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Abstract. We introduce a novel learning paradigm of multi-source open-
set unsupervised domain adaptation (MS-OSDA). Recently, the notion
of single-source open-set domain adaptation (SS-OSDA) which consid-
ers the presence of previously unseen open-set (unknown) classes in
the target-domain in addition to the source-domain closed-set (known)
classes has drawn attention. In the SS-OSDA setting, the labeled samples
are assumed to be drawn from the same source. Yet, it is more plausible
to assume that the labeled samples are distributed over multiple source-
domains, but the existing SS-OSDA techniques cannot directly handle
this more realistic scenario considering the diversities among multiple
source-domains. As a remedy, we propose a novel adversarial learning-
driven approach to deal with MS-OSDA. Precisely, we model a shared
feature space for all the domains which explicitly mitigates the domain-
gap among the source-domains. The adversarial learning strategy is in-
troduced to align the known-class samples from the target-domain with
the source data while making the unknown-classes more separable. We
validate our method on the Office-31, Office-Home, Office-CalTech, and
Digits datasets and find that the proposed model consistently outper-
forms the baseline and benchmark SS-OSDA approaches.

Keywords: Domain Adaptation, Multi-Source, Open-Set.

1 Introduction

Deep learning techniques are attested to be highly successful over a wide variety
of visual inference tasks, thanks to their data-driven feature learning capabili-
ties [13, 16]. However, their performance is heavily dependent on the availability
of voluminous labeled training samples to achieve a reliable level of generaliza-
tion. Ideally, a supervised learning algorithm trained on a certain distribution
of labeled samples (source-domain) often fails to generalize convincingly when
deployed on a new environment (target-domain) in the presence of distributions-
shift. In this regard, unsupervised domain adaptation (DA) [22] algorithms seek
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Fig. 1: Given an MS-OSDA setup, our goal is to obtain a discriminative feature
space for the known-class samples from all the source and target domains while
pushing the unknown-class samples from the target domain far from the known-
class support.

to combat the domain-shift problem by aligning the data distributions of the
source and target domains by learning a domain-invariant feature space using
statistical or adversarial learning approaches, preferably in the absence of label
information in the target-domain [29, 3]. In this paper, we tackle the completely
novel paradigm of multi-source open-set domain adaptation (MS-OSDA), illus-
trated in Figure 1.

In general, the notion of multi-source DA (MSDA) [28] is regarded more prac-
tical as well as challenging than the single-source DA (SSDA) setup considering
that labeled samples may come from diverse sources. In MSDA, we note that the
source-domains have different data distributions among themselves in addition
to the usual domain-gap between the source and the target domains. One of the
straight-forward solutions to MSDA is based on the idea of combining all the
source-domains into a single auxiliary source-domain and subsequently deploy-
ing any SSDA method. Clearly, such a naive approach may lead to sub-optimal
classification results if proper care is not taken in mitigating the gaps among all
the domains exclusively.

The paradigm of closed-set DA has mostly been practiced in the literature for
both SSDA and MSDA where the same set of classes is shared across the domains
[22]. In contrast, the recently introduced single-source open-set DA (SS-OSDA)
[21] setting allows the presence of domain-specific classes in addition to the
classes shared by the domains. There exists two possibilities in this regard. While
the SS-OSDA setup by [21] considers that both source and target specific open-
set classes may be available, the setup followed in [25, 15] permits the presence
of target specific open-set samples only. Such an SS-OSDA arrangement of [25,
15] is extremely challenging given the unavailability of any prior information
regarding the open-set distribution. The closed-set DA techniques cannot be
directly applied in this case since these target specific open-set samples, in turn,
may jeopardize the domain alignment process. In order to tackle such a situation,
accurate discrimination between the known and unknown target-domain classes
is advocated during adaptation so that only the shared classes can be aligned.

