
1

Supplementary Material for
OneGAN: Simultaneous Unsupervised Learning of

Conditional Image Generation, Foreground
Segmentation, and Fine-Grained Clustering

A Summary of notation

For convenience, in Tab. 1 we provide a complete listing of the notation used in
our paper.

B Regularization

Due to lack of space in the main text, we include the regularization loss terms
as part of the supplementary.

During generation, we apply regularization on the latent vectors and on the
mask image. The former serves to bound the range of the values to be close to
the axis center and to be closely grouped.

LRv
= ||vp||22 + ||vc||22 + ||vbg||22

The regularization on the mask serves to direct the model to utilize the
mask efficiently, with a balanced and decisive representation of background and
foreground. For mask Im ∈ [0, 1]H,W , with H,W the height and width of the
mask. The first regularization term balances the mask value around the value of
half.

LMB
= | 1

HW
(

HW∑
i,j

(Im)i,j)−
1

2
|

The second regularization term aims to make the masks more decisive. It is
better described when the mask is between [-1,1], so we define I ′m = 2 · Im − 1.
In the ideal case, all pixels are either 1 or -1 (either background of foreground),
therefore, if we assume a balanced distribution, for each mask the average value
of max(0, I ′m) is 0.5 and of min(0, I ′m) it’s -0.5, since half of the pixels are zeroed
in each term. This is the decisiveness regularization.

LMD
= | 1

HW
(

HW∑
i,j

max(0, (I ′m)i,j))−
1

2
|+ | 1

HW
(

HW∑
i,j

min(0, (I ′m)i,j)) +
1

2
|)

Together, the mask regularization loss is:

LRM
= LMB

+ 0.1 · LMD

2

C Sub-networks architecture

In this section, we describe the details of each sub-network described in the main
paper. The layers of each sub-network are listed in the tables Tab. 3–9, with some
modules that are frequently used listed in Tab. 2. The majority of the networks
are sequential. When more complicated connections are present, the input and
output notations are there to guide the flow.

D Additional illustrations

D.1 Conditional generation

We supply more conditionally generated images to further demonstrate the con-
ditional generation performance. We use generation conditioned on both very
different classes to highlight the broad coverage of the representation and very
similar classes to show the high sensitivity to detail.

In Fig. 1, the images are obtained by generating five different images per
reference image in the top row. To achieve these results, our model has to perform
two tasks. First, it has to be able to detect the child and parent classes under
which the object is represented. Second, it needs to be able to generate a similar
looking object with the predicted classes. The success in this task is evidence for
both the generation and clustering capabilities of the model.

In the figure, each column shows a real image, followed by five generated
images conditioned on the first image in respect to category. Additionally, in
each row, all images are generated with the same z, showing how non-categorical
information is consistent across the different categories and how the pose is
disentangled from the shape category.

For both birds and dogs, we can see that the generated images have very
similar properties to their conditioned image. In both cases, we can see the large
coverage of different classes and the fine detailed differences between similar
classes. For cars, we can see that that the generated images apply the same
color, but the car shape is changing, indicating that the model has categorized
the cars by their color and not by their model.

D.2 Reconstruction

We supply more images to show the reconstruction path with the resulting re-
constructed images, reconstructed backgrounds, and segmentation masks.

In Fig. 2, the results show the images generated by the reconstruction process.
The generated mask shows the model’s ability to detect and segment the object,
the background image shows the model’s ability to repaint the background,
and the foreground image shows the model’s ability to detect and reconstruct
conditioned on the object class.

The segmentation works under many different poses, sizes, and backgrounds.
For dogs and cars, it can be seen that our model is sometimes better than

3

the “ground-truth” masks, which were generated by a pre-trained network. The
background repainting works well in the majority of cases, but we do notice that
some backgrounds work better than others. The challenges are mostly notice-
able in the cars dataset, where there was the smallest amount of background
patches available in Xbg, leading to a less powerful background discriminator.
Subsequently, the performance of the background generation was affected.

D.3 Image to image translation

We supply more images, Fig. 3, to show the image to image translation capability
of the model. We show that the disentanglement that emerged from the design
allows manipulation of the reconstructed image by replacing the child code with
a code from an arbitrary category. We can see that not only do the objects in the
images change appearance, but the change is consistent across different images,
while the background is mostly unaffected.

In birds, we can see that the generator is usually able to detect the different
parts of the birds (wings, head, beak) and apply the correct color manipula-
tion to the correct area. Furthermore, the color manipulation works on birds
of different shapes and different original colors. The background is sometimes
slightly altered, first, because it is regenerated every time, and second, because
the foreground mask is soft and sometimes applies a slight manipulation on the
background as well. In dogs, the manipulation is less effective, but it is noticeable
and is correlated to the applied category. In cars, we can see the color manipula-
tion for many different colors. We can also notice how the background is mostly
unchanged and that the manipulation is applied correctly on the car chassis and
not on other parts like windows, tires and lights.

