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Abstract. We propose to learn invariant representations, in the data
domain, to achieve interpretability in algorithmic fairness. Invariance
implies a selectivity for high level, relevant correlations w.r.t. class label
annotations, and a robustness to irrelevant correlations with protected
characteristics such as race or gender. We introduce a non-trivial setup in
which the training set exhibits a strong bias such that class label annota-
tions are irrelevant and spurious correlations cannot be distinguished. To
address this problem, we introduce an adversarially trained model with
a null-sampling procedure to produce invariant representations in the
data domain. To enable disentanglement, a partially-labelled represen-
tative set is used. By placing the representations into the data domain,
the changes made by the model are easily examinable by human audi-
tors. We show the effectiveness of our method on both image and tabular
datasets: Coloured MNIST, the CelebA and the Adult dataset.1

Keywords: Fairness, Interpretability, Adversarial Learning, Normalis-
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1 Introduction

Without due consideration for the data collection process, machine learning al-
gorithms can exacerbate biases, or even introduce new ones if proper control is
not exerted over their learning [10]. While most of these issues can be solved by
controlling and curating data collection in a fairness-conscious fashion, doing so
is not always an option, such as when working with historical data. Efforts to
address this problem algorithmically have been centred on developing statistical
definitions of fairness and learning models that satisfy these definitions. One
popular definition of fairness used to guide the training of fair classifiers, for
example, is demographic parity, stating that positive outcome rates should be
equalised (or invariant) across protected groups.

In the typical setup, we have an input x, a sensitive attribute s that repre-
sents some non-admissible information like gender and a class label y which is
the prediction target. The idea of fair representation learning [29][6][24] is then

1 The code can be found at https://github.com/predictive-analytics-lab/nifr.

https://github.com/predictive-analytics-lab/nifr
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to transform the input x to a representation z which is invariant to s. Thus,
learning from z will not introduce a forbidden dependence on s. A good fair rep-
resentation is one that preserves most of the information from x while satisfying
the aforementioned constraints.

As unlabelled data is much more freely available than labelled data, it is
of interest to learn the representation in an unsupervised manner. This will
allow us to draw on a much more diverse pool of data to learn from. While
annotations for y are often hard to come by (and often noisy [16]), annotations
for the sensitive attribute s are usually less so, as s can often be obtained from
demographic information provided by census data. We thus consider the setting
where the representation is learned from data that is only labelled with s and
not y. This is in contrast to most other representation learning methods. We
call the set used to learn the representation the representative set, because its
distribution is meant to match the distribution of the deployment setting (and
is thus representative).

Once we have learnt the mapping from x to z, we can transform the training
set which, in contrast to the representative set, has the y labels (and s labels).
In order to make our method more widely applicable, we allow the case in which
the training set contains a strong spurious correlation between s and y, which
makes it impossible to learn from it a representation which is invariant to s
but not invariant to y. Non-invariance to y is important in order to be able to
predict y. The training set thus does not match the deployment setting, thereby
rendering the representative set essential for learning the right invariance. From
hereon, we will use the terms spurious and sensitive interchangeably, depending
on the context, to refer to an attribute of the data we seek invariance to. We can
draw a connection between learning in the presence of spurious correlations and
what [15] call residual unfairness. Consider the Stop, Question and Frisk (SQF)
dataset for example: the data was collected in New York City, but the demo-
graphics of the recorded cases do not represent the true demographics of NYC
well. The demographic attributes of the recorded individuals might correlate so
strongly with the prediction target that the two are nearly indistinguishable.
This is the scenario that we are investigating: s and y are so closely correlated in
the labelled dataset that they cannot be distinguished, but the learning of s is
favoured due to being the “path of least resistance”. The deployment setting (i.e.
the test set) does not possess this strong correlation and thus a näıve approach
will lead to very unfair predictions. In this case, a disentangled representation is
insufficient; the representation needs to be explicitly invariant solely with respect
to s. In our approach, we make use of the (partially labelled) representative set
to learn this invariant representation.

