Geometry Constrained Weakly Supervised Object Localization

Weizeng Lu^{1,2}, Xi Jia³, Weicheng Xie^{1,2}, Linlin Shen^{1,2}(\boxtimes), Yicong Zhou⁴, and Jinming Duan³(\boxtimes)

- Computer Vision Institute, School of Computer Science and Software Engineering, Shenzhen University, China
 - Shenzhen Institute of Artificial Intelligence and Robotics for Society, China
 School of Computer Science, University of Birmingham, United Kingdom
- Department of Computer and Information Science, University of Macau, China luweizeng2018@email.szu.edu.cn, wcxie@szu.edu.cn, llshen@szu.edu.cn, x.jia.1@cs.bham.ac.uk, yicongzhou@um.edu.mo, j.duan@cs.bham.ac.uk

1 Mathematical Models of Different Geometric Shapes

In section 3.2 of the main paper, we have defined the mathematical model of ellipse for the model-driven mask generator. We introduce here the mathematical models for three geometric shapes (i.e. rectangle, rotated rectangle, and rotated ellipse) in detail.

Rotated ellipse: Given the coefficients (c_x, c_y, θ, a, b) of a rotated ellipse, the mathematical model of a rotated ellipse can be defined as

$$\phi(x,y) = \frac{((x-c_x)\cos\theta + (y-c_y)\sin\theta)^2}{a^2} + \frac{((x-c_x)\sin\theta - (y-c_y)\cos\theta)^2}{b^2} - 1,$$
(1)

where $x, y : \Omega \subset \mathbb{R}^2$.

Rectangle: Given the coefficients (c_x, c_y, a, b) of a rectangle, we can represent a rectangle with the mathematical model defined as below

$$\phi(x,y) = \left| \frac{x - c_x}{a} + \frac{y - c_y}{b} \right| + \left| \frac{x - c_x}{a} - \frac{y - c_y}{b} \right| - 1.$$
 (2)

Rotated rectangle: Given the coefficients (c_x, c_y, θ, a, b) of a rotated rectangle, the mathematical model of a rotated rectangle can be defined as

$$\phi(x,y) = \left| \frac{(x-c_x)\cos\theta - (y-c_y)\sin\theta}{a} + \frac{(x-c_x)\sin\theta + (y-c_y)\cos\theta}{b} \right| + \left| \frac{(x-c_x)\cos\theta - (y-c_y)\sin\theta}{a} - \frac{(x-c_x)\sin\theta + (y-c_y)\cos\theta}{b} \right| - 1.$$
(3)

The inverse of the tangent function to approximate the Heaviside function, the model-driven generator can be defined as:

$$H_{\epsilon}(\phi(x,y)) = \frac{1}{2} \left(1 + \frac{2}{\pi} \arctan\left(\frac{\phi(x,y)}{\epsilon}\right) \right). \tag{4}$$

2 Derivatives w.r.t Shape Parameters

Since $M = H_{\epsilon}(\phi(x, y))$, the derivatives of M with respect to (w.r.t.) the parameters of a geometric shape can be transformed to those of ϕ . The derivative of $M_{x,y}$ w.r.t. the parameter ϵ can be calculated as follows

$$\frac{\partial M_{x,y}}{\partial \epsilon} = \frac{1}{\pi} \frac{1}{1 + (\frac{\phi(x,y)}{2})^2} \frac{-\phi(x,y)}{\epsilon^2}.$$
 (5)

We take the parameter a from detector outputs (i.e. c_x, c_y, θ, a, b) as an example to introduce the gradient transfer of generator for updating detector parameters, the derivatives of parameter a, i.e. $\frac{\partial M_{x,y}}{\partial a}$, are calculated as follows

$$\frac{\partial M_{x,y}}{\partial a} = \frac{1}{\pi} \frac{1}{1 + (\frac{\phi(x,y)}{2})^2} \frac{\partial \phi(x,y)}{\partial a},\tag{6}$$

For the shape of **Rotated ellipse**, the derivative $\frac{\partial \phi(x,y)}{\partial a}$ is easily to calculate as follows

$$\frac{\partial \phi(x,y)}{\partial a} = -\frac{2((x-c_x)\cos\theta + (y-c_y)\sin\theta)^2}{a^3},\tag{7}$$

while $\frac{\partial M_{x,y}}{\partial c_x}$, $\frac{\partial M_{x,y}}{\partial c_y}$, $\frac{\partial M_{x,y}}{\partial b}$ and $\frac{\partial M_{x,y}}{\partial \theta}$ are derived similarly as $\frac{\partial M_{x,y}}{\partial a}$.

For the shape of **Rectangle**, we denote $\alpha = \alpha(c_x, a) \doteq \frac{x - c_x}{a}$ and $\beta = \beta(c_y, b) \doteq \frac{y - c_y}{b}$. To obtain the derivative of $\phi(x, y)$ w.r.t. the four parameters, i.e. w, h, c_x, c_y , in Eq. (2), then the derivatives of ϕ w.r.t. the four parameters can be transformed those w.r.t. α and β as follows

$$\frac{\partial \phi}{\partial a} = \frac{\partial \phi}{\partial \alpha} \frac{\partial \alpha}{\partial a},\tag{8}$$

where the terms alike $\frac{\partial \alpha}{\partial a}$ are easy to derive. While the sub-gradient of |x| w.r.t. x is zero at the point x = 0, the derivative of $\frac{\partial \phi}{\partial \alpha}$ is obtained as follows

$$\frac{\partial \phi}{\partial \alpha} = \begin{cases}
2 & \text{if } \alpha > |\beta|, \\
1 & \text{if } \alpha = |\beta| > 0, \\
0 & \text{if } |\alpha| < |\beta| \text{ or } \alpha = \beta = 0. \\
-1 & \text{if } \alpha = -|\beta| < 0, \\
-2 & \text{if } \alpha < -|\beta|,
\end{cases} \tag{9}$$

the derivative of $\frac{\partial \phi}{\partial \beta}$ can be similarly obtained.

For the shape of **Rotated Rectangle**, we denote $\alpha = \alpha(c_x, c_y, a, \theta) \doteq \frac{(x-c_x)cos\theta-(y-c_y)sin\theta}{a}$ and $\beta = \beta(c_y, c_y, b, \theta) \doteq \frac{(x-c_x)sin\theta+(y-c_y)cos\theta}{b}$. The similar derivatives as Eq. (8) are derived as follows

$$\begin{cases}
\frac{\partial \phi}{\partial a} = \frac{\partial \phi}{\partial \alpha} \frac{\partial \alpha}{\partial a}, \\
\frac{\partial \phi}{\partial c_x} = \frac{\partial \phi}{\partial \alpha} \frac{\partial \alpha}{\partial c_x} + \frac{\partial \phi}{\partial \beta} \frac{\partial \beta}{\partial c_x}, \\
\frac{\partial \phi}{\partial \theta} = \frac{\partial \phi}{\partial \alpha} \frac{\partial \alpha}{\partial \alpha} + \frac{\partial \phi}{\partial \beta} \frac{\partial \beta}{\partial \theta}.
\end{cases} (10)$$

where the derivative of $\frac{\partial \phi}{\partial \alpha}$ is the same as that in Eq. (9).