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Abstract. Though generative adversarial networks (GANs) are promi-
nent models to generate realistic and crisp images, they are unstable
to train and suffer from the mode collapse problem. The problems of
GANs come from approximating the intrinsic discontinuous distribution
transform map with continuous DNNs. The recently proposed AE-OT
model addresses the discontinuity problem by explicitly computing the
discontinuous optimal transform map in the latent space of the autoen-
coder. Though have no mode collapse, the generated images by AE-OT
are blurry. In this paper, we propose the AE-OT-GAN model to utilize
the advantages of the both models: generate high quality images and
at the same time overcome the mode collapse problems. Specifically, we
firstly embed the low dimensional image manifold into the latent space
by autoencoder (AE). Then the extended semi-discrete optimal transport
(SDOT) map is used to generate new latent codes. Finally, our GAN
model is trained to generate high quality images from the latent distri-
bution induced by the extended SDOT map. The distribution transform
map from this dataset related latent distribution to the data distribution
will be continuous, and thus can be well approximated by the continuous
DNNs. Additionally, the paired data between the latent codes and the
real images gives us further restriction about the generator and stabilizes
the training process. Experiments on simple MNIST dataset and complex
datasets like CIFAR10 and CelebA show the advantages of the proposed
method.
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1 Introduction
Image generation has been one of the core topics in the area of computer vision
for a long time. Thanks to the quick development of deep learning, numerous
generative models are proposed, including encoder-decoder based models [2,16,37],
generative adversarial networks (GANs) [3,5,11,12,31,40], density estimator based
models [7, 8, 17, 29] and energy based models [19, 28, 41, 44]. The encoder-decoder
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based models and GANs are the most prominent ones due to their capability to
generate high quality images.

Intrinsically, the generator in a generative model aims to learn the real data
distribution supported on the data manifold [36]. Suppose the distribution of a
specific class of natural data νgt is concentrated on a low dimensional manifold χ
embedded in the high dimensional data space. The encoder-decoder methods first
attempt to embed the data into the latent space Ω through the encoder fθ, then
samples from the latent distribution are mapped back to the manifold to generate
new data by decoder gξ. While GANs, which have no encoder, directly learn a
map (generator) that transports a given prior low dimensional distribution to
νgt.

Usually, GANs are unstable to train and suffer from mode collapse [10,25].
The difficulties come from the fact that the generator of a GAN model is trained
to approximate the discontinuous distribution transport map from the unimodal
Gaussian distribution to the real data distribution by the continuous neural
networks [2, 15, 40]. In fact, when the supporting manifolds of the source and
target distributions differ in topology or convexity, the OT map between them
will be discontinuous [38]. Distribution transport maps can have complicated
singularities, even when the ambient dimension is low [9]. This poses a great
challenge for the generator training in standard GAN models.

To tackle the mode collapse problem caused by discontinuous transport maps,
the authors of [2] proposed the AE-OT model. In this model, an autoencoder
is used to map the image manifold χ into the latent manifold Ω. Then, the
semi-discrete optimal transport (SDOT) map T from the uniform distribution
Uni([0, 1]d) to the empirical latent distribution is explicitly computed via convex
optimization approach. Then a piece-wise linear extension map of the SDOT,
denoted by T̃ , pushes forward the uniform distribution to a continuous latent
distribution µ, which in turn gives a good approximation of the latent distribution
µgt = fθ#νgt (fθ# means the push forward map induced by fθ). Composing the
continuous decoder gξ and discontinuous T̃ together, i.e. gξ ◦ T̃ (w), where w is
sampled from uniform distribution, this model can generate new images. Though
have no mode collapse, the generated images look blurry.

In this work we propose the AE-OT-GAN framework to combine the advan-
tages of the both models and generate high quality images without mode collapse.
Specifically, after the training of the autoencoder and the computation of the
extended SDOT map, we can directly sample from the latent distribution µ by
applying T̃ (w) on the uniform distribution to train the GAN model. In contrast
to the conventional GAN models, whose generators are trained to transport the
latent Gaussian distribution to the data manifold distribution, our GAN model
sample from the data inferred latent distribution µ. The distribution transport
map from µ to the data distribution νgt is continuous and thus can be well
approximated by the generator (parameterized by CNNs). Moreover, the decoder
of the pre-trained autoencoder gives a warm start of the generator, so that the
Kullback–Leibler divergence can be directly applied in the discriminator because
the real and fake batches of images have non-vanishing overlap in their supports
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during the training phase. Furthermore, the content loss and feature loss between
the paired latent codes and real input images regularize the adversarial loss, sta-
bilize the GAN training and help get rid of mode collapse problem. Experiments
have shown efficacy and efficiency of our proposed model.