While there is a substantial body of literature devoted to the problems of
fair representation-learning, exactly how the invariance in question is achieved is
often overlooked. When critical decisions, such as who should receive bail or be
released from jail, are being deferred to an automated decision making system,
it is critical that people be able to trust the logic of the model underlying it,
whether it be via semantic or visual explanations. We build on the work of [26]
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and learn a decomposition (f−1 : Zs × Z¬s → X) of the data domain (X) into
independent subspaces invariant to s (Z¬s) and indicative of s (Zs), which lends
an interpretability that is absent from most representation-learning methods.
While model interpretability has no strict definition [30], we follow the intuition
of [1] – a simple relationship to something we can understand, a definition which
representations in the data domain naturally fulfil.

Whether as a result of the aforementioned sampling bias or simply because
the features necessarily co-occur, it is not rare for features to correlate with
one another in real-world datasets. Lipstick and gender for example, are two
attributes that we expect to be highly correlated and to enforce invariance to
gender can implicitly enforce invariance to makeup. This is arguably the desired
behaviour. However, unforeseen biases in the data may engender cases which are
less justifiable. By baking interpretability into our model (by having represen-
tations in the data domain), though we still have no better control over what is
learned, we can at least diagnose such pathologies.

To render our representations interpretable, we rely on a simple transforma-
tion we call null-sampling to map invariant representations in the data domain.
Previous approaches to fair representation learning [3,6,24,23] predominantly
rely upon autoencoder models to jointly minimise reconstruction loss and in-
variance. We discuss first how this can be done with such a model that we refer
to as cVAE (conditional VAE), before arguing that the bijectivity of invertible
neural networks (INNs) [5] makes them better suited to this task. We refer to
the variant of our method based on these as cFlow (conditional Flow). INNs
have several properties that make them appealing for unsupervised representa-
tion learning. The focus of our approach is on creating invariant representations
that preserve the non-sensitive information maximally, with only knowledge of
s and not of the target y, while at the same time having the ability to easily
probe what has been learnt.

Our contribution is thus two-fold: 1) We propose a simple approach to gen-
erating representations that are invariant to a feature s, while having the benefit
of interpretability that comes with being in the data domain. 2) We explore a
setting where the labelled training set suffers from varying levels of sampling
bias, which we expect to be common not only in fairness problems but machine
learning problems more broadly, demonstrating an approach based on transfer-
ring information from a more diverse representative set, with guarantees of the
non-spurious information being preserved.

2 Background

Learning fair representations. Given a sensitive attribute s (for example,
gender or race) and inputs x, a fair representation z of x is then one for which
z ⊥ s holds, while ideally also being predictive of the class label y. [29] was
the first to propose the learning of fair representations which allow for transfer
to new classification tasks. More recent methods are often based on variational
autoencoders (VAEs) [20,23,6,3]. The achieved fairness of the representation can
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(a) Original images. (b) xu null-samples from
the cFlow model.

(c) xb null-samples from
the cFlow model.

Fig. 1. CelebA null-samples learned by our cFlow model, with gender as the sensi-
tive attribute. (a) The original, untransformed samples from the CelebA dataset (b)
Reconstructions using only information unrelated to s. (c) Reconstruction using only
information related to ¬s. The model learns to disentangle gender from the non-gender
related information. Note that some attributes like skin tone seem to change along with
gender due to the correlation between the attributes. This is especially visible in images
(1,1) and (3,2). Only because our representations are produced in the data-domain can
we easily spot such instances of entanglement.

be measured with various fairness metrics. These measure, however, usually how
fair the predictions of a classifier are and not how fair a representation is.

The appropriate measure of fairness for a given task is domain-specific [21]
and there is often not a universally accepted measure. However, Demographic
Parity is the most widely used [23,6,3]. Demographic Parity demands ŷ ⊥ s
where ŷ refers to the predictions of the classifier. In the context of fair repre-
sentations, we measure the Demographic Parity of a downstream classifier, f(·),
which is trained on the representation z i.e. f : Z → Ŷ .

