuracy of the CNN is low and the number of training data
per class is smaller than that of CIFAR-10; and thus it seems that applying
only difficult samples hinders the training. However, the best performance is
shown when WD scheduling and knowledge distillation methods are used to-
gether (WD+init+KD).

12 J. Yun et al.

0.020 0.015 0.010 0.005 0.000 0.005 0.010 0.015 0.020
0

1000000

2000000

3000000

4000000

5000000

6000000

18.75

0.020 0.015 0.010 0.005 0.000 0.005 0.010 0.015 0.020
0.0

0.2

0.4

0.6

0.8

1.0
1e7

25.35

0.020 0.015 0.010 0.005 0.000 0.005 0.010 0.015 0.020
0.0

0.2

0.4

0.6

0.8

1.0

1e7

28.37

(a) Round 3 (b) Round 6 (c) Round 9

0.020 0.015 0.010 0.005 0.000 0.005 0.010 0.015 0.020
0

100000

200000

300000

400000

500000

600000

700000

19.99

0.020 0.015 0.010 0.005 0.000 0.005 0.010 0.015 0.020
0

100000

200000

300000

400000 25.35

0.020 0.015 0.010 0.005 0.000 0.005 0.010 0.015 0.020
0

50000

100000

150000

200000

250000

300000

350000

400000

28.43

(d) Round 3 (e) Round 6 (f) Round 9

Fig. 4: Histogram of convolutional weights in Resnet18 during the active learning
process. The number in each sub-figure represents the L2-norm of the weights:
(a)∼(c) WS(0.008), and (d)∼(f) WS+init(0.008)

5 Analysis

In this section, we analyze why the model initialized to the model in the previous
round shows a worse performance than the model trained from scratch. (Section
5.1). We also analyze how the distillation parameter α affects the distillation
performance (Section 5.2).

5.1 Effect of Weight Decay

Figure 4 shows a histogram of the weights in convolutional layers of ResNet18.
The number in each sub-figure represents the L2-norm of the weights. The ex-
perimental setting is the same as that in Section 4.3 where the labeling budget
K is 1000. The upper column represents the result when the model is initial-
ized to the model trained in the previous round (WD(0.008)), and the lower
column represents the results when the model is randomly initialized during ev-
ery round (WD+init(0.008)). The norm of WS(0.008) is similar to the norm of
WS+init(0.008) even though most of the weights are distributed close to 0. In
other words, the norm of the weight is very unevenly distributed, and a small
number of weights with large norms have much more influence in determining the
overall prediction. This implies that the actual network capacity is smaller than
the actual number of parameters. This may cause the performance degradation.

With a similar analysis, we found that another reason for the performance
degradation is the weight decay causing the weight of the batch norm to be
sparse, resulting in a reduced number of effective convolutional channels.1 In
1 This analysis is applicable when weight decay is applied to the batch norm weight.
Pytorch implementation of several CNN models also gives weight decay to the weight
of the batch norm.

WD Scheduling and KD for Active Learning 13

0.00 0.05 0.10 0.15 0.20
0

10

20

30

40

50

60

63

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
0

10

20

30

40

50

60

63

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
0

10

20

30

40

50

60

63

(a) Round 3 (b) Round 6 (c) Round 9

0.00 0.05 0.10 0.15 0.20 0.25
0

5

10

15

20 23

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
0

2

4

6

8

10 11

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
0

1

2

3

4

5

6

7

8

2

(d) Round 3 (e) Round 6 (f) Round 9

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
0

1

2

3

4

5

6

7

8

0

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
0

1

2

3

4

5

6

7

2

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
0

2

4

6

8

10 3

(g) Round 3 (h) Round 6 (i) Round 9

Fig. 5: Histogram of batch norm weights in ResNet18 during the active learn-
ing process. We show only the first batch norm weights of the first residual
block. The red vertical line represents the average divided by 10 and the num-
ber in each sub-figure represent the number of weights that are less than the
average divided by 10: (a)∼(c) WS(0.008), (d)∼(f) WS+init(0.008), and (g)∼(i)
Entropy+init(0.0008)