The contributions of the current work can be summarized as follows: (1)
This paper proposes a novel AE-OT-GAN model that combines the strengths of
AE-OT model and GAN model. The proposed model removes the blurriness of
the images generated by AE-OT, and at the same time keep the good properties
of the latter in eliminating the mode collapse problems. (2) The decoder of the
autoencoder provides a good initialization of the generator of GAN, which makes
the supports of the real and fake image distributions overlap and thus the KL
divergence can be used in the discriminator. (3) In addition to the adversarial
loss, the explicit correspondence between the latent codes and the real images
provide auxiliary constraints, namely the content loss and feature loss, to the
generator. The both losses make sure that there is no mode collapse in our
model. (4) The experiments demonstrate that our model can generate images
consistently better than the results of state-of-the-art methods.

2 Related Work
The proposed method in this paper is highly related to encoder-decoder based
generation models, the generative adversarial networks (GANs), conditional
GANs and the hybrid models that take the advantages of above.

Encoder-decoder architecture A breakthrough for image generating comes
from the scheme of Variational Autoencoders (VAEs) (e.g. [16]), where the de-
coders approximate real data distributions from a Gaussian distribution in a
variational approach (e.g [16] and [33]). Latter Yuri Burda et al. [4] lower the
requirement of latent distribution and propose the importance weighted autoen-
coder (IWAE) model through a different lower bound. Bin and David [6] propose
that the latent distribution of VAE may not be Gaussian and improve it by firstly
training the original model and then generating new latent code through the
extended ancestral process. Another improvement of the VAE is the VQ-VAE
model [30], which requires the encoder to output discrete latent codes by vector
quantisation, then the posterior collapse of VAEs can be overcome. By multi-scale
hierarchical organization, this idea is further used to generate high quality images
in VQ-VAE-2 [32]. In [37], the authors adopt the Wasserstein distance in the
latent space to measure the distance between the distribution of the latent code
and the given one and generate images with better quality. Different from the the
VAEs, the AE-OT model [2] firstly embed the images into the latent space by
autoencoder, then an extended semi-discrete OT map is computed to generate
new latent code based on the fixed ones. Decoded by the decoder, new images
can be generated. Although the encoder-decoder based methods are relatively
simple to train, the generated images tend to be blurry.

Generative adversarial networks The GAN model [11] tries to alter-
natively update the generator, which maps the noise sampled from a given
distribution to real images, and the discriminator differentiates between the
generated images and the real ones. If the generated images successfully fool the
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discriminator, the model is well trained. Later, [31] proposes a deep convolutions
neural network (DCGAN) to generate images with better quality. While being
a powerful tool in generating realistic samples, GANs can be hard to train and
suffer from mode collapse problem [10]. After delicate analysis, [3] points out
that it is the KL divergence the original GAN used causes these problems. Then
the authors introduced the celebrated WGAN, which makes the whole framework
easy to converge. To satisfy the Lipschitz continuity required by WGAN, a lot
of methods are proposed, including clipping [3], gradient penalty [12], spectral
normalization [27] and so on. Later, Wu et al. [39] use the Wasserstein diver-
gence objective, which get rid of the Lipschitz approximation problem and get
a better result. Differently, the OT-GAN [35] uses the Sinkhorn algorithm to
approximate the Wasserstein distance in the image space. Instead of L1 cost
adopted by WGAN, Liu et.al [24] propose the WGAN-QC by taking the L2 cost
into consideration. Though various GANs can generate sharp images, they will
theoretically encounter the mode collapse problem [2,10].

Note that no mode collapse in the AE-OT model cannot directly guarantee
that there is no mode collapse of the AE-OT-GAN model. For the AE-OT model,
the pre-trained decoder of the AE is used as generator, thus if there is no mode
collapse in the latent space, there will be no mode collapse in the image space.
For the AE-OT-GAN model, the decoder is changed. The elimination of the
mode collapse is thus guaranteed by the paired content loss between the latent
codes and the real images.

3 The Proposed Method

In this section, we explain our proposed AE-OT-GAN model in detail. There are
mainly three modules, an autoencoder (AE), an optimal transport mapper (OT)
and a GAN model. Firstly, an AE model is trained to embed the data manifold
χ into the latent space. At the same time, the encoder fθ pushes forward the
ground-truth data distribution νgt supported on χ to the ground-truth latent
distribution µgt supported on Ω in the latent space. Secondly, we compute the
semi-discrete OT map from the uniform distribution to the discrete empirical
latent distribution µ̂gt. By the extended SDOT map T̃ , we can construct the
continuous distribution µ that approximates the ground-truth latent distribution
µgt well. Finally, starting from µ as the latent distribution, our GAN model is
trained to generate both realistic and crisp images. The pipeline of our proposed
model is illustrated in Fig. 1. In the following, we will explain the three modules
one by one.