A core principle of all fairness methods is the accuracy-fairness trade-off. As
previously stated, the fair representation should be invariant to s (→ fairness)
but still be predictive of y (→ accuracy). These desiderata cannot, in general,
be simultaneously satisfied if s and y are correlated.

The majority of existing methods for fair representations also make use of y
labels during training, in order to ensure that z remains predictive of y. This as-
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(a) Samples from the cM-
NIST training set, σ = 0.

(b) xu null-samples from
the cFlow model.

(c) xb null-samples from
the cFlow model.

Fig. 2. Sample images from the coloured MNIST dataset problem with 10 predefined
mean colours. (a): Images from the spuriously correlated subpopulation where colour is
a reliable signal of the digit class-label. (b-c): Results of running our approach realised
with cFlow on the cMNIST dataset. The model learns to retain the shape of the digit
shape while removing the relationship with colour. A downstream classifier is now less
prone to exploiting correlations between colour and the digit label class.

pect can, in theory, be removed from the methods, but then there is no guarantee
that information about y is preserved [23].

Learning fair, transferrable representations. In addition to producing
fair representations, [24] want to ensure the representations are transferrable.
Here, an adversary is used to remove sensitive information from a representation
z. Auxiliary prediction and reconstruction networks, to predict class label y and
reconstruct the input x respectively, are trained on top of z, with s being ancillary
input to the reconstruction.

Also related is [4] who employ a FactorVAE [18] regularised for fairness. The
idea is to learn a representation that is both disentangled and invariant to mul-
tiple sensitive attributes. This factorisation makes the latent space easily manip-
ulable such that the different subspaces can be freely removed and composed at
test time. Zeroing out the dimensions or replacing them with independent noise
imparts invariance to the corresponding sensitive attribute. This method closely
resembles ours when we use an invertible encoder. However, the emphasis of our
approach is on interpretability, information-preservation, and coping with sam-
pling bias - especially extreme cases where | supp(Str×Ytr)| < | supp(Ste×Yte)|.

Attempts were made by [26] prior to this work to learn fair representations
in the data domain in order to make it interpretable and transferable. In their
work, the input is assumed to be additively decomposable in the feature space
into a fair and unfair component, which together can be used by the decoder to
recover the original input. This allows us to examine representations in a human-
interpretable space and confirm that the model is not learning a relationship
reliant on a sensitive attribute. Though a first step in this direction, we believe
such a linear decomposition is not sufficiently expressive to fully capture the
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relationship between the sensitive and non-sensitive attributes. Our approach
allows for the modelling of more complex relationships.

Learning in the presence of spurious correlations. Strong spurious
correlations make the task of learning a robust classifier challenging: the classi-
fier may learn to exploit correlations unrelated to the true causal relationship
between the features and label, and thereby fail to generalise to novel settings.
This problem was recently tackled by [17] who apply a penalty based on the
mutual information between the feature embedding and the spurious variable.
While the method is effective under mild biasing, we show experimentally that
it is not robust to the range of settings we consider.

Jacobsen et al. [11] explore the vulnerability of traditional neural networks
to spurious variables – e.g., textures, in the case of ImageNet [8] – and propose a
INN-based solution akin to ours. The INN’s encoding is split such that one par-
tition, zb is encouraged to be predictive of the spurious variable while the other
serves as the logits for classification of the semantic label. Information related
to the nuisance variable is “pulled out” of the logits as a result of maximising
log p(s|zn). This specific approach, however, is incompatible with the settings we
consider, due to its requirement that both s and y be available at training time.

