HMQ: Hardware Friendly Mixed Precision
Quantization Block for CNNs

Hai Victor Habi, Roy H. Jennings, and Arnon Netzer

Sony Semiconductor Israel
{hai.habi, roy.jennings, arnon.netzer}@sony.com

Abstract. Recent work in network quantization produced state-of-the-
art results using mixed precision quantization. An imperative require-
ment for many efficient edge device hardware implementations is that
their quantizers are uniform and with power-of-two thresholds. In this
work, we introduce the Hardware Friendly Mixed Precision Quantization
Block (HMQ) in order to meet this requirement. The HMQ is a mixed
precision quantization block that repurposes the Gumbel-Softmax es-
timator into a smooth estimator of a pair of quantization parameters,
namely, bit-width and threshold. HMQs use this to search over a finite
space of quantization schemes. Empirically, we apply HMQs to quantize
classification models trained on CIFAR10 and ImageNet. For ImageNet,
we quantize four different architectures and show that, in spite of the
added restrictions to our quantization scheme, we achieve competitive
and, in some cases, state-of-the-art results.

Keywords: Deep Neural Networks, Model Compression, Quantization

1 Introduction

In recent years, convolutional neural networks (CNNs) produced state-of-the-
art results in many computer vision tasks including image classification [14, 17,
21,22, 38, 39], object detection [29, 36, 40], semantic segmentation [31,37], etc.
Deploying these models on embedded devices is a challenging task due to limita-
tions on available memory, computational power and power consumption. Many
works address these issues using different methods. These include pruning [16,
45,47, efficient neural architecture design [14, 21,24, 38|, hardware and CNN
co-design [14, 20, 43] and quantization [6,13, 15,23, 24, 46].

In this work, we focus on quantization, an approach in which the model is
compressed by reducing the bit-widths of weights and activations. Besides reduc-
tion in memory requirements, depending on the specific hardware, quantization
usually also results in the reduction of both latency and power consumption. The
challenge of quantization is to reduce the model size without compromising its
performance. For high compression rates, this is usually achieved by fine-tuning
a pre-trained model for quantization. In addition, recent work in quantization

The code of this work is available in https://github.com/sony-si/ai-research.

2 H. V. Habi, R. H. Jennings, and A. Netzer

focused on making quantizers more hardware friendly (amenable to deployment
on embedded devices) by restricting quantization schemes to be: per-tensor, uni-
form, symmetric and with thresholds that are powers of two [24, 41].

Recently, mized-precision quantization was studied in [12,41, 42, 44]. In these
works, the bit-widths of weights and activations are not equal across the model
and are learned during some optimization process. In [42], reinforcement learning
is used, which requires the training of an agent that decides the bit-width of each
layer. In [44], neural architecture search is used, which implies duplication of
nodes in the network and that the size of the model grows proportionally to the
size of the search space of bit-widths. Both of these methods limit the bit-width
search space because of their computational cost. In [12], the bit-widths are
not searched during training, but rather, this method relies on the relationship
between the layer’s Hessian and its sensitivity to quantization.

An imperative requirement for many efficient edge device hardware imple-
mentations is that their quantizers are symmetric, uniform and with power-of-
two thresholds (see [24]). This removes the cost of special handling of zero points
and real value scale factors. In this work, we introduce a novel quantization block
we call the Hardware Friendly Mized Precision Quantization Block (HMQ) that
is designed to search over a finite set of quantization schemes that meet this
requirement. HMQs utilize the Gumbel-Softmax estimator [25] in order to op-
timize over a categorical distribution whose samples correspond to quantization
scheme parameters.

We propose a method, based on HMQs, in which both the bit-width and the
quantizer’s threshold are searched simultaneously. We present state-of-the-art
results on MobileNetV1, MobileNetV2 and ResNet-50 in most cases, in spite of
the hardware friendly restriction applied to the quantization schemes. Addition-
ally, we present the first (that we know of) mixed precision quantization results
of EfficientNet-B0. In particular, our contributions are the following:

— We introduce HMQ), a novel, hardware friendly, mixed precision quantization
block which enables a simple and efficient search for quantization parameters.

— We present an optimization method, based on HMQs, for mixed precision
quantization in which we search simultaneously for both the bit-width and
the threshold of each quantizer.

— We present competitive and, in most cases, state-of-the-art results using
our method to quantize ResNet-50, EfficientNet-B0, MobileNetV1 and Mo-
bileNetV2 classification models on ImageNet.

2 Related Work

Quantization lies within an active area of research that tries to reduce memory
requirements, power consumption and inference latencies of neural networks.
These works use techniques such as pruning, efficient network architectures and
distillation (see e.g. [7,14,15,18,19,21, 30, 34, 35, 38, 39, 48]). Quantization is a
key method in this area of research which compresses and accelerates the model

HMQ: Hardware Friendly Mixed Precision Quantization Block for CNNs 3

by reducing the number of bits used to represent model weights and activations.

Quantization. Quantization techniques can be roughly divided into two
families: post-training quantization techniques and quantization-aware training
techniques. In post-training quantization techniques, a trained model is quan-
tized without retraining the model (see e.g. [1, 5]). In quantization-aware training
techniques, a model undergoes an optimization process during which the model
is quantized. A key challenge in this area of research, is to compress the model
without significant degradation to its accuracy. Post-training techniques suffer
from a higher degradation to accuracy, especially for high compression rates.