3.1 Data Embedding with Autoencoder

We model the real data distribution as a probability measure νgt supported on
an r dimensional manifold χ embedded in the D dimensional Euclidean space
RD (ambient space) with r � D. In the first step of our AE-OT-GAN model, we
train an autoencoder (AE) to embed the real data manifold χ to be the latent
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Fig. 1. The framework of the proposed method. Firstly, the autoencoder is trained
to embed the images into the latent space, the real latent codes are shown as the
orange circles. Then we compute the extended semi-discrete OT map T̃ to generate
new latent codes in the latent space (the purple crosses). Finally, our GAN model is
trained from the latent distribution µ = T̃#Uni([0, 1]

d) to the image distribution. Here
the generator is just the decoder of the autoencoder. The fake batch (the bar with
orange and purple colors) to train the discriminator is composed of two parts: the
reconstructed images gξ(zi) of the real latent codes and the generated images gξ(T̃ (w))
from the randomly generated latent codes with w sampled from uniform distribution.
The real batch (the bar with only orange color) is also composed of two parts: the real
images xi corresponding to zi, and the randomly selected images xj .

manifold Ω. In particular, training the AE model is equivalent to compute the
encoding map fθ and decoding map gξ

(νgt, χ)
fθ−−−−→ (µgt, Ω)

gξ−−−−→ (νgt, χ)

by minimizing the loss function:

L(θ, ξ) :=
n∑
i=1

‖xi − gξ ◦ fθ(xi)‖2,

with fθ and gξ parameterized by standard CNNs (θ and ξ are the parameters
of the networks, respectively). Given a dense sampling from the image manifold
(detailed explanation is included in the supplementary) and ideal optimization
(namely the loss function goes to 0), fθ ◦gξ coincides with the identity map. After
training, fθ is a continuous, convertible map, namely a homeomorphism, and gξ
is the inverse homeomorphism. This means fθ : χ → Ω is an embedding, and
pushes forward νgt to the latent data distribution µgt := fθ#νgt. In practice, we
only have the empirical data distribution given by ν̂gt = 1

n

∑n
i=1 δ(x− xi), which

is pushed forward to be the empirical latent distribution µ̂gt = 1
n

∑n
i=1 δ(z − zi),

where n is the number of samples.

3.2 Constructing µ with Semi-Discrete OT Map

In this section, from the empirical latent distribution µ̂gt, we construct a contin-
uous latent distribution µ following [2] such that (i) it generalizes µ̂gt well, so
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that all of the modes in the latent space are covered by the support of µ (ii) the
support of µ has similar topology to that of µgt, which ensures that the transport
map from µ to νgt has less discontinuities and (iii) it is efficient to sample from
µ.

To obtain µ, the semi-discrete OT map T from the uniform distribution
Uni([0, 1]d) to the empirical latent distribution µ̂gt is firstly computed. Here d is
the dimension of the latent space. By extending T to be a piece-wise linear map
T̃ , we can construct µ as the push forward distribution of Uni([0, 1]d) under T̃ :

(Uni([0, 1]d), [0, 1]d)
T̃−−−−→ (µ,Ω)

Theorem 1. The 2-Wasserstein distance between µ and µ̂gt satisfiesW2(µ, µ̂gt) ≤
ε, where ε is a given constant to build µ. Moreover, if the latent codes are densely
sampled from the latent manifold Ω, we have W2(µ, µgt) ≤ 2ε, µ-almost surely.

The construction details of µ can be found in [2] and the supplementary, and we
also give the proof of the above theorem in the supplementary. This theorem
tells us that as a continuous generalization of µ̂gt, µ is a good approximation
of µgt. Also, we want to mention that T̃ is a piece-wise linear map that pushes
forward Uni([0, 1]d) to µ, which makes the sampling from µ efficient and accurate.
Based on the construction of T̃ , the sampling from µ is equivalent to the locally
piece-wise linear interpolation of zis in the latent space, which guarantees that
there is no mode collapse in µ.

3.3 GAN Training from µ

The GAN model computes the transport map from the continuous latent distri-
bution µ to the data distribution on the manifold.

(µ,Ω)
gξ−−−−→ (νgt, χ).