Viewing the problem from a causal perspective, [2] develop a variant of em-
pirical risk minimisation called invariant risk minimisation (IRM). The goal of
IRM is to train a predictor that generalises across a large set of unseen envi-
ronments; because variables with spurious correlations do not represent a stable
causal mechanism, the predictor learns to be invariant to them. IRM assumes
that the training data is not iid but is partitioned into distinct environments,
e ∈ E. The optimal predictor is then defined as the minimiser of the sum of the
empirical risk Re over this set. In contrast, we assume possession of only a single
source of labelled, albeit spuriously-correlated, data, but that we have a second
source of data that is free of spurious correlations, with the benefit being that
it only needs to be labelled with respect to s.

3 Interpretable Invariances by Null-Sampling

3.1 Problem Statement

We assume we are given inputs x ∈ X and corresponding labels y ∈ Y. Further-
more, there is some spurious variable s ∈ S associated with each input x which
we do not want to predict. Let X, S and Y be random variables that take on
the values x, s and y, respectively. The fact that both y and s are predictive
of x implies that I(X;Y ), I(X;S) > 0, where I(·; ·) is the mutual information.
Note, however, that the conditional entropy is non-zero: H(S|X) 6= 0, i.e., S is
not completely determined by X.

The difficulty of this setup emerges in the training set: there is a close corre-
spondence between S and Y , such that for a model that sees the data through
the lens of the loss function, the two are indistinguishable. Furthermore, we as-
sume that this is not the case in the test set, meaning the model cannot rely on
shortcuts provided by S if it is to generalise from the training set.
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Pre-training

Encoding

(a) cFlow model.

Pre-training

Encoding

one-hot
recon loss

(b) cVAE model.

Fig. 3. Training procedure for our models. x: input, s: sensitive attribute, zu: de-
biased representation, xu: de-biased version of the input in the data domain. The red

bar indicates a gradient reversal layer, and
→
0 the null-sampling operation.

Such scenarios where we only have access to the labels of a biasedly-sampled
subpopulation are not uncommon in the real-world. For instance, in long-feedback
systems such as mortgage-approval where the demographics of the subpopula-
tion with observed outcomes is not representative of the subpopulation on which
the model has been deployed. In this case, s has the potential to act as a false (or
spurious) indicator of the class label and training a model with such a dataset
would limit generalisability. Let (Xtr , Str , Y tr ) then be the random variables
sampled for the training set and (Xte , Ste , Y te) be the random variables for the
test set. The training and test sets thus induce the following inequality for their
mutual information: I(Str ;Y tr )� I(Ste ;Y te) ≈ 0.

Our goal is to learn a representation zu that is independent of s and transfer-
able between downstream tasks. Complementary to zu, we refer to some abstract
component of the model that absorbs the unwanted information related to s as
B, the realisation of which we define with respect to each of the two models to
be described. The requirement for zu can be expressed via mutual information:

I(zu; s)
!
= 0 . (1)

However, for the representation to be useful, we need to capture as much relevant
information in the data as possible. Thus, the combined objective function:

min
θ

Ex∼X [− log pθ(x)] + λI(fθ(x); s) (2)

where θ refers to the trainable parameters of our model fθ and pθ(x) is the
likelihood it assigns to the data.

We optimise this loss in an adversarial fashion by playing a min-max game,
in which our encoder acts as the generative component. The adversary is an
auxiliary classifier g, which receives zu as input and attempts to predict the
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spurious variable s. We denote the parameters of the adversary as φ; for the
parameters of the encoder we use θ, as before. The objective from Eq (2) is then

min
θ∈Θ

max
φ∈Φ

Ex∼X [log pθ(x)− λLc(gφ(fθ(x))); s)] (3)

where Lc is the cross-entropy between the predictions for s and the provided
labels. In practice, this adversarial term is realised with a gradient reversal layer
(GRL) [7] between zu and g as is common in adversarial approaches to fair
representation learning [6].

