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Abstract. Generative adversarial networks (GANs) have shown signifi-
cant potential in modeling high dimensional distributions of image data,
especially on image-to-image translation tasks. However, due to the com-
plexity of these tasks, state-of-the-art models often contain a tremendous
amount of parameters, which results in large model size and long in-
ference time. In this work, we propose a novel method to address this
problem by applying knowledge distillation together with distillation of
a semantic relation preserving matrix. This matrix, derived from the
teacher’s feature encoding, helps the student model learn better seman-
tic relations. In contrast to existing compression methods designed for
classification tasks, our proposed method adapts well to the image-to-
image translation task on GANs. Experiments conducted on 5 different
datasets and 3 different pairs of teacher and student models provide
strong evidence that our methods achieve impressive results both quali-
tatively and quantitatively.

Keywords: Knowledge Distillation, Generative Adversarial Networks,
Image-to-Image Translation, Model Compression

1 Introduction

Generative adversarial networks (GANs) [9] have presented significant potential
in modeling high dimensional distributions of image data, on a variety of visual
tasks. Many of these tasks, such as style-transfer [32, 16] and super-resolution
[18], are considered to be image-to-image translation tasks, in which we train a
model to map images from one domain to another. The community has shown
success in researching solutions to generate high fidelity images [2, 27] and dealing
with unpaired data [32]. The success in these works has also led to a popular
trend of developing mobile applications based on generative models. However,
little work has been done in making these models efficient on mobile devices. As
a result, the state-of-the-art GAN models are often large and slow on resource-
limited edge devices. For instance, a CycleGAN [32] model needs 2.69 seconds
to process one image of resolution 256x256 on a single CPU core of Intel(R)
Xeon(R) E5-2686, with the model being 44M large.
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Fig. 1. A visualization of our proposed idea. In the top row, we show that our proposed
method transfers the semantic relations learned in a teacher model to a student model.
In high dimensional space, feature encoding for pixels of the same semantic class may
locate closer. The bottom row shows how traditional knowledge distillation would work
on image-to-image translation tasks

With achievements of convolutional neural networks (CNNs), many works
[10, 26, 15, 11, 14] for model compression have been proposed to improve model
efficiency in a variety of computer vision tasks including classification, object
detection and semantic segmentation. In 2016, Han et al. [10] proposed a three-
stage pipeline that first prunes the model by cutting down less important con-
nections and then quantizes the weights and applies Huffman encoding. They
successfully reduced AlexNet [17] and VGG-16 [29] by 35x to 49x on the Ima-
geNet dataset [8]. This method, with a complex training pipeline, requires a great
amount of manual efforts in each stage. In [26, 15], efforts have been dedicated
to improving model efficiency by redesigning convolutional layers into separable
convolutional layers. Redesigning network architecture often requires domain
experts to explore the large design space and conduct a significant amount of
experiments. Later works such as [11, 14], have leveraged techniques in neural
architectural search and reinforcement learning to efficiently reduce the amount
of such manual efforts by performing pruning and network designing based on
a trained agent’s predictions. Upon successful results in compressing networks
for classification tasks, research works [4, 25, 20] have further extended the afore-
mentioned techniques to object detection and semantic segmentation.

However, the aforementioned solutions do not adapt well to GANs, as GANs
typically demand excessive amounts of training processes and manual design ef-
forts. The training of generative adversarial networks is usually harder and less
stable due to the design of alternating training strategy for the discriminator and
the generator. Therefore, we explore methods that not only improve the model’s
efficiency but also provide guidance while training. Hinton et al. [13] reinvented
the concept of knowledge distillation to transfer the dark knowledge from an
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ensemble teacher model to a single student model, which demonstrated the po-
tential of utilizing knowledge distillation in model compression. In this setting,
inexplicit and intermediate information such as probability distribution from the
teacher’s network can be leveraged at training time to guide the student. Given
the intuition of this concept, knowledge distillation naturally fits our objective
of compressing a GAN generator with a guided training procedure.