Our GAN model is based on the vanilla GAN model proposed by Ian Goodfellow
et.al [11]. The generator gξ is used to generate new images by sampling from
the latent distributin µ, while the discriminator dη is used to discriminate if the
distribution of the generated images are the same with that of the real images.
The training process is formalized to be a min-max optimization problem:

min
ξ

max
η
L(ξ, η),

where the loss function is given by

L(ξ, η) = Ladv + Lfeat + βLimg (1)

In our model, the loss function consists of three terms, the adversarial loss Ladv,
the image content loss Limg and the feature loss Lfeat. Here β > 0 is the weight
of the content loss.
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Adversarial Loss We adopt the vanilla GAN model [11] based on the
Kullback–Leibler (KL) divergence. The key difference between our model and
the original GAN is that our latent samples are drawn from the data related
latent distribution µ, instead of the Gaussian distribution. The adversarial loss
is given by:

Ladv = min
ξ

max
ζ
Ex∼νgt [log dζ(x)] + Ez∼µ[log(1− dζ(gξ(z)))]

According to [3], vanilla GAN is hard to converge because the supports of the
distributions of the real images and fake images may not intersect each other,
which makes the KL divergence between them infinity. This issue is solved in
our case, because (1) the training of AE gives a warm start to the generator,
so at the beginning of the training, the support of the generated distribution
gξ#µ is close to that of the real data distribution νgt; (2) by delicate settings of
the fake and real batches used to train the discriminator, we can keep the KL
divergence between them converge well. In detail, as shown in Fig. 1, the fake
batch is composed of both the reconstructed images from the real latent codes
(the orange circles) and the generated images from the generated latent codes (the
purple crosses), and the real batch includes both the real images corresponding
to the real latent codes and some randomly selected real images.

Content Loss Recall that the generator can produce two types of images:
images reconstructed by real latent codes and images from generated latent codes.
Given a real sample xi, its latent code is zi = fθ(xi), the reconstructed image is
gξ(zi). Each reconstructed image is represented as a triple (xi, zi, gξ(zi)). Suppose
there are n reconstructed images in total, the content loss is given by

Limg =
1

n

n∑
i=1

‖gξ(zi)− xi‖22 (2)

Where gξ is the generator parameterized by ξ.
Feature Loss We adopt the feature loss similar to that in [21]. Given a

reconstructed image triple (xi, zi, gξ(zi)), we encode gξ(zi) by the encoder of AE.
Ideally, the real image xi and the generated image gξ(zi) should be the same,
therefore their latent codes should be similar. We measure the difference between
their latent codes by the feature loss. Furthermore, we can measure the difference
between their intermediate features from different layers of the encoder.

Suppose the encoder is a network with L layers, the output of the lth layer is
denoted as f (l)θ . The feature loss is given by

Lfeat :=
1

n

n∑
i=1

L∑
l=1

α(l)‖f (l)θ (xi)− f (l)θ ◦ gξ(zi)‖
2
2,

Where α(l) is the weight of the feature loss of the l-th layer.
For reconstructed images (xi, zi, gξ(zi)), the content loss and the feature loss

force the generated image gξ(zi) to be the same with the real image xi. Therefore
the eliminating of mode collapse in the latent space means that there is no mode
collapse in the image space.
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χ

Ωzi ẑj zk

Fig. 2. Manifold fitting result of the decoder/GAN. The blue curve is the original
manifold. The green one shows the fitting result of the AE-OT model. By the AE-OT-
GAN framework, we can not only draw gξ(zi) much closer to xi, the whole manifold
(the red curve) also fit the original one (blue curve) better. The orange circles on Ω
represent the real latent codes, and the purple one represents the generated latent code.
The orange disks on the manifold represent real data.

3.4 Geometric perspective of AE-OT-GAN

Another perspective of the proposed model is that it can be treated as a manifold
fitting framework. Ideally, if given an embedding map f : χ → Ω and a dense
dataset X sampled from a distribution νgt supported on χ, the purpose of the
generation model is to generate new samples following the distribution of νgt and
locating on the manifold χ. For the AE-OT model [2], it only requires that the
reconstructed images should be similar to the real ones under L2 distance. As
a result, the support of the generated image distribution may only fit the real
manifold χ well near the given samples. As shown in Fig. 2, the orange circles
represent the latent codes, and the green curve represents the support of the
generated distribution of AE-OT model, which only fits the real manifold χ well
nearby the given samples. For the AE-OT-GAN model, on one hand, the feature
loss and content loss require that the reconstructed manifold (the red curve of Fig.
2) should approach to the real manifold χ on the given samples; on the other hand,
the discriminator is used to regularize the fitting performance of the generated
manifold on both the given samples and new generated samples, namely both the
reconstructed images gξ(zi) and the generated images gξ(ẑj) should fit the real
manifold well. Here zi and ẑj represent the real latent codes and the generated
latent codes. Therefore, the generated manifold by the AE-OT-GAN model fits
the real manifold χ far more better than the AE-OT model. Moreover, according
to Sec. 3.2, generating a new latent code from µ is essentially equivalent to locally
linear interpolation by the real latent codes. As a result, the generated images
can actually be treated as the non-linear interpolation by the nearby real images.
For example, ẑj is generated by linear interpolation between zi and zk, then the
location of gξ(zi) should be between xi and xk.