3.2 The Disentanglement Dilemma

The objective in Eq (3) balances the two desiderata: predicting y and being in-
variant to s. However, in the training set (Xtr , Str , Y tr ), y and s are so strongly
correlated that removing information about s inevitably removes information
about y. This strong correlation makes existing methods fail under this setting.
In order to even define the right learning goal, we require another source of
information that allows us to disentangle s and y. For this, we assume the exis-
tence of another set of samples that follow a similar distribution to the test set,
but whilst the sensitive attribute is available, the class labels are not. In reality,
this is not an unreasonable assumption, as, while properly annotated data is
scarce, unlabelled data can be obtained in abundance (with demographic infor-
mation from census data, electoral rolls, etc.). Previous work has also considered
treated “unlabelled data” as still having s labels [27]. We are restricted only in
the sense that the spurious correlations we want to sever are indicated in the
features. We call this the representative set, consisting of Xrep and Srep . It fulfils
I(Srep ;Y rep) ≈ 0 (or rather, it would, if the class labels Y rep were available).

We now summarise the training procedure; an outline for the invertible net-
work model (cFlow) can be seen in Fig. 3a. First, the encoder network f is
trained on (Xrep , Srep), during the first phase. The trained network is then used
to encode the training set, taking in x and producing the representation, zu,
decorrelated from the spurious variable. The encoded dataset can then be used
to train any off-the-shelf classifier safely, with information about the spurious
variable having been absorbed by some auxiliary component B. In the case of the
conditional VAE (cVAE) model, B takes the form of the decoder subnetwork,
which reconstructs the data conditional on a one-hot encoding of s, while for the
invertible network B is realised as a partition of the feature map z (such that
z = [zu, zb]), given the bijective constraint. Thus, the classifier cannot take the
shortcut of learning s and instead must learn how to predict y directly. Obtain-
ing the s-invariant representations, xu, in the data domain is simply a matter
of replacing the B component of the decoder’s input for the cVAE, and zb for
cFlow, with a zero vector of equivalent size. We refer to this procedure used to
generate xu as null-sampling (here, with respect to zb).

Null-sampling resembles the annihilation operation described in [28], how-
ever we note that the two serve very different roles. Whereas the annihilation
operation serves as a regulariser to prevent trivial solutions (similar to [13]),
null-sampling is used to generate the invariant representations post-training.
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3.3 Conditional Decoding

We first describe a VAE-based model similar to that proposed in [24], before
highlighting some of its shortcomings that motivate the choice of an invertible
representation learner.

The model takes the form of a class conditional β-VAE [9], in which the de-
coder is conditioned on the spurious attribute. We use θenc, θdec ∈ θ to denote the
parameters of the encoder and decoder sub-networks, respectively. Concretely,
the encoder component performs the mapping x → zu, while B is instantiated
as the decoder, B := pθdec(x|zu, s), which takes in a concatenation of the learned
non-spurious latent vector zu and a one-hot encoding of the spurious label s to
produce a reconstruction of the input x̂. Conditioning on a one-hot encoding of s,
rather than a single value, as done in [24] is the key to visualising invariant rep-
resentations in the data domain. If I(zu; s) is properly minimised, the decoder
can only derive its information about s from the label, thereby freeing up zu
from encoding the unwanted information while still allowing for reconstruction
of the input. Thus, by feeding a zero-vector to the decoder we achieve x̂ ⊥ s.
The full learning objective for the cVAE is given as

LcVAE =Eqθenc (zu,b|x)[log pθdec(x|z, b)− log pθdec(s|zu)]

− βDKL(qθenc(zu|x)‖p(zu))
(4)

where β is a hyperparameter that determines the trade-off between reconstruc-
tion accuracy and independence constraints, and p(zu) is the prior imposed on
the variational posterior. For all our experiments, p(zu) is realised as an Isotropic
Gaussian. Fig. 3b summarises the procedure as a diagram.

While we show this setup can indeed work for simple problems, as [24] before
us have, we show that it lacks scalability due to disagreement between the com-
ponents of the loss. Since information about s is only available to the decoder as
a binary encoding, if the relationship between s and x is highly non-linear and
cannot be summarised by a simple on/off mechanism, as is the case if s is an
attribute such as gender, off-loading information to the decoder by conditioning
is no longer possible. As a result, zu is forced to carry information about s in
order to minimise the reconstruction error.

