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1 Ideal sampling

In our context, ideal sampling of a manifold Σ ⊂ Rd is to find a dense enough point
cloud S such that a triangulation T of S could be constructed by interpolation such that
|T | is homeomorphic toΣ, and the Hausdorff distance between T andΣ is small. In fact,
in [2] the authors proved a theorem that by considering (ε, δ)-sampling, the weighted
Delaunay triangulation of point cloud faithfully recovers the manifold.

In our model, we assume that the input real image dataset is an ideal sampling of
real image manifold, and images are viewed as being i.i.d. uniformly sampled from the
image manifold.

2 The construction of µ

Compute the SDOT map T In the first step, we compute the semi-discrete OT map
T : [0, 1]d → Ω, with T#Uni([0, 1]d) = µ̂gt. Under T , the continuous domain of [0, 1]d

is decomposed into cells {Wi} with T (w) = zi ∀w ∈Wi, and the Lebesgue measure of
each Wi is 1

n . The cell structure is shown in the left frame of Fig. 1 (the orange cells).
According to [1], the computation of the semi-discrete OT map is equivalent to

minimize the convex energy E(h) =
∫ h
0

∑n
i=1

∫
Wi
dη − 1

n

∑n
i=1 hi, where the height

vector h is the unique optimizer under the condition that
∑
i hi = 0 and Wi represents

the i-th cell of the cell-decomposition induced by h [4]. By adaptive Monte-Carlo method
introduced by [1], we can use âi(h) = #{j ∈ J | wj ∈ Wi(h)}/N to approximate
the volume of Wi, thus the gradient ∇E(h) ≈ (âi(h) − νi)T can be estimated. Here
wj , j = 1, 2, . . . , N is sampled from the uniform distribution. With the optimal weight
h, the domain of the uniform distribution will be split into n cells, and the Lebesgue
measure of each of the cell equals to µ̂gt(zi) = 1/n. Then we get the semi-discrete OT
map T : w ∈Wi → zi.

Piece-wise linear Extension of T Secondly, we extend the image domain of T
from the discrete latent codes {zi} to a continuous neighborhood σε, which serves as
the supporting manifold of µ. Specifically, we construct a simplicial complex σε from
the latent codes {zi}. Here ε > 0 is a constant. The 0-skeleton of σε, represented by
σ
(0)
ε , is the set of all latent codes {zi}. The we define its k-skeletons σ(k)

ε by σ(k)
ε =

{[z1, z2, . . . , zk] | ‖zi − zj‖2 ≤ ε, ∀1 ≤ i < j ≤ k} for 0 < k ≤ d. The right frame
of Fig. 1 shows an example of σε. By assuming that the latent code is densely sampled
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Fig. 1. OT map T and the extended OT map T̃ in 2D case. Here T maps points (e.g. w0) in
each polyhedral cell Wi (orange cells on the left) to the corresponding latent code zi (circles and
squares on the right). The piece-wise linear T̃ maps triangulated regions in [0, 1]d to the simplicial
complex σε in the latent space (shown in purple). Given the barycenters ci’s of each Wi’s, each
triangle ∆cicjck is mapped to the corresponding simplex [zi, zj , zk]. For example, w1 in the
triangle ∆c0c1c2 is mapped to T̃ (w1) in the simplex [z0, z1, z2]. Red lines in [0, 1]d illustrate the
singular set of T , which corresponds to the pre-image of gaps or holes in Ω.

from the latent manifold Ω and with an appropriate ε, σε will have consistent "hole" and
"gap" structure with Ω, in the sense of homology equivalence, as explained in Chap. 3.

Finally, we define the piece-wise linear extended OT map T̃ : [0, 1]d → σε. Repre-
senting the cells Wi by their mass centers ci, we can get the point-wise map t : ci 7→ zi.
Also, {ci} gives a dual cell decomposition of Ω, as shown in the purple triangles of
the left frame of Fig. 1. Given a random sample w sampled from Uni([0, 1]d), we can
approximate the dual cell (the purple triangles in the left frame of Fig. 1) containing it
by its nearby mass centers cj . Computing the barycentric parameters λj’s with respect
to the nearby cjs of w, i.e. compute λj’s such that w = Σλjcj with 0 ≤ λj ≤ 1 and
Σλj = 1. Then w is mapped to T̃ (w) := ΣλjT (cj) = Σλjzj if the corresponding
zj’s form a simplex of σε. Otherwise we only map w to zi, i.e. T̃ (w) := T (ci) = zi
where ci is the nearest neighbour of w in {ci}. As illustrated in Fig. 1, compared to
the many-to-one semi-discrete OT map T , T̃ maps samples within the triangular areas
(the purple triangles on the left frame) in [0, 1]d piecewise linearly to the corresponding
simplices in σε (the purple triangles on the right frame) in a bijective manner. We denote
the pushed forward distribution under T̃ as µε := T̃#Uni([0, 1]

d).

Theorem 1. The 2-Wasserstein distance between µε and µ̂gt satisfies W2(µε, µ̂gt) ≤ ε,
where ε is a given constant to build µ. Moreover, if the latent codes are densely sampled
from the latent manifold Ω, we have W2(µε, µgt) ≤ 2ε, µ-almost surely.

