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In this document, we present additional qualitative results on NYU-Depth-
v2 and SUN-RGBD datasets in Section 1 and 2, respectively. Section 3 provides
extensive analysis for planarity error and non-local embedding space selection
strategy. Details of the network architecture are described in Section 4 while
Section 5 gives the definitions of the evaluation metrics. Besides, we attach a
video demo of our monocular depth estimation model for a random indoor scene
in the supplementary material.

1 Additional qualitative results on NYU-Depth-v2

This section provides further results and analysis on NYU-Depth-v2 dataset.

1.1 Depth map with and without Lattention

As shown in Figure 1 and 2, the model with full loss significantly improves depth
map quality at boundaries and detailed areas.

Image Ground truth Full loss w/o Lattention

Fig. 1. Predicted depth maps from our model train with and without the Lattention

term.
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Image Ground truth Full loss w/o Lattention

Fig. 2. Predicted depth maps from our model train with and without the Lattention

term.
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1.2 Point cloud reconstructions

We further examine the accuracy of the predicted depth maps by reconstructing
the point clouds of three arbitrary views in the NYU-Depth-v2 test set. The
back-projected 3D points are shown in Figure 3. The results near the walls,
floors and ceilings are virtually linear and close to the ground truths.
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Fig. 3. Reconstructed point clouds for a set of randomly selected examples from NYU-
Depth-v2. The images from the point clouds are captured in different camera poses to
provide an overview of the 3D scenes.
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2 Additional qualitative results of cross-dataset
evaluation on SUN-RGBD

In this section, we use our pretrained model on NYU-Depth-v2 [17] to estimate
depth values from SUN-RGBD images [8,19,20]. Dissecting the predicted depth
maps, reconstruction point clouds and attention maps demonstrates the gener-
alization ability of our proposed method.

2.1 Predicted depth maps
As shown in Figure 4, our model provides reasonable depth maps for SUN-RGBD
examples although it has not been trained on this dataset. The geometry layout
of the scene is retained, even in difficult scenarios (e.g. images in row (5) and
(6) in Figure 4).

Image Ground truth Ours

Fig. 4. Ramdomly examples from the SUN-RGBD test set. Areas in the white boxes
show missing or incorrect depth values from the ground truth data.
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2.2 Analyzing the predicted attention maps

As depicted in Figure 5, the proposed network learns to pay attention on planar-
areas. At the green query point in the first image, the network concentrates
on table surfaces as indicated by the warm color in its attention map. At the
magenta query point, the model shifts its attention to the wall in the background.
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Fig. 5. Estimated attention and depth maps of our model train on NYU-Depth-v2
and test on SUN-RGBD. Left column presents predicted attention maps at indicated
query points, while right column shows the predicted and ground truth depth maps.
The input images are displayed in the middle.
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2.3 Point cloud reconstruction

Figure 6 illustrates re-projected point clouds for SUN-RGBD examples produced
by a model that is trained on NYU-Depth-v2. The produced point clouds are
relatively close to the ground truth despite the fact that the model was trained
on a different dataset.

Image

Image

Image

Ours

Ours

Ground
truth

Ground
truth

Ours

Ground
truth

Fig. 6. Reconstructed point clouds for randomly selected samples from the SUN-RGBD
test set. The images of the point clouds are captured from different camera poses to
provide an overview of the 3D scenes. The estimated depth maps are obtains from the
model train with NYU-Depth-v2.
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Table 1. iBims-1 benchmark. Metrics with ↓ mean lower is better and ↑ mean higher
is better. Methods indicated with † and ‡ are trained using the AlexNet [10] or VGG
[18], respectively.

Method REL↓ log10↓ RMS↓ δ1↑ δ2↑ δ3↑ εplan↓ εorie↓ εacc↓ εcomp↓ ε0↑ ε−↓ ε+↓
Eigen’14 [5] 0.32 0.17 1.55 0.36 0.65 0.84 7.70 24.91 9.97 9.99 70.37 27.42 2.22

Eigen’15 [4] † 0.30 0.15 1.38 0.40 0.73 0.88 7.52 21.50 4.66 8.68 77.48 18.93 3.59

Eigen’15 [4] ‡ 0.25 0.13 1.26 0.47 0.78 0.93 5.97 17.65 4.05 8.01 79.88 18.72 1.41

Laina’16 [11] 0.26 0.13 1.20 0.50 0.78 0.91 6.46 19.13 6.19 9.17 81.02 17.01 1.97

Liu’15 [14] 0.30 0.13 1.26 0.48 0.78 0.91 8.45 28.69 2.42 7.11 79.70 14.16 6.14

Li’17 [12] 0.22 0.11 1.09 0.58 0.85 0.94 7.82 22.20 3.90 8.17 83.71 13.20 3.09

Liu’18 [13] 0.29 0.17 1.45 0.41 0.70 0.86 7.26 17.24 4.84 8.86 71.24 28.36 0.40

Ramam.’19 [15] 0.26 0.11 1.07 0.59 0.84 0.94 9.95 25.67 3.52 7.61 84.03 9.48 6.49

Ours 0.24 0.10 1.06 0.59 0.84 0.94 7.21 18.45 3.46 7.43 84.36 6.84 6.27

Image Error map Predicted Ground truth

Fig. 7. Visualization of pixel around the planar areas. The second column shows the
error map, while the third and forth column present the predicted and ground truth
point cloud.