In this work, we apply knowledge distillation on image-to-image translation
tasks and further propose a novel approach to distill information of semantic
relationships from teacher to student. Our hypothesis is that, given a feature
tensor, feature pixels of the same semantic class may have similar activation
patterns while feature pixels of different semantic classes may be dissimilar. To
better illustrate our idea, we provide a visualization in Fig. 1. For example,
on the horse-to-zebra task, feature tensors of horses may locate closer but far
from other background pixels such as sky and grass in high dimensional space. A
well-trained teacher model is able to capture these correlations better among dif-
ferent semantic pixels at both dataset and image level. We will also demonstrate
evidence to support this intuition in Methods.

Our main contributions of this work are:

• We present a novel method of applying knowledge distillation in compressing
GAN generators on image-to-image translation task by distilling the seman-
tic relations. The student’s pairwise similarities among feature pixels are
trained in a supervised setting by the teacher’s.

• We experimentally demonstrate the potential of this method on 5 different
image-to-image translation benchmark datasets. Our results, both qualita-
tively and quantitatively, evidently show that our method trains the student
model to be on par with and sometimes better than the original teacher
model.

2 Related Work

2.1 GANs for Image-to-Image Translation

Along with the success of GANs in modeling high dimensional data, image-
to-image translation tasks are dominated by GANs nowadays due to GANs’
superiority in generating images of high fidelity and extendibility on different
data domains. In [16], authors proposed a model known as Pix2Pix applying
conditional GANs on paired image-to-image translation tasks such as transfer-
ring from sketches/semantic labels to photos. A subsequent work CycleGAN
[32], tackling unpaired image-to-image translation tasks between two domains,
proposed to construct two generators transferring images in both directions and
enforce an additional cycle consistency loss during the training. StarGAN [6]
has further extended the capability of CycleGAN to the multi-domain transla-
tion by adding a domain-specific attribute vector in the input while training the
generators.
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2.2 Semantic Relation Preserving Knowledge Distillation

There has been a long line of efforts dedicated to transferring knowledge from
a teacher model to a student model. Hinton et al. [13] reinvented the concept
of knowledge distillation in which a single student model learns the knowledge
from an ensemble of separately trained models. Comparing to one-hot output,
the information contained within a teacher’s soft logits provides more concrete
knowledge and helps guide the training of a student model. In addition to clas-
sification tasks, this idea has also been widely adopted in numerous computer
vision tasks such as object detection and semantic segmentation [3, 21].

Recently, it is observed that learning class relationship enhances model per-
formance non-trivially in various problems. Many works [5, 24, 23, 30] have shown
progress in applying similarity and relational learning in a knowledge distilla-
tion setting. In [23] and [24], they both demonstrated that correlation among
instances can be transferred and well learned in a student model through geo-
metric similarity learning of multiple instances. In [30], they demonstrated em-
pirically that similar activation patterns would appear on images of the same
class (e.g. dog). Based on this observation, they proposed to guide the student
with a similarity matrix of image instances calculated as the outer product of
the teacher’s feature encoding of certain layers. However, on the image-to-image
translation tasks, image-wise relationships do not give comprehensive informa-
tion as they are typically images from the same class (e.g. horses, zebras). Might
similar correlation patterns exist among semantic pixels? In this work, we ex-
plore the idea to retain pixel-wise semantic relation in the student model, by
transferring this knowledge from the teacher.

2.3 Model Compression on GANs

Image-to-image translation tasks using generative models are essentially dif-
ferent from classification tasks with discriminative models. Traditional model
compression approaches are designed for classification tasks, which do not adapt
well to GANs trivially. Work [1] applied KD to compress the GAN generator
by enforcing a joint loss of pixel-wise loss and adversarial loss with a shared
discriminator, with a focus on the unconditional image generation task. Another
work [28] devoted effort to compressing GAN models through a co-evolutionary
strategy of the two generators in CycleGAN [32], resulting in a method that
efficiently eliminates redundant convolutional filters. However, it requires exter-
nal effort to maintain the quality of generated images by controlling the model
compression ratio and other hyper-parameters.