Proof. In fact, by the construction of µε, samples in a cell Wi in [0, 1]d is mapped to
the neighboring simplices of zi = T (Wi) under T̃ε, or zi itself. We could construct
a transport map U mapping T̃ε(w) to zi if w ∈ Wi. To see U is a transport map,
we note that since U ◦ T̃ = T and T#Uni([0, 1]

d) = µ̂gt, we have U#µ = µ̂gt
where µ = T̃#Uni([0, 1]

d). The total cost of this transport map under cost function
c(x, y) = |x−y|2 is less than ε2. This is because T̃ (w) is mapped into adjacent simplices
of zi, and these simplices are contained in the ball of radius ε centered at zi. Therefore we
have |zi, T̃ε(wi)|2 ≤ ε2. Moreover, since the Wasserstein distance involves the minimal
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l2 cost among all transport plans, we have W2(µε, µ̂gt) ≤ ε. This proves the first part of
the theorem.

The second part of the theorem comes from the fact that the empirical distribution µ̂
converges to µ weakly a.s. and that W2 is a metric in probability space.

To avoid confusion, we omit the subscript ε and denote µε as µ in the paper.

3 Homology property of constructed latent simplex σε

Suppose {zi} are densely sampled on its supporting manifold Ω. Here dense sampling
means the number of samples is larger than a constant related to the condition number
of Ω (see e.g. [5]). We show that σε is a subcomplex of a simplicial complex that has the
same homology as Ω. In fact, given the point cloud {zi}, we consider Euclidean balls
Bε(zi) that centers at zi and has radius ε. By Niyogi-Smale-Weinberger theorem [5], if
the data µ̂gt is densely sampled on Ω, then with high probability and sufficiently small ε,
the ball union U2ε = ∪ziB2ε(zi) has equal homology. By the nerve theorem, the ball
union U2ε retracts to the Cech complex C2ε. This means C2ε has the same homology as
Ω. On the other hand, by construction, σε is the Vietoris-Rips complex of weight ε on
point cloud {zi}, which can be embedded between Cε/2 and C2ε [3].

In our model, we want to choose a suitable supporting manifold for µ. By this we
mean that when the support χ of the ground-truth distribution νgt in the image space
has several connected components or if there are “holes" in the components, we want
our latent manifold to have similar structure. This is guaranteed by the fact that σε is a
subcomplex of C2ε which has the same homology as Ω, and the assumption that Ω is a
nice latent representation of χ.

In practice, the computation of homology in high dimensional space is complicated
and time consuming. We treat ε as a model hyperparameter without explicitly computing
the homology groups.

4 The network architecture for CelebA-HQ

In this section, we introduce the architecture used to train the CelebA-HQ dataset in Tab.
1. We also made a video to show the evolution of our generator trained on CelebA-HQ
during the training process. From the video it can be noted that as the epochs increase,
the performance of the generator is significantly enhanced, as both of the reconstructed
and generated images show better visual qualities.
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Encoder Kernel Size Resampling Output Shape
Conv 3 x 3 32 x 128 x 128

Residual block [3 x 3] x 2 Down 64 x 64 x 64
Residual block [3 x 3] x 2 Down 128 x 32 x 32
Residual block [3 x 3] x 2 Down 256 x 16 x 16
Residual block [3 x 3] x 2 Down 512 x 8 x 8
Residual block [3 x 3] x 2 Down 1024 x 4 x 4

Linear 128
Decoder
Linear 1024 x 4 x 4

Residual block [3 x 3] x 2 Up 512 x 8 x 8
Residual block [3 x 3] x 2 Up 256 x 16 x 16
Residual block [3 x 3] x 2 Up 128 x 32 x 32
Residual block [3 x 3] x 2 Up 64 x 64 x 64
Residual block [3 x 3] x 2 Up 32 x 128 x 128

Conv, tanh 3 x 3 3 x 256 x 256
Discriminator

Conv 3 x 3 32 x 128 x 128
Residual block [3 x 3] x 2 Down 64 x 64 x 64
Residual block [3 x 3] x 2 Down 128 x 32 x 32
Residual block [3 x 3] x 2 Down 256 x 16 x 16
Residual block [3 x 3] x 2 Down 512 x 8 x 8
Residual block [3 x 3] x 2 Down 1024 x 4 x 4

Linear 1
Table 1. The architecture used to train the CelebA-HQ dataset.



AE-OT-GAN: Training GANs from data specific latent distribution 5

References

1. An, D., Guo, Y., Lei, N., Luo, Z., Yau, S.T., Gu, X.: Ae-ot: A new generative model based on
extended semi-discrete optimal transport. In: International Conference on Learning Represen-
tations (2020)

2. Cheng, S.W., Dey, T.K., Ramos, E.A.: Manifold reconstruction from point samples. In: SODA.
vol. 5, pp. 1018–1027 (2005)

3. De Silva, V., Ghrist, R.: Coverage in sensor networks via persistent homology. Algebraic &
Geometric Topology 7(1), 339–358 (2007)

4. Gu, D.X., Luo, F., Sun, j., Yau, S.T.: Variational principles for minkowski type problems,
discrete optimal transport, and discrete monge-ampère equations. Asian Journal of Mathematics
(2016)

5. Niyogi, P., Smale, S., Weinberger, S.: Finding the homology of submanifolds with high
confidence from random samples. Discrete & Computational Geometry 39(1-3), 419–441
(2008)