4 Experiments

To evaluate the proposed method, experiments are conducted on various datasets
including MNIST [20], stack MNIST [23], Cifar10 [18], CelebA [43] and CelebA-
HQ [22].
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Evaluation metrics To illustrate the performance of the proposed method,
we adopt the commonly used Frechet Inception distance (FID) [13] as our
main evaluation metrics. When the images are embedded into the feature space
by inception network, two high dimensional Gaussian distributions are used
to approximate the empirical distributions of the generated and real features,
respectively. The FID is given by the difference between the two Gaussian
distributions. Lower FID means better quality of the generated dataset. For the
Cifar10 dataset, another popular metric is the Inception Score (IS) [34], which
can be used to measure the quality of each single image. Higher IS means better
quality of the generated image.

Training details To get rid of the vanishing gradient problem and make the
model converge better, we use the following three strategies:

(i) Train the discriminator using Batch Composition There are two types
of latent codes in our method: the real latent codes coming from encoding the
real images by the encoder, and the generated latent codes coming from the
extended SDOT map. Correspondingly, there are two types of generated images,
the reconstructed images from the real latent codes and the generated images
from the generated latent codes.

To train the discriminator, both the fake batch and real batch are used. The
fake batch consists of both randomly selected reconstructed images and generated
images, and the real batch only includes real images, in which the first part has
a one-to-one correspondence with the reconstructed images in the fake batch,
as shown in Fig. 1. In all the experiments, the ratio between the number of
generated images and reconstructed images in the fake batch is 3. This strategy
ensures that there is an overlap between the supports of the fake and real batches,
so that the KL divergence is not infinity.

(ii) Different learning rate For better training, we use different learning rates
for the generator and the discriminator as suggested by Heusel et al. in [13].
Specifically, we set the learning rate of the generator to be lrG = 2e− 5 and that
of the discriminator to be lrD = lrG/R, where R > 1. This improves the stability
of the training process.

(iii) Different inner steps Another way to improve the training consistency
of the whole framework is to set different update steps for the generator and
discriminator. Namely, when the discriminator updates once, the generator
updates S times correspondingly. This strategy is opposite to the training of
vanilla GANs, which typically require multiple discriminator update steps per
generator update step.

By setting R and S, we can keep the discriminator output of the real images
slightly large than that of the generated ones, which can better guide the training
of the generator. For the MNIST and stack MNIST datasets, R = 15 and S = 3;
for the Cifar10 dataset, R = 25 and S = 10; and for the CelebA and CelebA-HQ
datasets, R = 15 and S = 5. In Eq. 1, β = 2000 and α(l) = 0.06 with l < L, where
L denotes the last layer of the encoder. αL = 2.0/‖Z‖2 is used to regularize the
loss of the latent codes.



10 D. An et al.

(a) (b)

Fig. 3. (a) Latent code distribution. The orange circles represent the fixed latent code
and the purple crosses are the generated ones. (b) Comparison between the generated
digits (left) and the real digits (right).

(a) (b) (c) (d)

Fig. 4. The curves for training on MNIST dataset [20] of each epoch, including the
results of content loss (a) and self-perceptual loss (b), the discriminator output (c) and
FIDs (d).

With the above settings and the warm initialization of the generator from
the pre-trained decoder, for each dataset, the total epochs will be less than 1000.

4.1 Convergence Analysis on MNIST

In this experiment, we evaluate the performance of our proposed model on
MNIST dataset [20], which can be well embedded into the 64 dimensional latent
space with the architecture of InfoGAN [5]. In Fig. 3(a), we visualize the real
latent codes (orange circles) and the generated latent codes (purple crosses) by
t-SNE [26]. It is obvious that the support of the real latent distribution and that
of the generated latent distribution align well. Frame (b) of Fig. 3 shows the
comparison between the generated handwritten digits (left) and the real digits
(right), which is very difficult for humans to distinguish.