The obvious solution to this is to allow the encoder to store information about
s in a partition of the latent space as in [4]. However, we question whether an au-
toencoder is the best choice for this setup, with the view that an invertible model
is the better tool for the task. Using an invertible model has several guarantees,
namely complete information-preservation and freedom from a reconstruction
loss, the importance of which we elaborate on below.

3.4 Conditional Flow

Invertible Neural Networks. Invertible neural networks are a class of neural
network architecture characterised by a bijective mapping between their inputs
and output [5]. The transformations are designed such that their inverses and
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Jacobians are efficiently computable. These flow-based models permit exact like-
lihood estimation [14] through the warping of a base density with a series of
invertible transformations and computing the resulting, highly multi-modal, but
still normalised, density, using the change of variable theorem:

log p(x) = log p(z) +
∑

log

∣∣∣∣det

(
dhi
hi−1

)∣∣∣∣ , p(z) = N (z; 0, I) (5)

where hi refers to the outputs of the layers of the network and p(z) is the base
density, specifically an Isotropic Gaussian in our case. Training of the invertible
neural network is then reduced to maximising log p(x) over the training set, i.e.
maximising the probability the network assigns to samples in the training set.

The Benefits of Bijectivity. Using an invertible network to generate our
encoding, zu, carries a number of advantages over other approaches. Ordinar-
ily, the main benefit of flow-based models is that they permit exact density
estimation. However, since we are not interested in sampling from the model’s
distribution, in our case the likelihood term serves as a regulariser, as it does for
[12]. Critically, this forces the mean of each latent dimension to zero enabling
null-sampling. The invertible property of the network guarantees the preserva-
tion of all information relevant to y which is independent of s, regardless of how
it is allocated in the output space. Secondly, we conjecture that the encodings
are more robust to out-of-distribution data. Whereas an autoencoder could map
a previously seen input and a previously unseen input to the same representa-
tion, an invertible network sidesteps this due to the network’s bijective property,
ensuring all relevant information is stored somewhere. This opens up the possi-
bility of transfer learning between datasets with a similar manifestation of s, as
we demonstrate in the Appendix G.

Under our framework, the invertible network f maps the inputs x to a repre-
sentation zu: f(x) = z. We interpret the embedding z as being the concatenation
of two smaller embeddings: z = [zu, zb]. The dimensionality of zb, and zu, by
complement, is a free parameter (see Appendix C for tuning strategies). As f is
invertible, x can be recovered like so:

x = f−1([zu, zb]) (6)

where zb is required for equality of the output dimension and input dimension
to satisfy the bijectivity of the network – we cannot output zu alone, but have
to output zb as well. In order to generate the pre-image of zu, we perform
null-sampling with respect to zb by zeroing-out the elements of zb (such that

xu = f−1([zu,
→
0 ])), i.e. setting them to the mean of the prior density, N (z; 0, I).

How can we be sure that zu contains enough information about y? The
importance of the invertible architecture bears out from this consideration. As
long as zb does not contain the information about y, zu necessarily must. We
can raise or lower the information capacity of zb by adjusting its size; this should
be set to the smallest size sufficient to capture all information about s, so as not
to sacrifice class-relevant information.
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Fig. 4. Performance of our model for different targets (mixing factor η = 0). Left:
Smiling as target, right: high cheekbones. DP diff measures fairness with respect to
demographic parity. A perfectly fair model has a DP diff of 0.
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Fig. 5. Performance of our model for the target “smiling” for different mixing factors
η. DP diff measures fairness with respect to demographic parity. A perfectly fair model
has a DP diff of 0, thus the closer to top-left the better it is in terms of we accuracy-
fairness trade-off. Only values η = 0 and η = 1 correspond to the scenario of a strongly
biased training set. The results for 0.1 ≤ η ≤ 0.9 are to confirm that our model does
not harm performance for non-biased training sets.