Since the gradient of quantization functions is zero almost everywhere, most
quantization-aware training techniques use the straight through estimator (STE)
[4] for the estimation of the gradients of quantization functions. These tech-
niques mostly differ in their choice of quantizers, the quantizers’ parametriza-
tion (thresholds, bit-widths, step size, etc.) and their training procedure. During
training, the network weights are usually stored in full-precision and are quan-
tized before they are used in feed-forward. The full-precision weights are then
updated via back-propagation. Uniform quantizers are an important family of
quantizers that have several benefits from a hardware point-of-view (see e.g. [13,
24,41)). Non-uniform quantizers include clustering, logarithmic quantization and
others (see e.g. [3,33,46,49]).

Mixed precision. Recent works on quantization produced state-of-the-art
results using mixed precision quantization, that is, quantization in which the
bit-widths are not constant across the model (weights and activations). In [42],
reinforcement learning is used to determine bit-widths. In [12], second order
gradient information is used to determine bit-widths. More precisely, the bit-
widths are selected by ordering the network layers using this information. In
[41], bit-widths are determined by learnable parameters whose gradients are
estimated using STE. This work focuses on the choice of parametrization of
the quantizers and shows that the threshold (dynamic range) and step size are
preferable over parametrizations that use bit-widths explicitly.

In [44], a mixed precision quantization-aware training technique is proposed
where the bit-widths search is converted into a network architecture search
(based on [27]). More precisely, in this solution, the search space of all possi-
ble quantization schemes is, in fact, a search for a sub-graph in a super-net. The
disadvantage of this approach, is that the size of the super net grows substan-
tially with every optional quantization edge/path that is added to the super net.
In practice, this limits, the architecture search space. Moreover, this work deals
with bit-widths and thresholds as two separate problems where thresholds follow
the solution in [8].

4 H. V. Habi, R. H. Jennings, and A. Netzer

3 The HMQ Block

The Hardware Friendly Mized Precision Quantization Block (HMQ) is a network
block that learns, via standard SGD, a uniform and symmetric quantization
scheme. The scheme is parametrized by a pair (¢,b) of threshold ¢ and bit-width
b. During training, an HMQ searches for (, b) over a finite space TxB C R* x N.
In this work, we make HMQs “hardware friendly” by also forcing their thresholds
to be powers of two. We do this by restricting

T ={2M 2M-1 oM-8) (1)
where M € Z is an integer we configure per HMQ (see Section 4).

The step size A of a uniform quantization scheme is the (constant) gap
between any two adjacent quantization points. A is parametrized by (¢, b) differ-
ently for a signed quantizer, where A = %7 and an unsigned one, where A = 2%,
Note that A ties the bit-width and threshold values into a single parameter but
A is not uniquely defined by them. The definition of the quantizer that we use
in this work is similar to the one in [24]. The signed version @* of a quantizer of

an HMQ is defined as follows:
\ . T
Q@ At =clip (A- | Z] . ~(t—A).t) (2)

where clip (z,a,b) = min(max(z, a),b) and [z] is the rounding function. Simi-
larly, the unsigned version Q" is defined as follows:

Q" (z, A, t) = clip (A . [%J ,0,t — A)) (3)
In the rest of this section we assume that the quantizer @) of an HMQ is signed,
but it applies to both signed and unsigned quantizers.

In order to search over a discrete set, the HMQ represents each pair in T'x B as
a sample of a categorical random variable of the Gumbel-Softmax estimator (see
(25, 32]). This enables the HMQ to search for a pair of threshold and bit-width.
The Gumbel-Softmax is a continuous distribution on the simplex that approxi-
mates categorical samples. In our case, we use this approximation as a joint dis-
creet probability distribution of thresholds and bit-widths Pp g(T=t,B=b|g:)
on T x B:

log(#e.6)+ge.0
(qog(fr /),).»,_q T, (4)
t’eT Zb/EB eXP(#)

exp

Prp(T=1tB=>blgp) =

where 7 is a matrix of class probabilities whose entries 75 correspond to pairs
in T x B, g; are random i.i.d. variables drawn from Gumbel(0, 1) and 7 > 0 is
a softmax temperature value. We define & = softmax(n) where 7 is a matrix of
trainable parameters m; ;. This guarantees that the matrix 7 forms a categorical

HMQ: Hardware Friendly Mixed Precision Quantization Block for CNNs 5
distribution.

The quantizers in Equations 2 and 3 are well defined for any two real numbers
A > 0 and ¢t > 0. During training, in feed forward, we sample g;; and use
these samples in the approximation Prp of a categorical choice. The HMQ
parametrizes its quantizer Q(x,ﬁ,f) using an expected step size A and an
expected threshold ¢ that are defined as follows:

A= Z ZPTvB(T =t,B=0lgtp) - At (5)

teT beB
t=> Pr(T=t)-t (6)
teT

where Pr(T =t) =), . Pra(T =t,B = V'|gs) is the marginal distribution
of thresholds and A, = g—ﬁ

In back-propagation, the gradients of rounding operations are estimated using
the STE and the rest of the module, i.e. Equations 4, 5 and 6, are differentiable.
This implies that the HMQ smoothly updates the parameters m;; which, in
turn, smoothly updates the estimated bit-width and threshold values of the
quantization scheme. Figure 1 shows examples of HMQ quantization schemes
during training. During inference, the HMQ’s quantizer is parametrized by the
pair (t,b) that corresponds to the maximal parameter m .