To show the convergent property of the proposed method, we plot the related
curves in Fig. 4. The frame (a) and (b) show the changes of the content loss
and the feature loss, and both of them decrease monotonously. The frame (c)
shows that the output of the discriminator for real images is only slightly larger
than that for the fake images during the training process, which can help the
generator generate more realistic digits. The frame (d) gives the evolution of FID
and the final value is 3.2. For MNIST dataset, the best known FIDs with the
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(a) Epoch 0 (b) Epoch 80 (c) Epoch 160 (d) Epoch 240 (e) GT

Fig. 5. Evolution of the generator during training on the CelebA dataset [43].

same InfoGAN architecture are 6.7 and 6.4, reported in [25] and [2] respectively.
This shows our model outperforms the state-of-the-art.

4.2 Mode Collapse Analysis on Stack MNIST

In this section, we test the diversity of the generated samples for the proposed
AE-OT-GAN model on stack MNIST dataset [23], which includes 1,000 modes
in total. The AE module of the AE-OT-GAN is consistent with [2] and the
architecture of the discriminator is set to be the same as the encoder with the
final output to be a scalar. The number of modes and the reverse KL divergence
are used as the metrics to test the mode collapse performance. In Tab. 1, we show
the results of the proposed method and the comparisons including DCGAN [31],
VEEGAN [1], PacGAN [23], WGAN [3] and AE-OT [2]. It is obvious that the
AE-OT-GAN model keeps the ’no-mode-collapse’ property of the AE-OT model
and has no mode miss in the generated images.

Table 1. Experiments on stacked MNIST.

Stacked MNIST

Modes KL

DCGAN 99.0 3.40
VEEGAN 150.0 2.95
PacDCGAN4 1000.0± 0.00 0.07± 0.005
WGAN 314.3± 38.54 2.44± 0.170
AE-OT 1000.0± 0.00 0.03± 0.0008

AE-OT-GAN 1000.0± 0.0 0.05± 0.006
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4.3 Quality Evaluation on Complex Dataset

In this section, we compare with the SOTA methods both quantitatively and
qualitatively. The standard and ResNet models used to train the Cifar10 dataset
are the same with those used by SNGAN [27], and the architectures of WGAN-
div [39] are used to train the CelebA dataset. The architecture used to train the
CelebA-HQ dataset is illustrated in the supplementary. The frameworks of the
encoders are just set to be the mirror of the corresponding generators/decoders.

CIFAR10 CelebA
Standard Resnet Standard Resnet
FID IS FID IS FID FID

WGAN-GP [12] 40.2 6.68 19.6 7.86 21.2 18.4
PGGAN [14] - - 18.8 8.80 - 16.3
SNGAN [27] 25.5 7.58 21.7 8.22 - -
WGAN-div [39] - - 18.1 - 17.5 15.2
WGAN-QC [24] - - - - - 12.9
AE-OT [2] 34.2 6.62 28.5 7.67 24.3 28.6
AE-OT-GAN 25.2 7.62 17.1 8.24 11.2 7.6

Table 2. The FID and IS between the AE-OT-GAN and the state of the arts on Cifar10
and CelebA.

Progressive Quality Improvement Firstly, we show the evolution results
of the proposed method in Fig. 5 during the GAN’s training process. Quality of
the generated images increases monotonously during the process. Images in the
first four frames of the first row illustrates the results reconstructed from the real
latent codes by the generator, with the last frame showing the corresponding
ground-truth input images. By examining the frames carefully, it is obvious that
as the increase of the epochs, the reconstructed images become sharper and
sharper, and eventually they are very close to the ground truth. The second
row shows the generated images from some generated latent codes (therefore, no
corresponding real images). Similarly. the images become sharper as the increase
of epochs. Here we need to state that the 0 epoch stage means the images are
generated by the original decoder, which are equivalent to the outputs of an
AE-OT model [2]. Thus we can conclude that the proposed AE-OT-GAN does
improve the performance of AE-OT prominently.

Comparison on CelebA and CIFAR 10 Secondly, we compare with
the state-of-the-arts including WGAN-GP [12], PGGAN [14], SNGAN [27],
CTGAN [42], WGAN-div [39], WGAN-QC [24] and the recently proposed AE-
OT model [2] on Cifar10 [18] and CelebA [43]. Tab. 2 shows the FIDs (lower is
better) of our method and the comparisons trained under both the standard and
ResNet architectures. The FIDs of other methods come from the listed papers
except those of the AE-OT, which are directly computed by our model (the
results of epoch 0). From the table we can see that our method gets much better
results than others on both the Cifar10 and the CelebA datasets, under both
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CT-GAN [42] WGAN-GP [12] WGAN-div [39] WGAN-QC [24] Proposed
method

Fig. 6. The visual comparison between the proposed method and the state-of-the-arts
on CelebA dataset [43] with ResNet architecture.