The existing MSDA techniques contemplate the presence of the same set of
classes in all the source and the target domains [34, 35]. This is a strict scenario
as far as the unsupervised DA setup is considered where the target-domain is
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assumed to be completely unlabeled. Hence, it is highly likely that the target-
domain may contain samples from novel classes different from those already in
the source-domains. Inspired by these arguments, we propose a novel learning
scenario in this paper for multi-source open-set unsupervised DA (MS-OSDA)
where there exists multiple labeled source-domains each containing samples from
the same set of semantic classes, and the unlabeled target-domain contains two
types of data items: either from the source-domain known-classes or from novel
unknown-classes. Under this setup, the task is to classify the target-domain
samples either in one of the known categories or they are assigned a common
unknown-class label. Such an MS-OSDA setup invariably holds huge applica-
tions in fields relating to on-the-fly real-world visual perception like medical
imaging, remote sensing, where acquisition of multi-domain data is perennial
and novel categories may turn up abruptly. Nonetheless, we note that the MS-
OSDA problem cannot be effectively solved by directly utilizing the SS-OSDA
paradigm of [25, 15] mainly because of the following factors: i) the presence of
multiple diverse source-domains hinders the effectiveness of a traditional SS-
OSDA technique, and ii) design of the known/unknown class discriminator for
target samples may become non-trivial since the target-domain may have varied
degrees of relatedness with different source-domains.

To solve these problems, we propose a new framework which aims at learn-
ing a shared feature space for all the source and target domains where i) the
source-domains are purposefully aligned among themselves, and ii) a target-
domain pseudo-classifier is designed to accomplish two tasks: a) to align the
target-domain known-class samples with those of the source-domains, and b) to
maximize the gap between the known and unknown target-domain samples (Fig-
ure 1). To this end, our proposed model: Multi-source Open-Set DA NETwork
(MOSDANET) consists of a shared feature encoder for the source and target
domains and separate multi-class classifiers for the source-domains, respectively.
The classifiers are augmented with an extra unknown-class label for all the open-
set samples in addition to the known-class labels. The pseudo-classifier for the
target-domain is subsequently designed using an ensemble of these source clas-
sifiers.

Recently, [23] argued that reducing the domain-gap among the source-domains
explicitly leads to a more robust and effective MSDA model. We find this idea to
be particularly relevant to MS-OSDA since aligning the source-domains among
themselves inherently helps in better discrimination of the target-domain sam-
ples into known and unknown categories. Otherwise, the domain-shift among
the source-domains may mislead the pseudo-classifier to wrongly identify an
unknown-class sample to be originated from a known-class or vice-versa. In
the same line, we propose to perform fine-grained alignment among the source-
domains in the shared space to induce the notion of discriminativeness among
the known-class data. On the other hand, a novel adversarial loss function is pro-
posed to train the large-margin pseudo-classifier for the target-domain samples.
We consider to use adversarial strategy in this case given their recent success in
implicit distributions matching for cross-domain inference tasks [32]. Imposing
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the large-margin constraint helps in dealing with different openness factors (frac-
tion of classes present in the open-set) in an efficient manner since the margin
idea offers more separability for the unknown-class data. Our major contribu-
tions can be summarized as follows:

– We introduce the problem setting for multi-source open-set DA and propose
an adversarial learning based framework termed as MOSDANET.

– We highlight some of the important aspects of MOSDANET as: a) align-
ing the source-domains explicitly at class-level, b) design of an intuitive
large-margin discriminator for the target-domain known/unknown classes
through a newly developed adversarial training strategy, and c) consideration
of target-domain samples with pseudo-labels corresponding to the known-
classes to explicitly aid in the fine-grained domain alignment process.

– We establish the efficacy of MOSDANET through extensive experiments on
four benchmark datasets where we perform thorough robustness analysis.

2 Related Works

Closed-set and open-set single-source DA: The existing literature is rich in
methods relating both to closed-set and open-set DA involving a single source-
domain. For SSDA, several ad-hoc techniques existed prior to the deep learning
era where the goal was to either project both the domains onto a shared la-
tent space or to align the data distribution of a given domain to match the
properties of the other [20, 5, 2]. These techniques were subsequently replaced
by more accurate deep CNN based approaches which reduce the domain-gap
in the learned CNN representations through an end-to-end training [17, 27, 1].
Nowadays, there exist a plethora of models influenced by the adversarial train-
ing strategy which have showcased superlative performance [29, 31]. Typically,
these approaches pose the DA problem as learning a domain-confused feature
space through an adversarial training between two players: a feature generator
and a domain discriminator, respectively. For example, domain adversarial neu-
ral network (DANN) [4] introduces the gradient-reversal layer to accomplish the
task. A few methods in this respect resort to the notion of ensemble learning
and exploit the outcomes of the committee of source-domain classifiers to define
the adversary [25, 18].