In this work, we aim to tackle the GAN compression problem on the image-
to-image translation task. Our proposed KD method inspired by [30] from the
classification task significantly reduces the amount of effort needed for hyper-
parameter tuning and achieves better image fidelity while realizing effective com-
pression by leveraging the semantic relation similarity between feature pixels of
images from a well-trained teacher model.
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Fig. 2. An overview of our training pipeline. The semantic relation activation matrix
is calculated as the outer product of the feature encoding. A distillation loss is used to
compare the teacher’s activation matrix and the student’s

3 Methods

The goal of this work is to improve GANs efficiency by utilizing knowledge
distillation in compressing the generator. As discussed in the Introduction, the
training of GANs is challenging. In addition to the vanilla knowledge distillation
loss, we separate each generator into one encoder and one decoder and formu-
late a semantic preserving loss based on the feature encoding produced by the
encoder. In Fig. 2, we present an overview of our distillation strategies in pre-
serving semantic relationships. At an intermediate layer, we represent semantic
relations by calculating pairwise activation similarities on pixels of the feature
encoding and transfer the knowledge via a distillation loss on the similarity ma-
trices. This loss can be added in addition to traditional distillation loss on the
final generated images. In this section, we will discuss details about how we apply
vanilla knowledge distillation and semantic preserving distillation on GANs.

3.1 Vanilla Knowledge Distillation on GANs

In traditional knowledge distillation, the task is formulated as:

θs = argmin
θ

Exi,yi

[
(1− α)L(yi, fθ(xi)) + αL(ft(xi), fθ(xi))

]
, (1)

where yi denotes the ground truth for input xi, fθ(xi) and ft(xi) denote the
student model output and teacher model output respectively. n is the number
of inputs and α is a hyper-parameter to balance between teacher’s output and
the ground truth. Equation (1) encourages the network to minimize two terms:
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1) the loss between ground truth and student’s output, and 2) the loss between
the teacher’s output and the student’s output. The second part of the objective
function is designed to help the student learn inexplicit knowledge on different
tasks. For example, on a classification task, soft logits with temperature control
are matched between the student and the teacher to encourage the student to
mimic the teacher.

In the setting of generative adversarial training, an example approach to
applying knowledge distillation would be introducing another minimax game
between the teacher’s generated images Gt(x) and the student’s Gs(x):

min
Gs

max
Ds

V (Gs,Ds) = α
(
Ey∼Pdata(y)[logDs(y)]+Ex∼Pdata(x)[log(1−Ds(Gs(x)))]

)
+ (1− α)LKD, (2)

where

LKD = Ey∼Pdata(Gt(x))[logD′s(y)] + Ex∼Pdata(x)[log(1−D′s(Gs(x)))], (3)

Subscript t and s indicate components of the teacher and the student. Ds is
the discriminator for the student’s output and real images while D′s differentiate
student’s output and teacher’s. x and y are real images from its respective class.

In our preliminary experiments, we tried using such adversarial loss between
teacher and student’s output, but we found this strategy is unstable and diffi-
cult to train. Besides, we did not observe improved performance on converged
experiments. Previous works [32, 16] have shown the benefits of mixing GAN
objective with other traditional losses such as L1. Therefore, we apply vanilla
knowledge distillation by computing a traditional reconstruction loss comparing
teacher’s and student’s output. For example in CycleGAN [32], the original loss
is weighted among two GAN losses and one cycle consistency loss. We add the
distillation loss only on cycle consistency loss which is an L1 norm loss. Our
vanilla knowledge distillation setting has the following objective:

L(Gs, Fs, DX , DY ) = Ladv(Gs, DY , X, Y ) + Ladv(Fs, DX , Y,X)

+ λ(αLcyc(Gs, Fs, X, Y ) + (1− α)Lcyc(Gs, Fs, Xt, Yt)), (4)

where Ladv is the adversarial loss and Lcyc is the reconstruction loss. Also,
Gs and Fs denote generators transferring from style class X to Y and Y to
X respectively. Accordingly, Xt and Yt are teacher generated reconstruction
images. λ is the balancing coefficient. Notations are adapted from [32]. We also
apply similar settings in Pix2Pix [16] training. The detailed objective function
is described in Supplementary.