4 Experiments

We present experiments to demonstrate that the null-sampled representations
are in fact invariant to s while still allowing a classifier to predict y from them. We
run our cVAE and cFlow models on the coloured MNIST (cMNIST) and CelebA
dataset, which we artificially bias, first describing the sampling procedure we
follow to do so for non-synthetic datasets. As baselines we have the model of [17]
(Ln2L) and the same CNN used to evaluate the cFlow and cVAE models but with
the unmodified images as input (CNN). For the cFlow model we adopt a Glow-
like architecture [19], while both subnetworks of the cVAE model comprise gated
convolutions [25], where the encoding size is 256. For cMNIST, we construct the
Ln2L baseline according to its original description, for CelebA, we treat it as
an augmentation of the baseline CNN’s objective function. Detailed information
regarding model architectures and the code can be found in Appendix A.
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Fig. 6. Accuracy of our approach in comparison with other baseline models on the
cMNIST dataset, for different standard deviations (σ) for the colour sampling.

Synthesising Dataset Bias. For our experiments, we require a training set
that exhibits a strong spurious correlation, together with a test set that does
not. For cMNIST, this is easily satisfied as we have complete control over the
data generation process. For CelebA and UCI Adult, on the other hand, we
have to generate the split from the existing data. To this end, we first set aside
a randomly selected portion of the dataset from which to sample the biased
dataset The portion itself is then split further into two parts: one in which
(s = −1 ∧ y = −1) ∨ (s = +1 ∧ y = +1) holds true for all samples, call this
part Deq, and the other part, call it Dopp, which contains the remaining samples.
To investigate the behaviour at different levels of correlation, we mix these two
subsets according to a mixing factor η. For η ≤ 1

2 , we combine (all of) Deq with
a fraction of 2η from Dopp. For η > 1

2 , we combine (all of) Dopp and a fraction
of 2(1− η) from Deq. Thus, for η = 0, the biased dataset is just Deq, for η = 1 it
is just Dopp and for η = 1

2 the biased dataset is an ordinary subset of the whole
data. The test set is simply the data remaining from the initial split.

Evaluation protocol. We evaluate our results in terms of accuracy and
fairness. A model that perfectly decouples its predictions from s will achieve
near-uniform accuracy across all biasing-levels. For binary s/y we quantify the
fairness of a classifier’s predictions using demographic parity (DP): the absolute
difference in the probability of a positive prediction for each sensitive group.

4.1 Experimental results

In this section, we report the results from two image datasets: cMNIST, as a
synthetic dataset, provides a good starting point for characterising our model
due to the direct control it affords us over the biasing. CelebA, on the other
hand, offers a more practical and challenging example. We also test our method
on a tabular dataset, the UCI Adult dataset.

cMNIST. The coloured MNIST (cMNIST) dataset is a variant of the MNIST
dataset in which the digits are coloured. In the training set, the colours have a
one-to-one correspondence with the digit class. In the test set (and the represen-
tative set), colours are assigned randomly. The colours are drawn from Gaussians
with 10 different means. We follow the colourisation procedure outlined by [17],
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with the mean colour values selected so as to be maximally dispersed. The full
list of such values can be found in Appendix D. We produce multiple variants
of the cMNIST dataset corresponding to different standard deviations σ for the
colour sampling: σ ∈ {0.00, 0.01, ..., 0.05}.

Since the data-generation process is known, we can establish a baseline an
additional by following the simple heuristic of grey-scaling the dataset which
only leaves the luminosity as spurious information. We also evaluate the model,
with all the associated hyperparameters, from [17]. The only difference between
the setups is on the side of dataset creation, including the range of σ values we
consider. Our versions of the dataset, on the whole, exhibit much stronger colour
bias, to the point of the mapping the digit’s colour and class being bijective. Fig-
ure 6 shows that the model significantly underperforms even the näıve baseline,
aside from at σ = 0, where they are on par.