The SS-OSDA problem, on the other hand, was first coined in assign and
transform iterative (ATI-λ) [21] which considers the distance between the target
samples and the source clusters to decide on the potential known/unknown class
labels for the target data. Note that ATI-λ utilizes some of the open-set classes
from the source-domain during training. The open-set DA by back-propagation
(OSDA-BP) [25] trains the feature generator within a typical generator and
discriminator based adversarial learning framework to lead the discriminator
to predict the class-label of a target sample to be unknown if the likelihood
exceeds a predefined threshold. The improved OSDA-BP [3] replaces the cross-
entropy based adversarial loss of [25] by a symmetric version of Kullback-Leibler
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(KL) divergence and showcases improved SS-OSDA performance. While these
approaches are based on aligning the source and the target domains at one go,
an alternate approach proposed in [15] progressively builds the alignment given
the domains.
Closed-set multi-source DA: MSDA techniques assume that the labeled
training samples are distributed over multiple source-domains. One of the first
MSDA approaches (A-SVM) [33] in this respect distills the capacity of all the
source classifiers to better model a target classifier. Following [33], there have
been several endeavors towards MSDA for different application areas like lan-
guage processing, sentiment analysis etc. [11]. As far as the adversarial ap-
proaches are concerned, [23] proposes a moment-matching network for MSDA
which is based on aligning higher-order moments between the domain-specific
features. On the other hand, [35] proposes a multi-source domain adversarial net-
work (MDAN) which models separate mapping functions for each of the source-
target pairs. [6] introduces the idea of deploying a mixture of source experts for
MSDA for cross-domain sentiment analysis.

MS-OSDA is a completely new paradigm that we introduce with an adver-
sarial training strategy followed for the target-domain pseudo-classifier, which
is loosely inspired by [25]. Since the adversarial training of [25] is based on
the standard cross-entropy based classification loss, it is susceptible to severe
misclassification if the known and unknown-class samples have some similari-
ties. Furthermore, this restricts the ability of the model to deal with different
openness. In MOSDANET, we solve these bottlenecks of [25] by introducing a
margin-based loss-term along with the classification loss. In addition, our target-
domain pseudo-classifier is essentially a committee of classifiers since we are
dealing with multiple source-domains. Finally, as opposed to the existing MSDA
methods [6, 35, 23], we are interested in diminishing any domain-shift among the
source-domains in the shared space.

3 Proposed Methodology

3.1 Problem definition & notation

Let us consider the availability of L different source-domains S = {S1,S2, · · · ,SL}
each equipped with the domain-specific training set Xl = {xil, yil}

nl
i=1, (l ∈

{1, 2, · · · , L} and nl defines the number of training samples of Sl). Further we
note that (xl, yl) ∈ Xl ⊗Ys given the domain-specific feature space Xl while the
label space Ys = {1, 2, 3, · · · ,K} is shared among all the source-domains. On
the other hand, there exists a target-domain T consisting of nt unlabeled test
samples Xt = {xjt}

nt
j=1 arising from Yt categories where xt ∈ Xt given the target-

domain feature space Xt. According to our setup, Ys ⊂ Yt and Yt/s denotes
the open-set classes of T which are not part of S. In a typical closed-set MSDA
setup, it is assumed that the marginal data distributions of all the source and the
target domains are mutually different: Pl(Xl) 6= Pm(Xm) and Pl(Xl) 6= Pt(Xt),
Sl,Sm ∈ S. For MS-OSDA, the distribution of the known classes from T differs



6 S. Rakshit et al.

from that of a given Sl: Pl(Xl) 6= Pt(X 1:K
t ) where X 1:K

t represents the target-
domain samples with known class-labels. Also let XK+1

t be the samples from
unknown classes in T .