3.2 Semantic Preserving Loss

Notation. We consider a generator G to be composed by two parts: an encoder
Ê that encodes the input images and a generator Ĝ that decodes and generates
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Fig. 3. To enhance the interpretability of this semantic similarity mapping, pixels are
grouped and aligned together based on their semantic class. Brighter colors indicate
a higher correlation. The teacher model exhibits similarity for semantic pixels within
the same semantic class (diagonal block matrices) and dissimilarity across different
semantic classes (off-diagonal block matrices). This matches with our hypothesis, where
the teacher model displays clearer semantic relationship than the student model

the output images. We note yi to be the output image of i-th input xi where
yi = G(x) = Ĝ(Ê(xi)).

Semantic Relation Activation Matrix. Tung & Mori [30] demonstrated
interestingly distinct activation patterns among image instances of different
classes versus image instances of the same class. However, on the image-to-image
translation tasks, less information is contained in instances’ correlation as they
are typically from the same class (e.g. horses, oranges). Our hypothesis is that
similarity and dissimilarity might likewise present in the feature encoding of
different semantic pixels, which is also more informative on the image-to-image
translation tasks. A distillation loss can be introduced to penalize the difference
between a teacher and a student’s encoded similarity. We represent this activa-
tion matrix by the outer product of feature encoding F , similar to [31, 30]. Here,
we define the feature encoding F (i) to be the output matrix of the i -th image
example at the last layer of encoder Ê:

F̂ (i)
t = Êt(xi); F̂ (i)

s = Ês(xi), (5)

F̂ (i)
t ∈ R1×Ct×H′×W ′ → F (i)

t ∈ RCt×(H′·W ′),

F̂ (i)
s ∈ R1×Cs×H′×W ′ → F (i)

s ∈ RCs×(H′·W ′),
(6)

where H ′ and W ′ indicate the feature encoding height and width while Ct/Cs
are number of channels respectively. We use a batch size of 1. We then calculate
semantic relation activation matrices A ∈ R(H′·W ′)×(H′·W ′) as the outer product
of F , followed by a row-wise L2 normalization.
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Ât = F (i)
t · F

(i)
t

T
; Âs = F (i)

s · F (i)
s

T
,

At[k,:] =
Ât√∑
j Â2

t[k,j]

;As[k,:] =
Âs√∑
j Â2

s[k,j]

,
(7)

We show some evidence to support our intuition of semantic relation acti-
vation matrices in Fig. 3. We sample 5 horse and zebra images from COCO
dataset [19] which provides ground truth segmentation masks, and generate all
corresponding teacher’s and student’s activation matrices A by equation 7. We
group the values by pixels of the same semantic class to clearly show different
activation patterns. The clear blockwise patterns in the teacher model indicate
that pixels of the same semantic class are much more similar compared to pixels
of different classes. On the other hand, this pattern is less observable in the
student model learned without distillation. This empirical finding strongly sup-
ports our hypothesis that there exists certain relation patterns which can be
explicitly transferred from a teacher network to a student network. Secondly,
the activation matrix A is independent of the number of channels in feature F ,
which avoids the difficulty of introducing a handcrafted feature loss to match Ft
and Fs in different feature space.

We define our semantic preserving distillation loss LSP to be the L1 loss
between two activation matrices:

LSP = Ex∼Pdata(x)

[
‖At −As‖1

]
, (8)

In preliminary experiments, we also tried L2 loss in enforcing the matching
of two matrices but didn’t obtain better results. Our full objective is then,

L = LadvA + LadvB + γ1 · LSPA
+ γ2 · LSPB

+λ
(
αLcyc(Gs, Fs, X, Y ) + (1− α)Lcyc(Gs, Fs, Xt, Yt)

)
.

(9)

where A and B indicate the generators of each direction respectively. γ1, γ2 and
α are hyper-parameters. λ is the balancing coefficient.