Inspection of the null-samples shows that both the cVAE and cFlow model
succeed in removing almost all colour information, which is supported quantita-
tively by Fig. 6. While the cVAE outperforms cFlow marginally at low σ values,
performance degrades as this increases. This highlights the problems with the
conditional decoder we anticipated in Section 3.3. The lower σ, and therefore the
variation in sampled colour, is, the more reliably the s label, corresponding to
the mean of RGB distribution, encodes information about the colour. For higher
σ values, the sampled colours can deviate far from the mean and so the encoder
must incorporate information about s into its representation if it is to minimise
the reconstruction loss. cFlow, on the other hand, is consistent across σ values.

CelebA. To evaluate the effectiveness of our framework on real-world image
data we use the CelebA dataset [22], consisting of 202,599 celebrity images.
These images are annotated with various binary physical attributes, including
“gender”, “hair color”, “young”, etc, from which we select our sensitive and
target attributes. The images are centre cropped and resized to 64 × 64, as is
standard practice. For our experiments, we designate “gender” as the sensitive
attribute, and “smiling” and “high cheekbones” as target attributes. We chose
gender as the sensitive attribute as it a common sensitive attribute in the fairness
literature. For the target attributes, we chose attributes that are harder to learn
than gender and which do not correlate too strongly with gender in the dataset
(“wearing lipstick” for example being an attribute too closely correlated with
gender). The model is trained on the representative set (normal subset of CelebA)
and is then used to encode the artificially biased training set and the test set.
The results for the most strongly biased training set (η = 0) can be found in
Fig. 4. Our method outperforms the baselines in accuracy and fairness.

We also assess performance for different mixing factors (η) which correspond
to varying degrees of bias in the training set (see Fig. 5). This is to verify that the
model does not harm performance when there is not much bias in the training
set. For these experiments, the model is trained once on the representative set
and is then used to encode different training sets. The results show that for the
intermediate values of η, our model incurs a small penalty in terms of accuracy,
but at the same time makes the results fairer (corresponding to an accuracy-
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fairness trade-off). Qualitative results can be found in Fig. 1 (images from the
cVAE model can be found in Appendix F).

To show that our method can handle multinomial, as well as binary, sensi-
tive attributes, we also conduct experiments with s = hair color as a ternary
attribute (“Blonde” “Black”, “Brown”), excluding “Red” because of the paucity
of samples and the noisiness of their labels. The results for these experiments
can be found in Appendix B.
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Fig. 7. Results for the Adult dataset. The x-axis
corresponds to the difference in positive rates. An
ideal result would occupy the top-left.

Results for the UCI Adult
dataset. The UCI Adult
dataset consists of census
data and is commonly used
to evaluate models focused on
algorithmic fairness. Follow-
ing convention, we designate
“gender” as the sensitive at-
tribute s and whether an in-
dividual’s salary is $50,000 or
greater as y. We show the
performance of our approach
in comparison to baseline ap-

proaches in Fig. 7. We evaluate the performance of all models for mixing factors
(η) 0 and 1. Results shown in Fig. 7 show that we match or exceed the baseline.
In terms of fairness metrics, our approach generally outperforms the baseline
models for both of η. Detailed results can be found in the Appendix B.

5 Conclusion

We have proposed a general and straightforward framework for producing invari-
ant representations, under the assumption that a representative but partially-
labelled representative set is available. Training consists of two stages: an encoder
is first trained on the representative set to produce a representation that is invari-
ant to a designated spurious feature. This is then used as input for a downstream
task-classifier, the training data for which might exhibit extreme bias with re-
spect to that feature. We train both a VAE- and INN-based model according to
this procedure, and show that the latter is particularly well-suited to this setting
due to its losslessness. The design of the models allows for representations that
are in the data domain and therefore exhibit meaningful invariances. We char-
acterise this for synthetic as well as real-world datasets for which we develop a
method for simulating sampling bias.
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