Under this setup, the task is to classify the data from Xt into K+1 categories
where the first K indices correspond to classes in Ys and the (K + 1)th index
denotes a common label for all the classes in Yt/s. In order to accomplish the task,
we propose a deep neural network with a shared feature encoder E(; , θE) having
parameters θE , L source-domains specific (K + 1)-class classifiers {Fl(; , θlF )}Ll=1

each with its own set of parameters θlF (an illustration is provided in Figure
2). We use θF to define all the classifier’s parameters {θlF}Ll=1 together. Finally,
the classifier model for T : Ft(; , θF ) is essentially an ensemble-classifiers system
which is defined by average-pooling the responses of the {Fl}Ll=1 for each sample
from Xt. In particular, we average-pool the unnormalized logit-scores and apply
the softmax function on the pooled responses for obtaining the posterior class-
distributions. For a given xt, let us denote qt = [q1t , q

2
t , · · · , qK+1

t ] to be the
final logit vector obtained in this way. The posterior probability for the kth class

(k ∈ {1, 2, · · · ,K + 1}) is mentioned as: p(yt = k|xt) =
exp(qkt )

K+1∑
c=1

exp(qct )

.

3.2 Training & Inference

Overview of the training process: Following the aforementioned setup, we fo-
cus on three objectives for training MOSDANET in order to obtain the domain-
independent and discriminative shared feature encoder E : i) align the L source-
domains in S at a fine-scale, ii) align known-class target-domain samples in X 1:K

t

with S, and iii) widen the margin between X 1:K
t and the unknown-class samples

in XK+1
t . Apparently, Objective-(i) is easy to achieve given the availability of

labeled training samples for the source-domains. On the other hand, Objectives
(ii) and (iii) are non-trivial to attain since T is unlabeled. We follow an adversar-
ial game between E and Ft for approximating the labels for the target-domain
samples and thus realizing Objectives (ii) and (iii) simultaneously. To ensure a
fine-grained alignment between S and T , we furthermore propose to re-use some
of the potential samples from Xt with pseudo-labels corresponding to one of the
K known-classes in Objective-(i) pretending that they belong to S. The loss
functions are detailed in the following.

i) Alignment of the source-domains: We propose to maximize the pairwise
similarities among the samples from different source-domains but sharing iden-
tical class-labels in the shared space, thus reducing the domain-shift among the
source-domains. It leads us to obtain a unified feature space for the known-class
samples from different source-domains, which subsequently helps in the better
alignment of X 1:K

t with samples from S. Precisely, for each of the known-class
labels k ∈ Ys, we separately select samples from all of the L source-domains.
Let X kl ⊂ Xl define the set of samples with class label k obtained from the lth

source-domain. Given that, we define the source alignment loss LSA as:
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LSA =
1

K

∑
k∈Ys

1

L

L∑
l,m=1,l 6=m

E||E(X kl )− E(X km)||22 +
1

L

L∑
l=1

LCE(Fl(E(Xl)),Ys) (1)

The first term of Equation 1 accomplishes two goals: a) maximizing the pair-
wise cosine similarities among the encoded features of the samples originating
from different source-domains but sharing identical class-labels: min |E(~xi) −
E(~xj)|2 ≈ max E(~xi)E(~xj)

T for a pair of unit-norm vectors ~xi ~xj (note that the
E is designed to ensure the norm constraint), and b) bringing the centroids of
the feature samples for each of the class-labels from different source-domains
closer. Together, the L source classifiers {Fl}Ll=1 are trained using separate in-
stances of cross-entropy loss LCE . Hence, the shared space becomes class-wise
discriminative taking all the source samples into account.

Fig. 2: A depiction of MOSDANET. It majorly consists of a shared feature en-
coder E and separate K + 1-class classifiers Fls for each of the source domains.
Ft denotes the classifier for T . The figure also depicts the loss terms to be eval-
uated. # in the figure refers to the first term of Equation 1. Logit(S) means the
unnormalized logit vectors.

ii) Alignment between S and T : For samples in T , we intend to i) cor-
rectly classify the known-class samples in one of the K categories by ensuring
proper alignment with the source data in the shared space, and ii) classify any
unknown-class data with label K + 1. In addition, we also constrain that the
known/unknown separation should be carried out with a high confidence. By
confidence, we aim at imposing a large-margin between the known and unknown-
class supports as produced by Ft.