P(B = 8) = 0.0001 P(B=8)=025 P(B=8)=05 P(B=8)=0.75 P(B =8)=0.9999

Q)

EEY o 1 2 2 - o 1 2 2 1 o 1 2 2 [1 2 2 o 1 2

Fig.1: The quantization scheme of an HMQ with T = {1} and B = {2,8} for
different approximations of the Gumbel-Softmax. Transition from 2-bit quanti-
zation P(B = 8) ~ 0 (left) to 8-bit quantization P(B = 8) ~ 1 (right)

Note that the temperature parameter 7 of the Gumbel-Softmax estimator in
Equation 4 has a dual effect during training. As it approaches zero, in addition
to approximating a categorical choice of a unique pair (¢,b) € T x B, smaller
values of 7 also incur a larger variance of gradients which adds instability to the
optimization process. This problem is mitigated by annealing 7 (see Section 4).

6 H. V. Habi, R. H. Jennings, and A. Netzer

4 Optimization Process

In this section, we present a fine-tuning optimization process that is applied
to a full precision, 32-bit floating point, pre-trained model after adding HMQs.
Throughout this work, we use the term model weights (or simply weights) to
refer to all of the trainable model weights, not including the HMQ parameters.
We denote by O, the set of weight tensors to be quantized; by X, the set of
activation tensors to be quantized and by II, the set of HM(Q parameters. Given
a tensor T', we use the notation |T'| to denote the number of entries in 7.

From a high level view, our optimization process consists of two phases.
In the first phase, we simultaneously train both the model weights and the
HMQ parameters. We take different approaches for quantization of weights and
activations. These are described in Sections 4.1 and 4.2. We split the first phase
into cycles with an equal number of epochs each. In each cycle of the first phase,
we reset the Gumbel-Softmax temperature 7 in Equation 4 and anneal it till the
end of the cycle. In the second phase of the optimization process, we fine-tune
only the model weights. During this phase, similarly to HMQs behaviour during
inference, the quantizer of every HMQ is parametrized by the pair (¢,b) that
corresponds to the maximal parameter 7 ; that was learnt in the first phase.

4.1 Weight Compression

Let 6 be an input tensor of weights to be quantized by some HMQ. We define
the set of thresholds T in the search space T x B of the HMQ by setting M
in Equation 1 to be min{M : 2™ > max(abs(f)),i € Z}. The values in B are
different per experiment (see Section 5).

Denote by II,, the subset of II containing all of the parameters of HMQs
quantizing weights. The expected weight compression rate, induced by the values
of I1,, is defined as follows:

R(Hw) _ 3220¢€@|91| (7)
Yoo E 001
where 6; is a tensor of weights and E [b;] = >, b P5(B = b) is the expected
bit-width of 6;, where Py is the bit-width marginal distribution in the Gumbel-
Softmax estimation of the corresponding HMQ. In other words, assuming that
all of the model weights are quantized by HMQs, the numerator is the memory
requirement of the weights of the model before compression and the denominator
is the expected memory requirement during training.

During the first phase of the optimization process, we optimize the model
with respect to a target weight compression rate R,, € RT, by minimizing (via
standard SGD) the following loss function:

J(O,1T) = Jy5i (O, IT) + X (J(IT,,))* (8)

HMQ: Hardware Friendly Mixed Precision Quantization Block for CNNs 7

where Jiq5x(©, IT) is the original, task specific loss, e.g. the standard cross en-
tropy loss, J,,(I1,,) is a loss with respect to the target compression rate R,, and
A is a hyper-parameter that control the trade-off between the two. We define
Jw(I1,) as follows:

max (0, R, — R(I1))
Ry '

Jw (Hw) = (9)
In practice, we gradually increase the target compression rate R, during the
first few cycles in the first phase of our optimization process. This approach of
gradual training of quantization is widely used, see e.g. [2,10,12,49]. In most
cases, layers are gradually added to the training process whereas in our process
we gradually decrease the bit-width across the whole model, albeit, with mixed
precision.

By the definition of Jy,(II,,), if the target weight compression rate is met
during training, i.e. R(II,,) > Ry, then the gradients of .J,,(II,,) with respect to
the parameters in IT,, are zero and the task specific loss function determines the
gradients alone. In our experiments, the actual compression obtained by using
a specific target compression R, depends on the hyper-parameter A and the
sensitivity of the architecture to quantization.

4.2 Activations Compression

We define T in the search space T x B of an HMQ that quantizes a tensor of
activations similarly to HMQs quantizing weights. We set M € Z in Equation 1
to be minimum such that 2% is greater or equal than the maximum absolute
value of an activation of the pre-trained model over the entire training set.