4 Experiments

4.1 Different image-to-image translation datasets

Setup. To illustrate the effectiveness of our method on GAN compression, we
qualitatively and quantitatively evaluated it on 5 benchmark image-to-image
translation datasets including horse↔ zebra, summer↔ winter, apple↔ orange,
tiger ↔ leopard and Cityscapes label ↔ photo.

We followed CycleGAN implementation and setup from the official PyTorch
implementation1 for a fair comparison. Specifically, the teacher generator stacks

1 CycleGAN official PyTorch implementation: https://github.com/junyanz/pytorch-
CycleGAN-and-pix2pix .
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one 7x7 stride-1 convolutional layer, two 3x3 stride-2 convolutional layers, six or
nine residual blocks, two 3x3 stride-2 transposed convolutional layers and one
final 7x7 stride-1 convolutional layer sequentially. The student generator has the
same architecture as the teacher generator but is narrower for each layer by a
factor of 2 or 4 depending on the datasets trained on. Since all generators share
the same structure in downsampling and upsampling parts, we use the number of
residual blocks and the number of filters in the first convolutional layer to spec-
ify the generator architecture. This convention defines both depth and width of
the model. Specifically, we used Resnet9, ngf64 and Resnet9, ngf16 as our major
teacher student model pair for all datasets except horse ↔ zebra dataset, where
Resnet9, ngf32 is used for the student model. As the Cityscapes dataset is inher-
ently a paired dataset of the street view photo images and their corresponding
semantic segmentation labels, we also conducted experiments in a Pix2Pix set-
ting. The teacher and the student generators in our Pix2Pix experiments have a
UNet structure [16]. The discriminator network follows the PatchGAN discrim-
inator [16] structure. For all datasets, we trained and evaluated all models on
images of resolution 256x256.

Quantitative Evaluation Metrics. We adopt Fréchet Inception Distance
(FID) [12] on horse ↔ zebra, summer ↔ winter, apple ↔ orange and tiger
↔ leopard datasets. FID calculates the Wasserstein-2 distance between feature
maps extracted by Inception network from fake and real images. As a distance
measure, a lower score is preferred for a higher correlation between synthetic
and real images. On Cityscapes label → photo dataset [7], we use FCN-score

Table 1. The FID values for references/baselines (top) and variations of our methods
(bottom). We conducted experiements on datasets horse-to-zebra (h → z, z → h),
summer-to-winter (s → w, w → s), apple-to-orange (a → o, o → a), tiger-to-leopard
(t → l, l → t). Lower is better. Both Co-evolutionary [28] and ThiNet [22] apply
pruning while Co-evolutionary is specifically designed for compressing CycleGAN and
ThiNet is a pruning method adapted from the classification task. For a fair comparison
to Co-evolutionary and ThiNet, the models compared above have similar model size
and computation requirement. (see Table 2) In all cases except t → l, our method
further improves over 50% relatively compared to the baseline method (vanilla KD).
FID trade off curve for varying ngf is in Supplementary

h → z z → h s → w w → s a → o o → a t → l l → t

Teacher 84.01 136.85 76.99 74.39 132.37 130.72 76.68 77.60

Student 94.95 141.64 76.47 74.90 132.99 137.10 93.98 89.37
ThiNet [22] 189.28 184.88 81.06 80.17 - - - -

Co-evolutionary [28] 96.15 157.90 79.16 78.58 - - - -
Vanilla KD 106.10 144.52 80.10 79.33 127.21 135.82 82.04 87.29

Intermediate KD 97.20 143.43 77.75 74.67 126.90 133.16 86.82 92.99
+ SP 90.65 143.03 78.75 76.21 125.90 132.83 81.53 86.52