other words, although the weight of the convolution is re-scaled at the batch norm
layer, the weight decay can still limit the complexity by reducing the number of
actual filters. Figure 5 shows a histogram of batch the norm weights for the fol-
lowing three cases: WS(0.008), WS+init(0.008), and Entropy+init(0.0008). The
figure shows the absolute value of the weights and we show only the first batch
norm weights of the first residual block. The red vertical line in each sub-figure
represents the average divided by 10 and the number in each sub-figure are the
number of weights that are smaller than the mean of the weights divided by 10.
In the case of WS(0.008), the impact of the weight decay is great, thereby caus-
ing most of the weight of the batch norm to be close to zero (Figure 5 (a)∼(c)),
as well as causing a reduction in the weight of the convolutional filter. Weight
values that are much smaller than the average value refer to the correspond-
ing filter, which has little impact on the prediction, thereby reducing the actual
complexity of the model. Therefore, a model without random re-initialization is
significantly affected by the weight decay, and the poor performance appears to
be due to the low complexity. By contrast, in the case of WS+init(0.008), the
number of batch norm weights at near zero decreases (Figure 5 (d)∼(f)) as the

14 J. Yun et al.

Table 2: Performance comparison according to knowledge distillation parameter
α on CIFAR-10 using Resnet18

Method α
Number of labeled images

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
WS+init · 62.17 75.40 80.40 83.33 85.45 87.60 88.93 90.03 91.07 91.68

WS+init+KD1 0.1 62.57 75.49 80.74 83.72 85.71 87.70 89.46 90.26 91.28 91.90
WS+init+KD1 0.5 61.27 76.24 81.85 84.77 86.91 88.07 89.52 90.57 91.53 91.96
WS+init+KD1 0.9 62.55 74.18 80.88 84.59 86.99 88.60 89.81 90.86 91.66 92.18

round proceeds and the number of training data increases. Through weight de-
cay scheduling, the model is trained to have a small number of effective channels
when the number of training data is small, and to have a large number of effec-
tive channels when the number of training data is large. If random initialization
is applied during every round but weight decay scheduling is not applied, we can
see that the number of effective channels does not increase in proportion to the
number of data (Figure 5 (g)∼(i)). In other words, regardless of the round, the
effective capacity is similar, which means that an over-fitting can occur during
the early rounds.

5.2 Effect of Knowledge Distillation Parameter

In this section, we analyze how the knowledge distillation parameter affects the
performance. In our experiments, the temperature T does not show a significant
difference in performance. We compare the performance when α changes. Table 2
shows the result. A small α gives more weight to the cross-entropy loss and a large
α gives more weight to the distillation loss. In the early rounds during which the
difference in performance between the teacher and student is large, it is better
to provide similar weights to the cross-entropy and distillation loss. However,
because the training proceeds and the performances of the teacher and student
are similar, a large α value shows a better performance. For a small α, there is
no significant performance improvement even after knowledge distillation.

6 Conclusion

We showed that reducing the weight decay inversely proportional to the number
of data is simple but effective, and we that even a low-performance teacher can
distill knowledge in an active learning setting. The experimental results show
that our method outperforms the baseline methods. In addition, we presented
a new perspective of how the weight decay regularizes a convolutional neural
network, which contains a batch normalization layer. The weight decay provides a
regularization effect by limiting the number of parameters and effective channels
of the convolutional layers.