The objective of activations compression is to fit any single activations tensor,
after quantization, into a given size of memory U € N (number of bits). This
objective is inspired by the one in [41] and is especially useful for DNNs in which
the operators in the computational graph induce a path graph, i.e. the operators
are executed sequentially. We define the target activations compression rate R,

to be 2 x
R, — 32 maxxex | Xil
U

where X; are the activation tensors to be quantized. Note that U implies the
precise (maximum) number of bits b(X) of every feature map X € A

(10)

b(X) = LIXUIJ . (11)

We assume that b(X) > 1 for every feature map X € X’ (otherwise, the require-
ment cannot be met and U should be increased) and fix B = {min(b(X),8)} in
the search space of the HMQ that corresponds to X. Note that this method can

8 H. V. Habi, R. H. Jennings, and A. Netzer

also be applied to models with a more complex computational graph, such as
ResNet, by applying Equation 11 to blocks instead of single feature maps. Note
also, that by definition, the maximum bit-width of every activation is 8. We can
therefore assume that R, > 4.

Here, the bit-widths of every feature map is determined by Equation 11.
This is in contrast to the approach in [41] (for activations compression) and our
approach for weight compression in Section 4.1, where the choice of bit-widths
is a result of an SGD minimization process. This allows a more direct approach
for the quantization of activations in which we gradually increase R,, during the
first few cycles in the first phase of the optimization process. In this approach,
while activation HMQs learn the thresholds, their bit-widths are implied by R, .
This, in contrast to adding a target activations compression component to the
loss, both guarantees that the target compression of activations is obtained and
simplifies the loss function of the optimization process.

5 Experimental Results

In this section, we present results using HMQs to quantize various classifica-
tion models. As proof of concept, we first quantize ResNet-18 [17] trained on
CIFAR-10 [26]. For the more challenging ImageNet [9] classification task, we
present results quantizing ResNet-50 [17], EfficientNet-B0 [39], MobileNetV1
[21] and MobileNetV2 [38].

In all of our experiments, we perform our fine-tuning process on a full pre-
cision, 32-bit floating point, pre-trained model in which an HMQ is added af-
ter every weight and every activation tensor per layer, including the first and
last layers, namely the input convolutional layer and the fully connected layer.
The parameters 7. of every HMQ are initialized as a categorical distribution
in which the parameter that corresponds to the pair of the maximum threshold
with the maximum bit-width is initialized to 0.9 and 0.1 is uniformly distributed
between the rest of the parameters. The bit-width set B in the search space of
HMQs is set differently for CIFAR-10 and ImageNet (see Sections 5.1 and 5.2).

Note that in all of the experiments, in all of the weight HMQs, the maximal
bit-width is 8 (similarly to activation HMQs). This implies that R(IT,) > 4
throughout the fine-tuning process. The optimizer that we use in all of our ex-
periments is RAdam [28] with 8; = 0.9 and B2 = 0.999. We use different learning
rates for the model weights and the HMQ parameters. The data augmentation
that we use during fine-tuning is the same as the one used to train the base
models.

The entire process is split into two phases, as described in Section 4. The first
phase consists of 30 epochs split into 6 cycles of 5 epochs each. In each cycle,
the temperature 7 in Equation 4, is reset and annealed till the end of the cycle.

HMQ: Hardware Friendly Mixed Precision Quantization Block for CNNs 9

We update the temperature every N steps within a cycle, where 25 - N is the
number of steps in a single epoch. The annealing function that we use is similar
to the one in [25]:

7(i) = max(e”"",0.5) (12)

where i is the training step (within the cycle) and r = e~2. The second phase,
in which only weights are fine-tuned, consists of 20 epochs.

As mentioned in Section 4, during the first phase, we gradually increase both
the weight and activation target compression rates R, and R,, respectively.
Both target compression rates are initialized to a minimum compression of 4
(implying 8-bit quantization) and are increased, in equally sized steps, at the
beginning of each cycle, during the first 4 cycles.

— Actual
—— Expected A(N,)
— TargetRu

—— Temperature

0 s 10 15 20 25 30
Epoch

Fig. 2: Expected and actual weight compression rates during fine-tuning of Mo-
bileNetV2 on ImageNet as the target compression rate and 7 are updated

Figure 2 shows an example of the behaviour of the expected weight com-
pression rate R(IT,) and the actual weight compression rate (implied by the
quantization schemes corresponding to the maximum parameters m ;) during
training, as the value of the target weight compression rate R, is increased
and the temperature 7 of the Gumbel-Softmax is annealed in every cycle. Note
how the difference between the expected and the actual compression rate values
decreases with 7, in every cycle (as to be expected by the Gumbel-Softmax es-
timator’s behaviour).

We compare our results with those of other quantization methods based on
topl accuracy vs. compression metrics. We use weight compression rate (WCR)
to denote the ratio between the total size (number of bits) of the weights in
the original model and the total size of the weights in the compressed model.
Activation compression rate (ACR) denotes the ratio between the size (number
of bits) of the largest activation tensor in the original model and its size in the
compressed model. As explained in Section 4.2, our method guarantees that the
size of every single activation tensor in the compressed model is bounded from
above by a predetermined value U.