WGAN-GP [12] SNGAN [27] WGAN-div [39] AE-OT [2] Proposed
method

Fig. 7. The visual comparison between the proposed method and the state-of-the-arts
on Cifar10 dataset [18] with ResNet architecture.

the standard and the ResNet architectures. Also, the generated images of the
proposed methods have less flaws compared to other GANs, as shown on Fig.
6 and Fig. 7. The convergence curves of the FIDs for the both datasets can be
found in Fig. 8. For the Cifar10 dataset, another popular metric is the Inception
score (IS, higher is better), which is also reported on Tab. 2.

Experiment on CelebA-HQ Furthermore, we also test the proposed
method on images with high resolution, namely the CelebA-HQ dataset with
image size to be 256x256. In our method, the generated images can be treated
as locally interpolation among the nearby given real images. In Fig. 9, the left
column shows the generated images and the right 5 columns show the top-5
images used to generate them. From Tab. 3, we can see that the performance of
the AE-OT-GAN model is better than the comparisons. We also display several
generated images in the supplementary, which are crisp and visually realistic.

PGGAN WGAN-div WGAN-QC AE-OT-GAN
14.7 13.5 7.7 7.4

Table 3. The FIDs of the proposed method and the state-of-the-arts on CelebA-HQ.
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Fig. 8. The FID curves for Cifar10 and CelebA.

Fig. 9. The interpolation of the AE-OT-GAN model. The left column shows the
generated images, and the right 5 images are the ones used to generate the left images
in the latent space.

5 Conclusion and Future Work
In this paper, we propose the AE-OT-GAN model which composes the AE-OT
model and vanilla GAN together. By utilizing the merits of the both models,
our method can generate high quality images without mode collapse. Firstly, the
images are embedded into the latent space by the autoencoder, then the SDOT
map from the uniform distribution to the empirical latent distribution is computed.
Sampling from the generated latent distribution by applying the extended SDOT
map, we can train our GAN model steady and efficiently. Moreover, the paired
latent codes and images give us additional constraints about the generator and
help get rid of the mode collapse problem. Using the FID as the metric, we show
that the proposed model is able to generate images comparable or better than
the state of the arts.

Acknowledgements The project is partially supported by NSF CMMI-
1762287, NSF DMS-1737812 and Ford URP and NSFC (61936002, 61772105,
61720106005).



AE-OT-GAN: Training GANs from data specific latent distribution 15

References

1. Akash, S., Lazar, V., Chris, R., U., G.M., Charles, S.: Veegan: Reducing mode
collapse in gans using implicit variational learning. Neural Information Processing
Systems (2017)

2. An, D., Guo, Y., Lei, N., Luo, Z., Yau, S.T., Gu, X.: Ae-ot: A new generative model
based on extended semi-discrete optimal transport. In: International Conference on
Learning Representations (2020)

3. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks.
In: ICML. pp. 214–223 (2017)

4. Burda, Y., Grosse, R., Salakhutdinov, R.: Importance weighted autoencoders. In:
ICML (2015)

5. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: Info-
gan: Interpretable representation learning by information maximizing generative
adversarial nets. In: Advances in Neural Information Processing Systems (2016)

6. Dai, B., Wipf, D.: Diagnosing and enhancing VAE models. In: International Con-
ference on Learning Representations (2019)

7. Dinh, L., Krueger, D., Bengio, Y.: Nice: Non-linear independent components esti-
mation. arXiv preprint arXiv:1410.8516 (2014)

8. Dinh, L., Sohl-Dickstein, J., Bengio, S.: Density estimation using real nvp. In: ICLR
(2017)

9. Figalli, A.: Regularity properties of optimal maps between nonconvex domains in
the plane. Communications in Partial Differential Equations 35(3), 465–479 (2010)

10. Goodfellow, I.: Nips 2016 tutorial: Generative adversarial networks. arXiv preprint
arXiv:1701.00160 (2016)

11. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., Bengio, Y.: Generative adversarial nets (2014)

12. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved
training of wasserstein gans. In: NIPS. pp. 5769–5779 (2017)

13. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Klambauer, G., Hochreiter,
S.: Gans trained by a two time-scale update rule converge to a nash equilibrium
(2017)

14. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of gans for improved
quality, stability, and variation. In: ICLR (2018)