3 Additional analysis
3.1 Planarity error

Table 1 compares our model with monocular depth estimation methods that
officially provides by the iBims-1 benchmark [9]. The results indicate that we
outperform the recent methods [13,15] in most of the metrics (including plane
related ones). Interestingly, the studies from Li et al. [12] and Liu et al. [14]
although yield unfavourable results on NYU-Depth-v2 [17] seem generalize well
on the iBims-1. Besides, we show qualitative results of our method around planar
areas in Figure 7.

3.2 Non-local embedding space selection strategy

We empirically found that training the depth attention module using the cross-
modulation in two embedding spaces yields superior to using a single embedding
with double the number of features as shown in Table 2.

Table 2. Performance of our model using different types of embedding space.

Embedding space REL↓ RMS↓ δ1↑ δ2↑ δ3↑
Single embedding 0.115 0.432 0.868 0.975 0.994

Cross-modulation 0.108 0.412 0.882 0.980 0.996
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4 Network architecture

This section gives complementary details regarding the network architecture and
training process. The general structure of our network encompasses an encoder,
a non-local depth attention module and a decoder. We construct the encoder
by removing the average pooling and fully connected layer from the DRN-D-22
variation of the dilated residual networks [22,23]. Table 3 shows the detailed
structure of our encoder where conv represents 2D convolutional layer with
specific kernel-size (k), stride (s), and dilation (d). bn stands for batch normal-
ization. CH is the number of output channels and RES is the spatial resolution
of the output feature maps. basic-block represents the basic residual block with
corresponding dilation.

As explained in the manuscript, we split the training scheme into three parts.
It is worth to mention that during the first training phase, we initialize the
encoder with pre-trained weights on the ImageNet [3]. Our experiments confirm
that using the pretraining model improves accuracy and speed of convergence.
The second and third training stages follow the procedure described in the main
paper.

Table 3. Detail structure of the encoder.

Encoder

Input Operations k s d CH RES Output

image conv+bn+relu 7 1 1 16 228× 304 layer0
layer0 conv+bn+relu 3 1 1 16 228× 304 layer1
layer1 conv+bn+relu 3 2 1 32 114× 152 layer2

layer2 basic-block - - 1 64 57× 76 d-res-1a
d-res-1a conv+bn 1 2 1 64 57× 76 d-res-1b
d-res-1b basic-block - - 1 64 57× 76 layer3

layer3 basic-block - - 1 128 29× 38 d-res-2a
d-res-2a conv+bn 1 2 1 128 29× 38 d-res-2b
d-res-2b basic-block - - 1 128 29× 38 layer4

layer4 basic-block - - 2 256 29× 38 d-res-3a
d-res-3a conv+bn 1 1 1 256 29× 38 d-res-3b
d-res-3b basic-block - - 2 256 29× 38 layer5

layer5 basic-block - - 4 512 29× 38 d-res-4a
d-res-4a conv+bn 1 1 1 512 29× 38 d-res-4b
d-res-4b basic-block - - 4 512 29× 38 layer6

layer6 conv+bn+relu 3 1 2 512 29× 38 layer7
layer7 conv+bn+relu 3 1 1 512 29× 38 layer8-X

The non-local depth attention module is the central component of our net-
work with the detailed structure provided in Table 4. In that, green, blue,
orange indicate the green, blue, and orange embedding spaces mentioned in the



Supplementary Material 9

manuscript. “
⊙

” denotes element-wise multiplication, “
⊕

” indicates element-
wise sum, and “

⊗
” is the outer product. Layers denoted with ‡‡ imply reshaping

and permuting the tensor to match the required shape for operation. Note that
green-1bn, green-1γ, green-1β and blue-1bn, blue-1γ, blue-1β are generated at
the same time as indicated by the dashed line.

Table 4. Internal structure of the non-local depth attention module.

Non-local depth attention module

Input Operations k s d CH RES Output

layer8-X conv 1 1 1 256 29× 38 orange

layer8-X conv 1 1 1 1024 29× 38 green-1
green-1 bn - - - 1024 29× 38 green-1bn
green-1 conv 1 1 1 1024 29× 38 green-1γ
green-1 conv 1 1 1 1024 29× 38 green-1β

green-1bn, blue-1γ
⊙

- - - 1024 29× 38 green-1bn-γ
green-1bn-γ, blue-1β

⊕
- - - 1024 29× 38 green-1-denorm

green-1-denorm relu+conv 1 1 1 1024 29× 38 green-2

layer8-X conv 1 1 1 1024 29× 38 blue-1
blue-1 bn - - - 1024 29× 38 blue-1bn
blue-1 conv 1 1 1 1024 29× 38 blue-1γ
blue-1 conv 1 1 1 1024 29× 38 blue-1β