10 H. V. Habi, R. H. Jennings, and A. Netzer

5.1 ResNet-18 on CIFAR-10

As proof of concept, we use HMQs to quantize a ResNet-18 model that is trained
on CIFAR-10 with standard data-augmentation from [17]. Our baseline model
has top-1 accuracy of 92.45%. We set B = {1,2,3,4,5,6,7, 8} in the search space
of HMQs quantizing weights. For activations, B is set according to our method
in Section 4.2. In all of the experiments in this section, we set A = 32 in the loss
function in Equation 8. The learning rate that we use for model weights is le-5.
For HMQ parameters the learning rate is 1e3. The batch-size that we use is 256.

93.00

AL A DNAS ®-—-—t--— st M
92,75 — N uNIQ T-teeo |
B 'y < --e
e ¥ LO-Nets 92 X
~L. 10 \
92.50 4 =map T4 MOB N
\ \
A \\
92.25 4 ‘a \
~ 91 4 s,
Sa
3 92.00 v a] g *
g LY g
3 v Y 3
& 91754 % £ 904
\
A
91.50 4
91.25 4 891
+ HAWQ
91.00 4 UNiQ
-o- MQB
88 4 Q
8 10 12 14 16 18 20 4 6 8 10 12 14 16 18 20
Weight Compression Rate Weight Compression Rate
(a) ACR~4 (b) ACR~8

Fig. 3: Pareto frontier of weight compression rate vs. top-1 accuracy of ResNet-18
on CIFAR-10 for two Activation Compression Rate (ACR) groups: 4 (Figure 3a)
and 8 (Figure 3b) compared with different quantization methods

Figure 3 presents the Pareto frontier of weight compression rate vs. top-1
accuracy for different quantization methods of ResNet-18 on CIFAR-10. In this
figure, we show that our method is effective, in comparison to other methods,
namely DNAS [44], UNIQ [3], LQ-Nets [46] and HAWQ [12], using different
activation compression rates.

We explain our better results, compared to LQ-Nets and UNIQ, in-spite of
the higher activation and weight compression rates, by the fact that HMQs take
advantage of mixed precision quantization. Compared to DNAS, our method has
a much larger search space, since in their method, each quantization scheme is
translated into a sub-graph in a super net. Moreover, HMQs tie the bit-width
and threshold into a single parameter using Equation 5. Comparing our method
to HAWQ, HAWQ only uses the Hessian information whereas we perform an
optimization over the bit-width.

5.2 ImageNet

In this section, we present results using HMQs to quantize several model ar-
chitectures, namely MobileNetV1 [21], MobileNetV2 [38], ResNet-50 [17] and

HMQ: Hardware Friendly Mixed Precision Quantization Block for CNNs 11

EfficientNet-B0 [39] trained on the ImageNet [9] classification dataset. In each
of these cases, we use the same data augmentation as the one reported in the cor-
responding paper. Our baseline models have the following top-1 accuracies: Mo-
bileNetV1 (70.6), MobileNet V2 (71.88%), ResNet-50 (76.15) and EfficientNet-B0
(76.8%). In all of the experiments in this section, we set B = {2,3,4,5,6,7,8} in
the search space of HMQs quantizing weights. For activations, B is set according
to our method in Section 4.2.

As mentioned above, we use the RAdam optimizer in all of our experiments
and we use different learning rates for the model weights and the HMQ pa-
rameters. For model weights, we use the following learning rates: MobileNetV1
(5e-6), MobileNetV2 (2.5e-6), ResNet-50 (2.5e-6) and EfficientNet-BO (2.5¢-6).
For HMQ parameters, the learning rate is equal to the learning rate of the
weights multiplied by 1e3. The batch-sizes that we use are: MobileNetV1 (256),
MobileNetV2 (128), ResNet-50 (64) and EfficientNet-B0 (128).

Weight Quantization. In Table 1, we present our results using HMQs to
quantize MobileNetV1, MobileNetV2 and ResNet-50. In all of our experiments
in this table, we set R, =4 in Equation 10, implying (single precision) 8-bit
quantization of all of the activations. We split the comparison in this table into
three compression rate groups: ~ 16, ~ 10 and ~ 8 in rows 1-2, 3-4 and 56,
respectively.

Table 1: Weight Compression Rate (WCR) vs. top-1 accuracy (Acc) of Mo-
bileNetV1, MobileNetV2 and ResNet-50 on ImageNet. R,, is the target weight
compression rate in Equation 9 that was used for fine-tuning

Method MobileNetV1 MobileNetV2 ResNet-50
WCR Acc WCR Acc WCR Acc
HAQ [42] 14.8 57.14 14.07 66.75 15.47 70.63
HMQ (ours) 14.15 (ry =16) 68.36 14.4(ry=16) 65.7 15.7 (Ry=106) 75
HAQ 10.22 67.66 9.68 70.9 10.41 75.30
HMQ 10.68 (Ry =11) 69.88 9.71 (Ry =10) 70.12 10.9 (R =11) 76.1
HAQ 7.8 71.74 7.46 71.47 8 76.14
HMQ 7.6 (Ry=58) 70.912 7.7 (Rw=8) 71.4 9.01 (rw=9) 76.3

Note that our method excels in very high compression rates. Moreover, this is
in spite of the fact that an HMQ uses uniform quantization and its thresholds are
limited to powers of two whereas HAQ uses k-means quantization. We explain
our better results by the fact that in HAQ, the bit-widths are the product of a
reinforcement learning agent and the thresholds are determined by the statistics,
opposed to HMQs, where they are the product of SGD optimization.