+ 2 direction SP (Ours) 86.31 140.15 76.59 75.69 121.17 132.83 81.17 80.75



10 Li Z., Jiang R., et al.

Table 2. Computation and storage results for models on major experiments. T:
teacher, S1, S2: student. Our models achieve superior performance in all tasks with a
smaller/similar model size and computation compared to Co-evolutionary and ThiNet.
We choose S1 on h ↔ z and S2 on the rest of the datasets. The choice is made based
on the gap between teacher and student baseline performance. Latency measurement
plot for varying ngf is in Supplementary

Model Size (MB) # Params Memory (MB) FLOPs

ResNet 9blocks, ngf 64 (T) 44 11.38M 431.61 47.22G

ThiNet [22] 11 (75%↓) - - -
Co-evolutionary [28] h ↔ z 10 (77%↓) - - 13.06G (72%↓)
Co-evolutionary [28] s ↔ w 7.6 (83%↓) - - 10.99G (77%↓)

Co-evolutionary [28] cityscapes 12 (73%↓) - - 16.45G (65%↓)
ResNet 9blocks, ngf 32 (S1) 11 (75%↓) 2.85M (75%↓) 216.95 (50%↓) 12.14G (74%↓)
ResNet 9blocks, ngf 16 (S2) 2.8 (94%↓) 0.72M (94%↓) 109.62 (75%↓) 3.20G (93%↓)

following the evaluation method used by Isola et al. [16]. The method uses FCN-
8s network, a pretrained semantic classifier, to score on synthetic photos with
standard segmentation evaluation metrics from the Cityscapes benchmark in-
cluding mean pixel accuracy, mean class accuracy and mean class Intersection
over Union (IoU).

Quantitative Comparison. In Table 1, we list our experiments conducted
on 4 unpaired datasets trained on CycleGAN. We compare our results with two
previous works [28, 22] on pruning and different settings of our design. As a
reference to the compression ratio, we show a table of computed model size, the
number of parameters, memory usage and the number of FLOPs in Table 2.

We explore variations of our methods on CycleGAN by conducting the fol-
lowing experiments: 1) We introduce an intermediate distillation loss on the fake
image generated by the first generator in the cycle, computing an L1 norm dif-
ference between the teacher’s generated image and the student’s. We note this
as intermediate KD. 2) We experiment with semantic relation preserving loss
in two parts of the cycle. Semantic Preserving (SP) indicates that we only apply
the semantic distillation loss on the first generator of the cycle (i.e. γ2 = 0 in
equation (9)). 2 direction SP denotes that we applied the semantic distilla-
tion loss on both generators in the cycle. ’+’ means it was added in addition to
Vanilla KD.

Though all compared models reach a similar performance on the s ↔ w
dataset, our method accomplishes critically better performance than other meth-
ods on the rest of the datasets. Adding our proposed distillation losses on both
generators boosts the performance significantly from vanilla knowledge distil-
lation, with the possibility to outperform the original teacher model on some
tasks. We will further demonstrate visual evidence in later discussions. On the
summer-to-winter task (s ↔ w), however, we do not observe performance gain
and we suspect the reason is that the baseline student model barely differs from
the teacher model numerically. There is limited space and knowledge for improve-
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Table 3. FCN-score for different models on the Cityscapes through CycleGAN training

Mean Pixel Acc. Mean Class Acc. Mean Class IoU

Teacher 0.592 0.179 0.138
Student 0.584 0.182 0.129

ThiNet [22] 0.218 0.089 0.054
Co-evolutionary [28] 0.542 0.212 0.131

Ours 0.704 0.205 0.154

ment to take place. Additionally, we run experiments on Cityscapes dataset and
show FCN-score in Table 3. Interestingly, we notice a dramatic increase on
FCN-score in applying the proposed method but only a similar or slightly better
quality of image compared to the original model is observed (See Supplemen-
tary). Our proposed semantic preserving loss strongly reacts to this semantic
segmentation dataset, by making pixels more recognizable in a semantic way.