Ideally, we need to construct a decision boundary for the open-set, but we
are devoid of any prior information in this respect. Alternately, it is intuitive
to initially construct a pseudo decision boundary for the unknown-classes in
T using Ft and to subsequently train E to deceive the classifier. This refers to
the adversarial game between E and Ft. We deduce a binary cross-entropy based
classification loss (LCLS) for defining the pseudo- unknown-class boundary for T
which considers the probability of a given xt ∈ Xt to belong to the (K+1)th-class
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or the cumulative probability to belong to the K known categories as yielded by
Ft (Equation 2):

LCLS = E[−0.5 log(p(yt = K + 1|E(xt))− 0.5 log(1− p(yt = K + 1|E(xt))] (2)

Following [25], the ground-truth probability for LCLS is set to 0.5 in order
to avoid any trivial solution where all the samples from T may be wrongly
labeled with only known or unknown class labels. We find that the adversarial
training using LCLS produces good alignment between S and T if the known
and unknown classes are quite distinct but fails if they are find-grained in nature.
This is due to the fact that Ft becomes uncertain in estimating the class-labels if
the classes are overlapping in the feature space. In order to tackle the situation,
we propose to maximize the margin between the supports of the known and the
unknown class boundaries. Ideally for a given xt, if |p(yt = K + 1|E(xt) − (1 −
p(yt = K + 1|E(xt))| ≥ τ for some predefined threshold τ (τ ∈ [0, 1], τ ≈ 1),
then we can claim that the classification is confident. We introduce a margin loss
Lmargin given the softmax predictions of Ft as a solution that penalizes samples
for which the known and unknown class predictions are closer than τ as follows,

Lmargin = E[min (0, |
K∑
k=1

p(yt = k|E(xt))− p(yt = K + 1|E(xt))|1 − τ)] (3)

Ideally, the encoder E seeks to maximize Lmargin in order to ensure a large-
margin classification by Ft. However, we note that the maximum value of Lmargin
at optimality is bounded at 0. As a result, the unknown-class data are pushed
further away from the known-classes, making MOSDANET robust to different
openness.

iii) Inclusion of potential target samples in LSA during training: In
order to further encourage fine-grained alignment between S and T , we propose
to incorporate potential samples from T with pseudo-labels corresponding to one
of the K known classes in the evaluation of LSA professing that these samples
are part of one of the source-domains. We initiate the process of identifying such
samples at least after one training epoch is over to ensure reliability.

However, we cannot blindly rely on such pseudo-labels considering the im-
plicit domain differences. A possible solution could be to threshold the predicted
class probabilities to decide on the reliability of the pseudo-labels obtained. If
the predicted probability for a certain class is extremely high(≈ 1), then the
chance of the sample to actually belong to that particular class automatically
increases. Given a threshold hyper-parameter α, we use the following rule to
decide whether a given xt qualifies for consideration in this regard:

- If only

p(yt = k|E(xt)) ≥ α, α ∈ [0, 1], k ∈ Ys (4)

(xt, k) can be included in the augmented training set.
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Network optimization: We follow an alternate optimization strategy for train-
ing MOSDANET end-to-end. The following three stages are iterated until con-
vergence:

Stage-1: For a fixed encoder, E , the source-domain classifiers are trained to
minimize the following cost:

min
θF

1

L

L∑
l=1

LCE(Fl(E(Xl)),Ys) + LCLS (5)

Equation 5 signifies that the parameters of the classifiers are simultaneously
optimized for correctly classifying the respective source-domain samples in one of
the K classes (second term of Equation 1) while preserving the pseudo unknown-
class boundary given samples from T (Equation 2). Please note that the first
term of Equation 1 deals with optimizing the encoder parameters, which in this
case are fixed.

Stage-2: On the second step, E is assigned the job of minimizing LSA (Equa-
tion 1), thus classwise aligning the source domains together with optimizing the
source classifiers and, ii) maximizing LCLS +Lmargin (Equation 2 and 3, respec-
tively) in order to classify the target samples in known or unknown classes with
a high confidence. In particular, E is updated by optimizing the following cost
given a fixed θF :

min
θE
LSA − (LCLS + Lmargin) (6)

Stage-3: We investigate the occurrence of potential target-domain samples with
pseudo known-class labels (Equation 4). Once we obtain such samples, they
are used in evaluating Equation 2 along with samples from S from subsequent
iteration.