D.4 Background inpainting

Due to space limits, we could not address all tasks in the main paper. As an
intermediate step of the reconstruction task, our model also performs a side-
task of object foreground extraction and background inpainting. The model first
detects the foreground in the image and produces a segmentation mask. Then,
with the mask, the background is encoded and reconstructed. Because the mask
is a prediction and not a ground-truth, the model cannot only fill the masked
pixels with background texture, but has to assume that the mask was not per-
fect and reconstruct the entire image. The drawback of this method is that the
background is not always identical to the source in the background area, but the
benefit is that the object is fully removed even when it is not fully covered by
the mask.

We compare our model against images produced with Deep-Image-Prior
(DIP; Ulyanov et al., CVPR 2018). There are two variants. In the fist, DIP
receives the ground-truth mask and in the second, the predicted mask is given.
DIP optimizes its network for 1000 steps on the input image.

The results can be seen in Fig. 4. It can be observed that DIP works relatively
well when using a perfectly covering mask, but fails when the mask is not perfect

4

Table 1. The components of the OneGAN model

Symbol Description Computed as (or a comments)
V

a
ri

a
b
le

s

φc ∈ [1, NC] child class
φp ∈ [1, NP] parent class
ec ∈ {0, 1}NC child class one-hot vector (style) ec[i] = δi,φc

ep ∈ {0, 1}NP parent class one-hot vector (shape) ep[i] = δi,φp

ebg ∈ {0, 1}NP background one-hot vector ebg = ep
z ∈ Rdz pose code z[i] ∼ N (0, 1)

vc ∈ Rdc style code vector vc = Vc0(ec)

vp ∈ Rdp shape code vector vp = Vp0(ep)

vbg ∈ Rdbg background code vector vbg = Vbg0(ebg)
Afg foreground pre-image Afg = Gfg0(vp, z)
Abg background pre-image Abg = Gbg0(vbg, z)
Im foreground mask
Ifg foreground image (Ifg, Im) = Gfg2(Gfg1(Afg, vp), vc)
Ibg background image Ibg = Gbg1(Abg)
I full image I = Ibg ◦ (1− Im) + Ifg ◦ Im
Bfg foreground bypass Bfg = Ep1(I)
Bbg background bypass Bbg = Ebg1(I, Im)
Xc image domain
Xbg background image domain

N
et

w
o
rk

s

Vc embedding LUT of child class
Vp embedding LUT of parent class
Vbg embedding LUT of background
Gfg foreground generator Gfg2(Gfg1(Gfg0(vp, z), vp), vc)
Gbg background generator Gbg1(Gbg0(vbg, z))
Ec style encoder Ec(I)
Ep content encoder Ep(I)
Ebg content encoder Ebg(I, Im)
Dc image discriminator
Dbg background discriminator

P
a
ra

m
et

er
s

NC number of child classes Depends on the dataset.
NP number of parent classes NP < NC , Depends on the dataset.
dz dimensionality of pose code dz = 100
dc dimensionality of style code dc = 32
dp dimensionality of shape code dp = 16
dbg dimensionality of background code dbg = 32
H,W size of image H = W = 128

and does not fully cover the object. In contrast, our model suffers less when the
mask is not perfect. We can also see that our model does not exactly inpaints the
background but actually repaints it, which usually results in a slightly different
background even where the image was not masked, but as we mentioned above,
it may be beneficial when the mask is not perfect. Finally, our model performs
the inpainting task in a single forward path instead of 1000 iterations of DIP.

5

Fig. 1. Conditional Image Generation. From top to bottom: (i) real image, (ii-vi) gen-
eration of images with the encoded parent and child codes and a different vector z per
row.

6

Fig. 2. Image Reconstruction. From top to bottom: (i) real image, (ii) reconstructed
image, (iii) reconstructed foreground, (iv) reconstructed background, (v) ground-truth
foreground mask, (vi) predicted foreground mask.

7

Fig. 3. Image to Image Translation. From left to right: (i) real image, (ii-xiii) recon-
structed images when the child code ec in each column is switched with a code from a
selected category represented by the top image.

8

Fig. 4. Background Inpainting. From top to bottom: (i) original image, (ii) image
masked with real mask, (iii) image masked with predicted mask, (iv) OneGAN, (v)
DIP with real mask, (vi) DIP with predicted mask.