2 Torchvision models (https://pytorch.org/docs/stable/torchvision/models.html)
3 https://github.com/tensorflow /tpu/tree/master/models/official /efficientnet

12 H. V. Habi, R. H. Jennings, and A. Netzer

Weight and Activation Quantization. In Table 2, we compare mixed preci-
sion quantization methods in which both weights and activations are quantized.
In all of the experiments in this table, the activation compression rate is equal
to 8. This means (with some variation between methods) that the smallest num-
ber of bits used to quantize activations is equal to 4. This table shows that our
method achieves on par results with other mixed precision methods, in spite of
the restrictions on the quantization schemes of HMQs. We believe that this is
due to the fact that, during training, there is no gradient mismatch for HMQ
parameters (see Equations 5 and 6). In other words, HMQs allow smooth propa-
gation of gradients. Additionally, HMQs tie each pair of bit-width and threshold
in their search space with a single trainable parameter (opposed to determining
the two separately).

Table 2: Comparing Activation Compression Rate (ACR), Weight Compression
Rate (WCR) and top-1 accuracy (Acc) of MobileNetV2 and ResNet-50 on Ima-
geNet using different mixed precision quantization techniques. Under ACR: for
HAWQ and HAWQ-V2, 8 means that the maximum compression obtained for a
single activation tensor is 8. For DQ and HMQ, 8 means that the compression
of the largest activation tensor is 8

(a) MobileNetV2 (b) ResNet-50

Method ACR WCR Acc
HAWQ [42] 8 12.28 75.3
HAWQ-V2 [11] 8 12.24 75.7
HMQ(r, =13) (ours) 8 13.1 75.45

Method ACR WCR Acc
DQ [41] 8.05 8.53 69.74
HMQ(r, =) (ours) 8 8.05 70.9

EfficientNet. In Table 3, we present results quantizing EfficientNet-B0 using
HMQs and in Figure 4, we use the Pareto frontier of accuracy vs model size
to summarize our results on all four of the models that were mentioned in this
section.

Table 3: Weight Compression Rate (WCR) vs. top-1 accuracy (Acc) of Efficient-
NetB0 on ImageNet using HMQ quantization. An Activation Compression Rate
(ACR) of 4 means single precision 8-bit quantization of activation tensors. R,
is the target weight compression rate that was used during fine-tuning

ACR R, WCR Acc

4 4 764
8 805 76
12 11.97 74.6

16 14.87 71.54

HMQ: Hardware Friendly Mixed Precision Quantization Block for CNNs 13

~ ~
N @

Accuracy [%]

~
b
-

—+%- ResNet-50

l’ MobileNetv1l
—-¥- MobileNetv2

-&- EfficientNet-BO

~
=]
~-

Y
©

6 8 10
Size [MB]

o
@
IS

Fig.4: Pareto frontier of top-1 accuracy vs. model size of MobileNetV1, Mo-
bileNetV2, ResNet-50 and EfficientNet-B0O quantization by HMQ

Additional Results. In Figure 5, we present an example of the final bit-
widths of weights and activations in MobileNetV1 quantized by HMQ. This

figure implies that point-wise convolutions are less sensitive to quantization,

compared to their corresponding depth-wise convolutions. Moreover, it seems

that deeper layers are also less sensitive to quantization. Note that the bit-widths
of activations in Figure 5b are not a result of fine-tuning but are pre-determined
by the target activation compression, as described in Section 4.2. In Table 4, we
present additional results using HMQs to quantize models trained on ImageNet.
This table extends the results in Table 1, here, both weights and activations are

quantized using HMQs.

Table 4: Weight Compression Rate (WCR) vs. top-1 accuracy (Acc) of
MobileNet-V1, MobileNet-V2 and ResNet50 on ImageNet using HMQ quan-
tization with various target weight compression rates R,, and a fixed Activation
Compression Rate (ACR) of 8. MP means Mixed Precision

(c) ResNet50
R, ACR WCR Acc

16 8mp 15.45mp 74.5
11 8mp 1l1.1mp 75.73

(a) MobileNetV1 (b) MobileNetV2
R, ACR WCR Acc
16 8mp 14.638mp 67.9
11 8wmp 10.709mp 69.3

R, ACR WCR Acc
16 8wmp 14.8vp 64.47
10 8mp 10mp 69.9

6 Conclusions

In this work, we introduced the HMQ, a novel quantization block that can be
applied to weights and activations. The HMQ repurposes the Gumbel-Softmax

14 H. V. Habi, R. H. Jennings, and A. Netzer

~

8 = --- ACR=8
--- ACR=10.6
ACR=16

s v o

Activation bit-width

w

o 5 10 15 2 25 o 5 10 15 20 25
Layer Index Layer Index

o —
o —
o =

(b) Activation bit-widths. The right figure
shows the sizes, per layer, of 32-bit activa-
tion tensors. The dashed horizontal lines
show the maximal tensor size implied by

three target activation compression rates.

blue bars correspond to point-wise convo- p. Jeft figure shows the bit-widths, per
lution layers