Method AD - W AW - D WD - A AVG
OS* OS OS* OS OS* OS OS* OS

OSVM[26](†) 73.3 70.2 95.1 94.4 40.2 39.1 69.5±0.3 67.9±0.4
OSVM[26](‡) 71.2 51.2 84.9 56.2 58.2 61.4 71.4±0.5 56.3±0.7

OSVM+DANN[4](‡) 65.0 83.3 68.0 91.9 51.2 37.5 61.4±0.3 70.9±0.4

OSVM+[23] 88.3 58.8 95.5 59.5 82.3 52.7 88.7±0.6 57.0±0.4

OSDA-BP [25] (†) 98.1 93.0 99.0 94.1 77.1 75.0 91.4±0.5 87.4±0.4
OSDA-BP[25] (‡) 94.0 90.0 93.0 89.0 79.0 75.0 88.7±0.7 84.7±0.4
IOSDA-BP[3] (†) 98.7 67.0 98.1 62.1 74.7 74.1 90.5±0.5 67.7±0.3
IOSDA-BP[3] (‡) 91.1 88.0 87.8 87.1 75.0 74.5 84.6±0.6 83.2±0.5

MOSDANET(∗) 95.2 91.4 94.4 90.3 77.5 73.1 89.0±0.3 84.9±0.2
MOSDANET 99.0 98.2 99.4 98.3 81.0 79.3 93.1±0.4 91.9±0.2

Table 1: The performance comparison for MOSDANET with 20 shared and 11
unknown-classes for Office-31 dataset (in %) . † = single best, ‡ = source combine
and * = best member classifier.
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Method Office-Caltech Office-Home

ADW-C ADC-W AWC-D DCW-A AVG ACP - R APR - C PCR - A ACR - P AVG

OS OS OS OS OS OS OS OS OS OS

OSVM[26] (†) 43.1 36.5 42.6 44.6 41.7 67.1 59.7 59.3 75.1 65.3
OSVM[26] (‡) 45.3 35.3 34.4 45.5 40.1 60.2 46.3 48.6 57.0 53.0

OSVM+DANN [4](‡) 46.2 42.5 42.3 47.1 44.5 54.5 31.6 40.9 53.8 45.2

OSVM+[23] 18.6 39.5 40.3 21.9 30.1 60.2 51.5 69.9 59.8 60.3

OSDA-BP[25](†) 86.4 91.2 92.4 88.4 89.6 73.0 57.0 58.1 70.4 64.6
OSDA-BP[25](‡) 80.4 87.4 91.7 90.4 87.4 53.6 38.0 46.9 54.9 48.3
IOSDA-BP[3](†) 78.6 91.5 93.0 87.0 87.5 58.6 31.4 46.2 64.0 50.0
IOSDA-BP[3](‡) 58.6 57.9 61.6 62.7 60.2 64.5 46.2 54.9 66.4 58.1

MOSDANET(∗) 86.1 96.8 96.7 94.1 92.9 78.0 66.0 62.0 76.3 70.5
MOSDANET 90.6 99.2 98.9 94.8 95.8 80.3 67.5 60.6 80.0 72.1

Table 2: The performance comparison for MOSDANET for 5 shared and 5 un-
known classes for Office-caltech dataset and 45 shared 20 unknown classes for
the Office-Home dataset (in %). † = single best, ‡ = source combine and * =
best member classifier.

Inference: During inference, the target samples in Xt are propagated through
the encoder E followed by the classifiers-ensemble Ft and the class with maximum
softmax score is selected.

4 Experimental Evaluations

Datasets: We evaluate the MOSDANET on four benchmark datasets: Office-
31 [24], Office-Home [30], and Office-CalTech [24], and Digits, respectively. The
three domains of Office-31 are: Amazon (A), Web (W), and DSLR (D) each con-
sisting of images from 31 categories. A total of 4652 images are present in this
dataset. We consider all possible combinations with two source and one target
domains. Besides, 20 shared classes and 11 open-set classes are considered based
on the alphabetic order. Office-CalTech is an extension of the Office-31 and con-
sists of the 10 shared classes of Amazon (A), CalTech (C), Webcam (W), and
DSLR (D), respectively. We consider all the setups having three source-domains
and one target-domain with 5 known and 5 open-set classes. The Office-Home
dataset contains four domains: Art (A), Clipart (C), Real-world (R), and Prod-
uct (P) where each of the domains is equipped with 65 object categories. In
total, there are 15, 500 images present in this dataset. We consider all four pos-
sible combinations with three source-domains and one target-domain with 45
shared and 20 open-set classes. Finally, the Digits dataset consists of three do-
mains of hand-written digits: MNIST (M)[14], USPS (U)[8], and SVHN (S)[19]
and we consider the combined available training and test samples per domain
for this dataset with a total of 1, 78, 589 images together for all the domains.
5 known (digits 0 − 4) and 5 unknown-classes (digits 5 − 9) are considered for
comparative analysis. For completeness, we report results on the subset of the
DomainNet challenge [23] in the supplementary along with some more analysis.
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Model architecture and experimental protocols: For Office-31, Office-
CalTech, and Office-Home, our feature encoder E is constructed from the Ima-
genet pre-trained Resnet-50 model [7]. However, we replace all the layers after
the final 2048-dimensional fully-connected (fc) layer by three new fc-layers with
1000, 512, and 128 nodes, respectively. Batch-norm [9] and Leaky-ReLU non-
linearity are considered after each of the new layers for stable training. The
parameters of the original network layers remain fixed during training and only
the newly considered layers are trained. For Digits, we consider the LeNet [14]
architecture as the feature encoder E and the network is trained from the scratch
in contrast to the previous case. The classifiers are further constructed in terms
of a small neural network that project the features onto the K + 1-dimensional
class scores.