15. Khayatkhoei, M., Singh, M.K., Elgammal, A.: Disconnected manifold learning for
generative adversarial networks. In: Advances in Neural Information Processing
Systems (2018)

16. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114 (2013)

17. Kingma, D.P., Dhariwal, P.: Glow: Generative flow with invertible 1x1 convolutions.
In: NeurIPS (2018)

18. Krizhevsky, A.: Learning multiple layers of features from tiny images. Tech report
(2009)

19. Lecun, Y., Chopra, S., Hadsell, R.: A tutorial on energy-based learning (01 2006)
20. LeCun, Y., Cortes, C.: MNIST handwritten digit database (2010), http://yann.

lecun.com/exdb/mnist/
21. Ledig, C., Theis, L., Huszar, F., Caballero, J., Cunningham, A., Acosta, A., Aitken,

A., Tejani, A., Totz, J., Wang, Z., Shi, W.: Photo-realistic single image super-
resolution using a generative adversarial network (2017)



16 D. An et al.

22. Lee, C.H., Liu, Z., Wu, L., Luo, P.: Maskgan: Towards diverse and interactive facial
image manipulation. arXiv preprint arXiv:1907.11922 (2019)

23. Lin, Z., Khetan, A., Fanti, G., Oh, S.: Pacgan: The power of two samples in
generative adversarial networks. In: Advances in Neural Information Processing
Systems. pp. 1505–1514 (2018)

24. Liu, H., Gu, X., Samaras, D.: Wasserstein gan with quadratic transport cost. In:
ICCV (2019)

25. Lucic, M., Kurach, K., Michalski, M., Gelly, S., Bousquet, O.: Are gans created
equal? a large-scale study. In: Advances in neural information processing systems.
pp. 698–707 (2018)

26. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. Journal of Machine
Learning Research (2008)

27. Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for
generative adversarial networks. In: ICLR (2018)

28. Nijkamp, E., Hill, M., Zhu, S.C., Wu, Y.N.: On learning non-convergent
non-persistent short-run mcmc toward energy-based model. arXiv preprint
arXiv:1904.09770 (2019)

29. van den Oord, A., Kalchbrenner, N., Espeholt, L., kavukcuoglu, k., Vinyals, O.,
Graves, A.: Conditional image generation with pixelcnn decoders. In: Advances in
Neural Information Processing Systems (2016)

30. van den Oord, A., Vinyals, O., Kavukcuoglu, K.: Neural discrete representation
learning. In: NeurIPS (2017)

31. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep
convolutional generative adversarial networks. In: ICLR (2016)

32. Razavi, A., Oord, A., Vinyals, O.: Generating diverse high-fidelity images with
vq-vae-2 (2019)

33. Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and ap-
proximate inference in deep generative models. arXiv preprint arXiv:1401.4082
(2014)

34. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.:
Improved techniques for training gans (2016)

35. Salimans, T., Zhang, H., Radford, A., Metaxas, D.: Improving GANs using optimal
transport. In: International Conference on Learning Representations (2018)

36. Tenenbaum, J.B., Silva, V., Langford, J.C.: A global geometric framework for
nonlinear dimensionality reduction. Science 290(5500), 2391–232 (2000)

37. Tolstikhin, I., Bousquet, O., Gelly, S., Schoelkopf, B.: Wasserstein auto-encoders.
In: ICLR (2018)

38. Villani, C.: Optimal transport: old and new, vol. 338. Springer Science & Business
Media (2008)

39. Wu, J., Huang, Z., Thoma, J., Acharya, D., Gool, L.V.: Wasserstein divergence for
gans. In: ECCV (2018)

40. Xiao, C., Zhong, P., Zheng, C.: Bourgan: Generative networks with metric embed-
dings. In: NeurIPS (2018)

41. Xie, J., Lu, Y., Zhu, S., Wu, Y.: Cooperative training of descriptor and generator
networks. IEEE transactions on pattern analysis and machine intelligence (2016)

42. Xu, L., Skoularidou, M., Cuesta-Infante, A., Veeramachaneni, K.: Modeling tabular
data using conditional gan. In: Advances in Neural Information Processing Systems
(2019)

43. Zhang, Z., Luo, P., Loy, C.C., Tang, X.: From facial expression recognition to
interpersonal relation prediction. International Journal of Computer Vision (2018)



AE-OT-GAN: Training GANs from data specific latent distribution 17

44. Zhu, S., Wu, Y., Mumford, D.: Filters, random fields and maximum entropy (frame):
Towards a unified theory for texture modeling. International Journal of Computer
Vision (1998)