(a) Weight bit-widths. The red bars cor-
respond to the first and last layers of
the network. The green bars correspond
to depth-wise convolution layers and the

layer (corresponding the right figure), at
compression rate equal to 16

Fig. 5: Example of the final bit-width of weights and activations in MobileNetV1
quantized by HMQ

estimator in order to smoothly search over a finite set of uniform and symmetric
activation schemes. We presented a standard SGD fine-tuning process, based on
HMQs, for mixed precision quantization that achieves state-of-the-art results in
accuracy vs. compression for various networks. Both the model weights and the
quantization parameters are trained during this process. This method can facil-
itate different hardware requirements, including memory, power and inference
speed by configuring the HMQ’s search space and the loss function. Empiri-
cally, we experimented with two image classification datasets: CIFAR-10 and
ImageNet. For ImageNet, we presented state-of-the-art results on MobileNetV1,
MobileNetV2 and ResNet-50 in most cases. Additionally, we presented the first
(that we know of) quantization results of EfficientNet-BO0.

Acknowledgments

We would like to thank Idit Diamant and Oranit Dror for many helpful discus-
sions and suggestions.

References

1. Banner, R., Nahshan, Y., Soudry, D.: Post training 4-bit quantization of convo-
lutional networks for rapid-deployment. In: Advances in Neural Information Pro-
cessing Systems. pp. 7948-7956 (2019)

2. Baskin, C., Liss, N.; Chai, Y., Zheltonozhskii, E., Schwartz, E., Giryes, R., Mendel-
son, A., Bronstein, A.M.: Nice: Noise injection and clamping estimation for neural
network quantization. arXiv preprint arXiv:1810.00162 (2018)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

HMQ: Hardware Friendly Mixed Precision Quantization Block for CNNs 15

Baskin, C., Schwartz, E., Zheltonozhskii, E., Liss, N., Giryes, R., Bronstein, A.M.,
Mendelson, A.: Uniq: Uniform noise injection for non-uniform quantization of neu-
ral networks. arXiv preprint arXiv:1804.10969 (2018)

Bengio, Y., Léonard, N., Courville, A.: Estimating or propagating gradi-
ents through stochastic neurons for conditional computation. arXiv preprint
arXiv:1308.3432 (2013)

Cai, Y., Yao, Z., Dong, Z., Gholami, A., Mahoney, M.W., Keutzer, K.: Zeroq: A
novel zero shot quantization framework. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. pp. 13169-13178 (2020)
Cai, Z., He, X., Sun, J., Vasconcelos, N.: Deep learning with low precision by half-
wave gaussian quantization. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 5918-5926 (2017)

Chen, G., Choi, W., Yu, X., Han, T., Chandraker, M.: Learning efficient object
detection models with knowledge distillation. In: Advances in Neural Information
Processing Systems. pp. 742-751 (2017)

Choi, J., Wang, Z., Venkataramani, S., Chuang, P.I.J., Srinivasan, V., Gopalakr-
ishnan, K.: Pact: Parameterized clipping activation for quantized neural networks.
arXiv preprint arXiv:1805.06085 (2018)

Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-
scale hierarchical image database. In: 2009 IEEE conference on computer vision
and pattern recognition. pp. 248-255. Ieee (2009)

Dong, Y., Ni, R., Li, J., Chen, Y., Zhu, J., Su, H.: Learning accurate low-bit deep
neural networks with stochastic quantization. arXiv preprint arXiv:1708.01001
(2017)

Dong, Z., Yao, Z., Cai, Y., Arfeen, D., Gholami, A., Mahoney, M.W., Keutzer,
K.: Hawq-v2: Hessian aware trace-weighted quantization of neural networks. arXiv
preprint arXiv:1911.03852 (2019)

Dong, Z., Yao, Z., Gholami, A., Mahoney, M.W., Keutzer, K.: Hawq: Hessian aware
quantization of neural networks with mixed-precision. In: Proceedings of the IEEE
International Conference on Computer Vision. pp. 293-302 (2019)

Esser, S.K., McKinstry, J.L., Bablani, D., Appuswamy, R., Modha, D.S.: Learned
step size quantization. arXiv preprint arXiv:1902.08153 (2019)

Gholami, A., Kwon, K., Wu, B., Tai, Z., Yue, X., Jin, P., Zhao, S., Keutzer, K.:
Squeezenext: Hardware-aware neural network design. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops. pp. 1638—
1647 (2018)

Han, S., Mao, H., Dally, W.J.: Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149 (2015)

Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for
efficient neural network. In: Advances in neural information processing systems.
pp. 1135-1143 (2015)

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770-778 (2016)

He, Y., Liu, P., Wang, Z., Hu, Z., Yang, Y.: Filter pruning via geometric median
for deep convolutional neural networks acceleration. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 4340-4349 (2019)
He, Y., Zhang, X., Sun, J.: Channel pruning for accelerating very deep neural net-
works. In: Proceedings of the IEEE International Conference on Computer Vision.
pp- 1389-1397 (2017)

16

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

H. V. Habi, R. H. Jennings, and A. Netzer

Howard, A., Sandler, M., Chu, G., Chen, L.C., Chen, B., Tan, M., Wang, W., Zhu,
Y., Pang, R., Vasudevan, V., et al.: Searching for mobilenetv3. In: Proceedings of
the IEEE International Conference on Computer Vision. pp. 1314-1324 (2019)
Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., An-
dreetto, M., Adam, H.: Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. pp. 7132-7141 (2018)
Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., Adam, H.,
Kalenichenko, D.: Quantization and training of neural networks for efficient integer-
arithmetic-only inference. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 2704-2713 (2018)