Method M+U - S S+M - U S+U - M AVG OS
OS OS* UNK OS OS* UNK OS OS* UNK

OSVM[26](†) 65.8 62.6 71.3 74.8 76.9 87.0 50.3 61.1 11.5 63.6±0.4
OSVM[26](‡) 66.9 65.4 69.4 72.8 74.9 85.6 60.2 68.0 17.1 66.6±0.3

OSVM+[23] 58.4 87.9 10.9 59.1 96.9 6.5 10.7 20.7 0.3 42.7±0.4

IOSDA-BP[3](†) 76.5 74.6 89.9 85.6 88.6 90.5 82.9 83.4 80.4 81.6±0.8
IOSDA-BP[3](‡) 78.6 75.8 92.7 82.9 79.7 91.1 82.1 82.3 90.5 81.2±0.5

MOSDANET 79.1 88.2 93.8 86.6 98.8 98.9 95.2 98.2 99.1 87.1±0.3
Table 3: The performance analysis of MOSDANET for the Digits dataset with
5 known and 5 open-set classes (in %). † = single best, ‡ = source combine.

The network is trained using the Adam optimizer [12] with an initial learn-
ing rate of 0.001 and a batch size of 64 (for Office datasets) and of size 100
for Digits. Regarding fixing the hyper-parameters, we are convinced that the a
higher value for the margin parameter τ (Equation 3) indeed helps in attaining
better separation between the known and the unknown classes in T and we set
τ = 0.6 for all the experiments in Table 1-3 as the performance mostly saturates
for τ ≥ 0.6. The α parameter (Equation 4) which is entitled to decide on the
pseudo-labels for the target-domain samples is set to 0.9 since a high α helps in
producing more confident pseudo-labels.

4.1 Comparison to the literature and baselines

We compare our method with three different experimental settings in Table 1-3
considering the absence of any prior MS-OSDA literature: i) source-combine:
here the source-domains are combined to construct an auxiliary source-domain
and the single-source and single-target DA setup is followed. In the source-
domain, only the known-class samples are considered whereas both known and
unknown-class samples are used in the target-domain during training. In this
regard, we use three situations: a) Baseline case where the open-set multi-class
support vector machines (OSVM) [10] is trained on the auxiliary source-domain
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(a) (b) (c)

Fig. 3: (a) Effect of Lmargin in terms of OS value for two combinations of Office-
31 (A,D-W) and Office-Home(ACR-P), (b) Effect of Lmargin in maximizing the
difference between the known and unknown-class probabilities for the correctly
classified target samples for A,D-W (Office-31), (c) t-SNE plot for the case A,D-
W(Office-31) before and after adaptation.