WD Scheduling and KD for Active Learning 15

References

1. Ba, J., Caruana, R.: Do deep nets really need to be deep? In: Advances in neural
information processing systems. pp. 2654–2662 (2014)

2. Beluch, W.H., Genewein, T., Nürnberger, A., Köhler, J.M.: The power of ensembles
for active learning in image classification. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 9368–9377 (2018)

3. Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: Randaugment: Practical automated
data augmentation with a reduced search space. arXiv preprint arXiv:1909.13719
(2019)

4. Elhamifar, E., Sapiro, G., Yang, A., Shankar Sasrty, S.: A convex optimization
framework for active learning. In: Proceedings of the IEEE International Confer-
ence on Computer Vision. pp. 209–216 (2013)

5. Freytag, A., Rodner, E., Denzler, J.: Selecting influential examples: Active learn-
ing with expected model output changes. In: European Conference on Computer
Vision. pp. 562–577. Springer (2014)

6. Gal, Y., Islam, R., Ghahramani, Z.: Deep bayesian active learning with image data.
In: Proceedings of the 34th International Conference on Machine Learning-Volume
70. pp. 1183–1192. JMLR. org (2017)

7. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Pro-
ceedings of the fourteenth international conference on artificial intelligence and
statistics. pp. 315–323 (2011)

8. Guo, Y.: Active instance sampling via matrix partition. In: Advances in Neural
Information Processing Systems. pp. 802–810 (2010)

9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

10. Heo, B., Kim, J., Yun, S., Park, H., Kwak, N., Choi, J.Y.: A comprehensive overhaul
of feature distillation. In: Proceedings of the IEEE International Conference on
Computer Vision. pp. 1921–1930 (2019)

11. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531 (2015)

12. Hoffer, E., Banner, R., Golan, I., Soudry, D.: Norm matters: efficient and accu-
rate normalization schemes in deep networks. In: Advances in Neural Information
Processing Systems. pp. 2160–2170 (2018)

13. Hu, P., Lipton, Z.C., Anandkumar, A., Ramanan, D.: Active learning with partial
feedback. arXiv preprint arXiv:1802.07427 (2018)

14. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. pp. 4700–4708 (2017)

15. Huang, G., Sun, Y., Liu, Z., Sedra, D., Weinberger, K.Q.: Deep networks with
stochastic depth. In: European conference on computer vision. pp. 646–661.
Springer (2016)

16. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

17. Jastrzębski, S., Kenton, Z., Arpit, D., Ballas, N., Fischer, A., Bengio, Y., Storkey,
A.: Three factors influencing minima in sgd. arXiv preprint arXiv:1711.04623
(2017)

18. Joshi, A.J., Porikli, F., Papanikolopoulos, N.: Multi-class active learning for image
classification. In: 2009 IEEE Conference on Computer Vision and Pattern Recog-
nition. pp. 2372–2379. IEEE (2009)

16 J. Yun et al.

19. Käding, C., Rodner, E., Freytag, A., Denzler, J.: Active and continuous exploration
with deep neural networks and expected model output changes. arXiv preprint
arXiv:1612.06129 (2016)

20. Keskar, N.S., Mudigere, D., Nocedal, J., Smelyanskiy, M., Tang, P.T.P.: On large-
batch training for deep learning: Generalization gap and sharp minima. arXiv
preprint arXiv:1609.04836 (2016)

21. Khodabandeh, M., Deng, Z., Ibrahim, M.S., Satoh, S., Mori, G.: Active learning for
structured prediction from partially labeled data. arXiv preprint arXiv:1706.02342
(2017)

22. Kim, J., Park, S., Kwak, N.: Paraphrasing complex network: Network compression
via factor transfer. In: Advances in Neural Information Processing Systems. pp.
2760–2769 (2018)

23. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images (2009)

24. Krogh, A., Hertz, J.A.: A simple weight decay can improve generalization. In:
Advances in neural information processing systems. pp. 950–957 (1992)

25. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

26. Lewis, D.D., Catlett, J.: Heterogeneous uncertainty sampling for supervised learn-
ing. In: Machine learning proceedings 1994, pp. 148–156. Elsevier (1994)

27. Lewis, D.D., Gale, W.A.: A sequential algorithm for training text classifiers. In:
SIGIR’94. pp. 3–12. Springer (1994)