Jain, S.R., Gural, A., Wu, M., Dick, C.: Trained quantization thresholds for ac-
curate and efficient fixed-point inference of deep neural networks. arXiv preprint
arXiv:1903.08066 (2019)

Jang, E., Gu, S., Poole, B.: Categorical reparametrization with gumble-softmax. In:
International Conference on Learning Representations (ICLR 2017). OpenReview.
net (2017)

Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images. Tech. rep., Citeseer (2009)

Liu, H., Simonyan, K., Yang, Y..: DARTS: Differentiable architecture
search. In: International Conference on Learning Representations (2019),
https://openreview.net/forum?id=S1eYHoC5FX

Liu, L., Jiang, H., He, P., Chen, W., Liu, X., Gao, J., Han, J.: On the variance of
the adaptive learning rate and beyond. In: International Conference on Learning
Representations (2020), https://openreview.net/forum?id=rkgz2aEKDr

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C.:
Ssd: Single shot multibox detector. In: European conference on computer vision.
pp. 21-37. Springer (2016)

Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., Zhang, C.: Learning efficient convolu-
tional networks through network slimming. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision. pp. 2736-2744 (2017)

Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. pp. 3431-3440 (2015)

Maddison, C.J., Mnih, A., Teh, Y.W.: The concrete distribution: A continuous
relaxation of discrete random variables. In: International Conference on Learning
Representations (2017), https://openreview.net/forum?id=S1jE5L5gl

Miyashita, D., Lee, E.H., Murmann, B.: Convolutional neural networks using log-
arithmic data representation. arXiv preprint arXiv:1603.01025 (2016)

Molchanov, P., Tyree, S., Karras, T., Aila, T., Kautz, J.: Pruning convolutional
neural networks for resource efficient inference. In: International Conference on
Learning Representations (2017), https://openreview.net/forum?id=SJGCiwbgl
Polino, A., Pascanu, R., Alistarh, D.: Model compression via distillation and
quantization. In: International Conference on Learning Representations (2018),
https://openreview.net /forum?id=S1XolQbRW

Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detec-
tion with region proposal networks. In: Advances in neural information processing
systems. pp. 91-99 (2015)

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

HMQ: Hardware Friendly Mixed Precision Quantization Block for CNNs 17

Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedi-
cal image segmentation. In: International Conference on Medical image computing
and computer-assisted intervention. pp. 234—241. Springer (2015)

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2: In-
verted residuals and linear bottlenecks. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 4510-4520 (2018)

Tan, M., Le, Q.: Efficientnet: Rethinking model scaling for convolutional neural
networks. In: International Conference on Machine Learning. pp. 6105-6114 (2019)
Tan, M., Pang, R., Le, Q.V.: Efficientdet: Scalable and efficient object detection.
arXiv preprint arXiv:1911.09070 (2019)

Uhlich, S., Mauch, L., Cardinaux, F., Yoshiyama, K., Garcia, J.A., Tiedemann,
S., Kemp, T., Nakamura, A.: Mixed precision dnns: All you need is a good
parametrization. In: International Conference on Learning Representations (2020),
https://openreview.net/forum?id=Hyx0slrFvH

Wang, K., Liu, Z., Lin, Y., Lin, J., Han, S.: Haq: Hardware-aware automated
quantization with mixed precision. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 8612-8620 (2019)

Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., Tian, Y., Vajda, P., Jia,
Y., Keutzer, K.: Fbnet: Hardware-aware efficient convnet design via differentiable
neural architecture search. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 10734-10742 (2019)

Wu, B., Wang, Y., Zhang, P., Tian, Y., Vajda, P., Keutzer, K.: Mixed preci-
sion quantization of convnets via differentiable neural architecture search. arXiv
preprint arXiv:1812.00090 (2018)

Yu, R., Li, A., Chen, C.F., Lai, J.H., Morariu, V.I., Han, X., Gao, M., Lin, C.Y.,
Davis, L.S.: Nisp: Pruning networks using neuron importance score propagation. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
pp- 9194-9203 (2018)

Zhang, D., Yang, J., Ye, D., Hua, G.: Lg-nets: Learned quantization for highly
accurate and compact deep neural networks. In: Proceedings of the European Con-
ference on Computer Vision (ECCV). pp. 365-382 (2018)

Zhang, T., Ye, S., Zhang, K., Tang, J., Wen, W., Fardad, M., Wang, Y.: A system-
atic dnn weight pruning framework using alternating direction method of multi-
pliers. In: Proceedings of the European Conference on Computer Vision (ECCV).
pp. 184-199 (2018)

Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: An extremely efficient convolu-
tional neural network for mobile devices. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. pp. 6848-6856 (2018)

Zhou, A., Yao, A., Guo, Y., Xu, L., Chen, Y.: Incremental network quantization:
Towards lossless cnns with low-precision weights. In: International Conference on
Learning Representations (2017), https://openreview.net/forum?id=HyQJ-mclg