9

Table 2. General modules

Module layers input output

GLU-LNorm

ChannelSplit x xL, xR
LayerNorm xL x′L

Sigmoid xR x′R
Multiply x′L, x

′
R -

UPBlk
Upsample2d(S/2, S) - -

(ci, co, S)
K3P1Conv2d(ci, 2co) - -

GLU-LNorm - -

DOWNBlk
K4S2P1Conv2d(ci,co) - -

(ci, co)
LayerNorm - -
lReLU(0.2) - -

RESBlk0

K3P1Conv2d(ci,2ci) x -

(ci)

GLU-LNorm - -
K3P1Conv2d(ci,2ci) - -

GLU-LNorm - d
Add x, d -

RESBlk

K3P1Conv2d(ci + d,2ci) - -

(ci, d, co)

GLU-LNorm - -
RESBlk0(ci) - -
RESBlk0(ci) - -

K3P1Conv2d(ci,2co) - -
GLU-LNorm - -

Table 3. Background Generator Gbg

Module layers input output

Vbg Linear(NP , dbg) ebg vbg

Gbg0

Linear(dbg + dz, 32768) vbg, z -
Reshape(2048,4,4) - -

GLU-LNorm - -
UPBlk(1024,512,8) - -
UPBlk(512,256,16) - Abg

Gbg1

UPBlk(256,128,32) Abg -
UPBlk(128,64,64) - -
UPBlk(64,32,128) - -

K3P1Conv2d(32,3) + tanh - Ibg

10

Table 4. Foreground Generator Gfg

Module layers input output

Vp Linear(NP , dp) ep vp

Vc Linear(NC , dc) ec vc

Gfg0

Linear(dp + dz, 32768) vp, z -
Reshape(2048,4,4) - -

GLU-LNorm - -
UPBlk(1024,512,8) - -
UPBlk(512,256,16) - Afg

Gfg1

UPBlk(256,128,32) Afg -
UPBlk(128,64,64) - -
UPBlk(64,3,128) - Cfg0

Gfg2

RESBlk(64,dp,32) Cfg0 , vp Cfg1
RESBlk(32,dc,16) Cfg1 , vc Cfg2

K3P1Conv2d(16,3) + tanh Cfg2 Ifg

K3P1Conv2d(16,1) + sigmoid Cfg2 Im

Table 5. Style Encoder Ec

Module layers input output

Ec1

K4S2P1Conv2d(3, 64) I -
LayerNorm - -
lReLU(0.2) - -

DOWNBlk(64, 128) - -
DOWNBlk(128, 256) - Hc

Ec0

DOWNBlk(256, 512) Hc -
DOWNBlk(512, 1024) - -

K3P1Conv2d(1024, 1024) - -
LayerNorm - -
lReLU(0.2) - -

Reshape(16384) - -
Linear(16384, 512) - -

LayerNorm - -
lReLU(0.2) - hc

Linear((512, NC) hc êc
Linear(512, dc) hc µc
Linear(512, dc) hc σc

11

Table 6. Shape Encoder Ep

Module layers input output

Ep1

K4S2P1Conv2d(3, 64) I -
LayerNorm - -
lReLU(0.2) - -

DOWNBlk(64, 128) - -
DOWNBlk(128, 256) - Hp

K3P1Conv2d((256, 512) Hp -
GLU-LNorm - -

UPBlk(256,256) - Bfg

Ep0

DOWNBlk(256, 512) Hp -
DOWNBlk(512, 1024) - -

K3P1Conv2d(1024, 1024) - -
LayerNorm - -
lReLU(0.2) - -

Reshape(16384) - h

Linear(16384, 512) h -
LayerNorm - -
lReLU(0.2) - hp

Linear((512, NC) hp êp
Linear(512, dc) hp µp
Linear(512, dc) hp σp

Linear(16384, 512) h -
LayerNorm - -
lReLU(0.2) - hz

Linear(512, dz) hz µz
Linear(512, dz) hz σz

Table 7. Background Encoder Ebg

Module layers input output

Ebg1

K4S2P1Conv2d(4, 64) I, Im -
DOWNBlk(64, 128) - -
DOWNBlk(128, 256) - Hbg

K3P1Conv2d((256, 512) Hbg -
GLU-LNorm - -

UPBlk(256,256) - Bbg

12

Table 8. Background Discriminator Dbg

Module layers input output

Dbg

DownSample2d(128, 126) I -
K4S2P0Conv2d(3, 64) - -

lReLU(0.2) - -
K4S2P0Conv2d(64, 128) - -

lReLU(0.2) - -
K4S4P0Conv2d(128, 256) - -

lReLU(0.2) - H = DbgC (I)

K4S1P0Conv2d(256,1) H DbgA(I)

K4S1P0Conv2d(256,1) H DbgB (I)

Table 9. Object Discriminator Dc

Module layers input output

Dc

K4S2P1Conv2d(3, 64) I -
LayerNorm - -
lReLU(0.2) - -

DOWNBlk(64, 128) - -
DOWNBlk(128, 256) - -
DOWNBlk(256, 512) - DcC (I)
DOWNBlk(512, 1024) - -

K3P1Conv2d(1024, 1024) - -
LayerNorm - -
lReLU(0.2) - -

Reshape(16384) - H

Linear(16384, 512) H -
LayerNorm - -
lReLU(0.2) - -

Linear(512, 1) - DcA(I)

Linear(16384, 512) H -
LayerNorm - -
lReLU(0.2) - -

Linear(512, NC) - DcB (I)