28. Li, H., Xu, Z., Taylor, G., Studer, C., Goldstein, T.: Visualizing the loss landscape
of neural nets. In: Advances in Neural Information Processing Systems. pp. 6389–
6399 (2018)

29. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. pp. 3431–3440 (2015)

30. Luo, W., Schwing, A., Urtasun, R.: Latent structured active learning. In: Advances
in Neural Information Processing Systems. pp. 728–736 (2013)

31. Meyer, B.J., Drummond, T.: The importance of metric learning for robotic vision:
Open set recognition and active learning. In: 2019 International Conference on
Robotics and Automation (ICRA). pp. 2924–2931. IEEE (2019)

32. Neelakantan, A., Vilnis, L., Le, Q.V., Sutskever, I., Kaiser, L., Kurach, K., Martens,
J.: Adding gradient noise improves learning for very deep networks. arXiv preprint
arXiv:1511.06807 (2015)

33. Nguyen, H.T., Smeulders, A.: Active learning using pre-clustering. In: Proceedings
of the twenty-first international conference on Machine learning. p. 79 (2004)

34. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detec-
tion with region proposal networks. In: Advances in neural information processing
systems. pp. 91–99 (2015)

35. Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Gatta, C., Bengio, Y.: Fitnets:
Hints for thin deep nets. arXiv preprint arXiv:1412.6550 (2014)

36. Roth, D., Small, K.: Margin-based active learning for structured output spaces. In:
European Conference on Machine Learning. pp. 413–424. Springer (2006)

37. Sener, O., Savarese, S.: Active learning for convolutional neural networks: A core-
set approach. arXiv preprint arXiv:1708.00489 (2017)

38. Settles, B., Craven, M.: An analysis of active learning strategies for sequence label-
ing tasks. In: Proceedings of the 2008 Conference on Empirical Methods in Natural
Language Processing. pp. 1070–1079 (2008)

WD Scheduling and KD for Active Learning 17

39. Settles, B., Craven, M., Ray, S.: Multiple-instance active learning. In: Advances in
neural information processing systems. pp. 1289–1296 (2008)

40. Shen, Y., Yun, H., Lipton, Z.C., Kronrod, Y., Anandkumar, A.: Deep active learn-
ing for named entity recognition. arXiv preprint arXiv:1707.05928 (2017)

41. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

42. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. The journal of
machine learning research 15(1), 1929–1958 (2014)

43. Tong, S., Koller, D.: Support vector machine active learning with applications to
text classification. Journal of machine learning research 2(Nov), 45–66 (2001)

44. Van Laarhoven, T.: L2 regularization versus batch and weight normalization. arXiv
preprint arXiv:1706.05350 (2017)

45. Vijayanarasimhan, S., Grauman, K.: Large-scale live active learning: Training ob-
ject detectors with crawled data and crowds. International journal of computer
vision 108(1-2), 97–114 (2014)

46. Wang, K., Zhang, D., Li, Y., Zhang, R., Lin, L.: Cost-effective active learning for
deep image classification. IEEE Transactions on Circuits and Systems for Video
Technology 27(12), 2591–2600 (2016)

47. Xie, Q., Hovy, E., Luong, M.T., Le, Q.V.: Self-training with noisy student improves
imagenet classification. arXiv preprint arXiv:1911.04252 (2019)

48. Yim, J., Joo, D., Bae, J., Kim, J.: A gift from knowledge distillation: Fast opti-
mization, network minimization and transfer learning. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 4133–4141 (2017)

49. Yoo, D., Kweon, I.S.: Learning loss for active learning. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 93–102 (2019)

50. Zagoruyko, S., Komodakis, N.: Paying more attention to attention: Improving the
performance of convolutional neural networks via attention transfer. arXiv preprint
arXiv:1612.03928 (2016)

51. Zhang, G., Wang, C., Xu, B., Grosse, R.: Three mechanisms of weight decay reg-
ularization. arXiv preprint arXiv:1810.12281 (2018)

	Weight Decay Scheduling and Knowledge Distillation for Active Learning