Qualitative Results. In this section, we present visual observations on the
generated images from our models and reference models. To compare our results
to [28], we also generated images using our models on their selected input im-
ages displayed in Fig. 4. Evidently, our generated images contain a more realistic
horse/zebra and reduce the artifacts to a minimum in the background. In the
earlier discussion, we mention the potential of the student model to outperform
the teacher by adding our proposed semantic preserving loss, with the numeri-
cal evidence in Table 1. The extra guidance signal from the teacher’s pairwise
semantic preserving activations not only encourages the student to learn more
intra-pixel relationships within a specific image but also semantic understand-
ing of the entire training population. Furthermore, this method accelerates the

Fig. 4. Images generated by the teacher model, prior work [28] and our proposed
method on their selected examples. The top row displays input horse image and gen-
erated zebra; the bottom row displays input zebra image and generated horse images
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Fig. 5. Two examples of the apple-to-orange task. Clear and realistic texture is gener-
ated using our method, even outperforming the teacher

Fig. 6. SP method translated more zebras than the teacher and the student.

Fig. 7. An example on the horse-to-zebra task. A more detailed and realistic eye is
preserved from horse to generated zebra image in our model

learning of discriminators towards catching more details in the early stage. In-
corporating both effects empowers the student model to even outperform the
teacher model in certain cases. In Fig. 5, we show 2 examples where our pro-
posed method achieves exceptionally better results.

An intriguing failure (Fig. 6) case shows that CycleGAN fails to transfer
multiple objects while our method succeeds. We also observe significantly better
details and textures preserving in different tasks. In Fig. 7, a more detailed
and realistic eye is preserved. In addition, we provide examples from different
datasets in Fig. 8 in an ablation study manner.
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Fig. 8. Ablation study: examples from multiple datasets comparing results in baseline
models and variation of our methods. More images can be seen in Supplementary.

4.2 Different architectures

We also demonstrate that our method is extensible to other types of network
structure. On the horse-to-zebra task, we test Resnet6 generator for both the
teacher and the student models. The FID evaluation is shown in Table 4. Our
method gains the most performance over others but it is less significant as in
the Resnet9 case. We conjecture that the teacher model of 6 blocks contains less
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Table 4. FID value for Resnet6 generators on Horse ↔ Zebra dataset

Teacher Student Intermediate KD Vanilla KD + SP + 2 direction SP

h → z 88.27 109.93 107.04 105.49 108.71 105.51
z → h 143.08 144.01 142.63 146.26 141.50 141.90

Table 5. FCN-score on Cityscapes. Feature encoding extracted from Unet256 has a
spatial resolution of 64x64 and 32x32 at layer 2 and layer 3 respectively

Mean Pixel Acc. Mean Class Acc. Mean Class IoU

Teacher 0.757 0.235 0.191
Student 0.710 0.219 0.169

Vanilla KD 0.742 0.224 0.182

+ SP layer 2 0.743 0.230 0.183
+ SP layer 3 0.770 0.229 0.183

semantic relationships, which limits the amount of knowledge to be transferred.
We also conducted additional experiments using UNet [16] on the Cityscapes
dataset translate from semantic mask to street view photos. As UNet’s encoder
downsamples the input to 1x1 resolution at the bottleneck layer, the desired
spatial semantic information is lacking at the bottleneck layer. Therefore, we
distill the semantic relation activation matrix at layer 2 or layer 3. We show
FCN-score results in Table 5. We find the highest mean pixel accuracy with
distilling at layer 3 but similar mIoU at both layers. Compression ratio and
visual results can be found in Supplementary.

5 Conclusions

We approach model compression of GANs via a novel proposed method extended
on traditional knowledge distillation. Our strategy, which transfers semantic rela-
tion knowledge from a teacher model to a selected student model, shows strong
potential in generating images with better details and texture after explicitly
leaning the semantic relationships while using knowledge distillation to signif-
icantly reduce the model size and computation requirement. Our experiments
conducted on 5 different datasets and 3 different architectures have demonstrated
quantitatively and qualitatively that our proposed method helps bring a previ-
ously incompetent student network to the level of its teacher, with the capability
to generate images at a significantly higher level of quality.

Acknowledgement Authors thank Brendan Duke, Soheil Seyfaie, Zhi Yu,
Yuze Zhang for their comments and suggestions.
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