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1 Mathematical Models of Different Geometric Shapes

In section 3.2 of the main paper, we have defined the mathematical model of
ellipse for the model-driven mask generator. We introduce here the mathematical
models for three geometric shapes (i.e. rectangle, rotated rectangle, and rotated
ellipse) in detail.

Rotated ellipse: Given the coefficients (¢, ¢y, 0,a,b) of a rotated ellipse, the
mathematical model of a rotated ellipse can be defined as
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Rectangle: Given the coefficients (cs, ¢y, a,b) of a rectangle, we can represent
a rectangle with the mathematical model defined as below
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Rotated rectangle: Given the coefficients (c,, ¢y, 8, a, b) of a rotated rectangle,
the mathematical model of a rotated rectangle can be defined as
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The inverse of the tangent function to approximate the Heaviside function,
the model-driven generator can be defined as:
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2 Derivatives w.r.t Shape Parameters

Since M = H.(é(x,y)), the derivatives of M with respect to (w.r.t.) the param-
eters of a geometric shape can be transformed to those of ¢. The derivative of
M, w.r.t. the parameter € can be calculated as follows
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We take the parameter a from detector outputs (i.e. ¢z, ¢y, 8, a,b) as an example
to introduce the gradient transfer of generator for updating detector parameters,
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the derivatives of parameter a, i.e. 9 5ot ,are calculated as follows

oM., 1 1 o(x,y) (6)
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For the shape of Rotated ellipse, the derivative 8¢éa;’y) is easily to calculate
as follows
0¢(z,y) 2((x — ¢z) cos O + (y — ¢,) sin 0)?
a = - 3 ) (7)
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while 818‘2’9, 8]8\/?;’% 8];1; 2 and Mgg’y are derived similarly as mg;'y.

For the shape of Rectangle, we denote a@ = a(cg,a) = =% and 3 =

Bley,b) = L5 (x,y) w.r.t. the four parameters,
i.e. w,h,cz,cy, in Eq. (2), then the derivatives of ¢ w.r.t. the four parameters can
be transformed those w.r.t. o and [ as follows
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where the terms ahke are easy to derive. While the sub-gradient of |z| w.r.t.

x is zero at the point x = 0, the derivative of 82 is obtained as follows

2 ifa>|f],

26 1 ifa=|8]>0,

B0 = 0 if|a|<|Blora=p6=0. (9)
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the derivative of g—g can be similarly obtained.
For the shape of Rotated Rectangle, we denote o = a(cy, ¢y, a,0) =

(x—cg)cos0—(y—cy)sind and 6 /B(Cy,cy,b 0) - (zfcm)sin(?:(yfcy)cosﬁ. The similar

derivatives as Eq. (8) are derived as follows
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where the derivative of % is the same as that in Eq. (9).
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