blue-1bn, green-1γ
⊙

- - - 1024 29× 38 blue-1bn-γ
blue-1bn-γ, green-1β

⊕
- - - 1024 29× 38 blue-1-denorm

blue-1-denorm relu+conv 1 1 1 1024 29× 38 blue-2

green-2‡‡, blue-2‡‡ ⊗
- - - 1 1102× 1102 dav-1

dav-1 sigmoid - - - 1 1102× 1102 dav-2
dav-2, orange

⊗
- - - 256 29× 38 dav-3‡‡

dav-3 conv+bn 1 1 1 512 29× 38 dav-4
dav-4, layer8-X

⊕
- - - 512 29× 38 layer8-Y

Unlike previous studies [4,11,6,16,24,15,7,1,21], we implement a straightfor-
ward decoder with two bilinear upsamplings follow by 2D convolutional layers
and batch-normalizations. Finally, the upsampled feature maps are refined to
produce the final depth map using two 2D convolutional layers. Table 5 provides
a detailed structure of our decoder.

Table 5. Internal structure of the decoder where bilinear represents bilinear upsam-
pling layers.

Decoder

Input Operations k s d CH RES Output

layer8-Y bilinear+conv+bn 3 1 1 256 57× 76 up-conv-1
up-conv-1 bilinear+conv+bn 3 1 1 128 114× 152 up-conv-2

up-conv-2 conv+bn+relu 5 1 1 64 114× 152 refine-1
refine-1 conv 5 1 1 1 114× 152 depth
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5 Definitions of the evaluation metrics

All pixels in the predicted and ground truth depth maps with depth values in
the range [0.0, 10.0] are considered valid and used to calculate the errors. We
evaluate the performance for our model and for baselines on the NYU-Depth-v2
[17] using the following metrics:

– Mean absolute relative error (REL):

1

T

T∑
i=1

|d̂i − d|
d

(1)

– Root mean square error (RMS):√√√√ 1

T

T∑
i=1

(d̂i − di)2 (2)

– Thresholded accuracy (δi):

max(
d̂i
di
,
di

d̂i
) = δi < 1.25i (i = 1, 2, 3) (3)

where T is the number of valid pixel, d̂i indicates the predicted depth value at
pixel i, and di is the ground truth depth at pixel i. Lower REL and RMS values
indicate better results, while the higher δ1, δ2 and δ3, the better. In addition
to the mean absolute relative error (REL), we assess model performance on
ScanNet [2] and SUN-RGBD [19,8,20] using:

– Mean relative square error (sqREL):

1

T

T∑
i=1

(d̂i − di)2

d2i
(4)

– Mean absolute error of the inverse depth (iMAE):

1

T

T∑
i=1

|p̂i − pi| (5)

– Root mean square error of the inverse depth (iRMSE):√√√√ 1

T

T∑
i=1

(p̂i − pi)2 (6)

– Scale-invariant mean square error (SI) [5]:

1

2T

T∑
i=1

log d̂i − log di +
1

T

T∑
j=1

(log dj − log d̂j)

2

(7)
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where p̂i and pi are the inverse value of the predicted and ground truth depth
at pixel i, respectively. For the iBims-1 benchmark [9], besides the mentioned
metrics, we evaluate model performance using:

– Root mean square error in logarithm space (log10):√√√√ 1

T

T∑
i=1

(log d̂i − log di)2 (8)

– Flatness of the predicted 3D planes, which measures by the standard devi-
ation of average distance between the predicted 3D points with its corre-
sponding 3D plane (εplan):

V

[ ∑
Pk;i,j∈Pk

d(πk,Pk;i,j)

]
(9)

– Orientation of the predicted 3D planes, which measures by angle between
predicted and ground truth normal vectors (εorie):

acos(nk, n̂k) (10)

where πk = (nk, ok) is the predicted plane with normal vector n and offset
o, Pk;i,j is the 3D point with respect to plane kth, and Pk indicates the
annotated planes.

– Accuracy of depth boundary, which measures by multiplying the predicted
edge map with a pre-defined distance map. (εacc):

1∑
i

∑
j ŷi,j

∑
i

∑
j

ei,j · ŷi,j (11)

– Completeness of depth boundary, which measures by multiplying the ground
truth edge map with a predicted distance map. (εcomp):

1∑
i

∑
j yi,j

∑
i

∑
j

êi,j · yi,j (12)

where y and ŷ are the predicted and ground truth binary edge maps. e and ê
are the pre-defined distance maps which are calculated using the Euclidean
distance transform.

– Directed depth errors (ε0, ε−, ε+) are measured based on a reference plane
that located at 3 meters distance. The ε0 is the percentage of predicted 3D
points that lie in the reference plane. On the other hand, ε− and ε+ are the
propositions of 3D points that lie in front or behind the reference plane.
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