and is then directly evaluated on the target-domain samples. b) We perform do-
main alignment between the auxiliary source and the target domains using the
benchmark closed-set DA method of DANN [4]. Once the training is over, we con-
sider the generated features and use the OSVM for open-set classification. c) We
consider two existing SS-OSDA techniques: OSDA-BP [25] and improved OSDA-
BP (IOSDA-BP) [3] to be trained and evaluated on the auxiliary source and the
target domains, respectively. ii) single-best: For baseline OSVM, OSDA-BP,
and IOSDA-BP, we also report the best results obtained for the single-source
and single-target setup, e.g., for A,D 7→ W, the best result between A 7→ W
and D 7→W is reported, and iii) multi-source: In this regard, we consider the
very recent benchmark MSDA method of [23] and train the model using known-
classes in the source-domains and known + unknown classes in the target and
then use OSVM for classification. For the single-best and source-combine cases,
we follow similar architecture for the feature encoder as of MOSDANET (Section
4). For baseline OSVM, we train the feature encoder on the (auxiliary) source
domain and subsequently utilize the same as the feature generator for the target
samples. We report the OS and OS∗ [21] scores to signify the average classwise
accuracy for known + unknown classes and only for known-classes, respectively.
For Digits, we also report the performance on the unknown-classes (UNK).

We note that all the considered DA techniques except OSDA-BP and IOSDA-
BP are basically designed for closed-set DA. Hence, their performances on the
known-classes are good while they fail to detect the unknown-classes properly
(Table 1-3). Similar trends can be observed when the benchmark multi-source
DA method [23] is used for the domain alignment. On the other hand, the source
combine versions of OSDA-BP and IOSDA-BP produce better average OS values
than DANN + OSVM. Finally, our method produces the best average OS for
all the datasets. In particular, Digits is extremely large-scale in terms of the
number of samples and Office-Home has complex class-distributions with several
fine-grained categories. Still, the performance of MOSDANET on these datasets
are comparatively high. We also report the OS values for the best-performing



MOSDANET 13

member-classifier within the ensemble. It can be observed that the decision fusion
used in Fl sharply enhances the performance over each member.

4.2 Critical analysis

The effect of the margin-loss (Lmargin) and the margin parameter τ :
We showcase the effectiveness of Lmargin on two cases: A,D 7→ W (Office-31)
and A,C,R 7→ P (Office-Home) (Figure 3(a)) in terms of the OS and OS∗

values for our full model and the model without Lmargin. It can be observed
that the inclusion of Lmargin in Equation 6 causes an enhancement in the OS
values at least by 4%. Furthermore, Lmargin depends on the choice of the τ
hyper-parameter for controlling the confidence of the classifier. In Table 4(a),
we showcase an ablation analysis on the τ parameter. As deserved, a large τ
is preferred as it maximizes the margin between the known and unknown class
samples. Increasing trends for both the OS and OS∗ can be seen as τ is increased,
however, τ is found to get saturated after 0.6. In Figure 3(b), we show the
difference between the known and unknown class probabilities for the full model
and the model trained without Lmargin in Equation 6 for τ = 0.6. In this regard,
the full model has average difference score of ≈ 0.55 which is superior to the
model without Lmargin (≈ 0.3).

Sensitivity to different openness: Openness is defined as O = 1 − |Ys|
|Yt| [15]

where |Ys| denotes the number of classes in S whereas |Yt| is the number of
known and unknown classes present in T . A large O signifies that the number of
unknown classes is much higher than the number of shared classes. The source-
combine or single-best versions of [25] and [3] show poor performance when
O ≈ 1 whereas they show high accuracy for O ≈ 0.5. This is due to the fact
that methods like [25, 3] are prone to confound the known with unknown classes.
From Table 4(b), we observe that MOSDANET produces promising results even
when O → 1. This guarantees the invariance of MOSDANET to varied openness
which is majorly attributed to the efficacy of Lmargin in separating the unknown
classes. To establish this, we mention a comparison of the OS scores for different
O values between the models with and without the margin-loss in Figure 4(c)

AD - W ACR - P
OS* OS OS* OS

τ = 0.2 98.1 95.8 66.5 66.4
τ = 0.4 98.2 96.8 76.1 75.3
τ = 0.6 99.0 98.2 79.0 80.0

(a)

AD - W AW - D WD - A
OS* OS OS* OS OS* OS

O = 0.83 99.2 97.6 100.0 97.3 89.3 88.2
O = 0.67 100.0 97.4 99.6 97.1 81.3 83.0
O = 0.35 99.0 98.2 99.4 98.3 81.0 79.3
O = 0.03 89.7 89.4 91.9 91.1 56.5 53.3

(b)

Table 4: (a)Sensitivity to the margin term τ for two cases of Office-31 and Office-
Home, (b) Accuracy assessment for different openness values for different com-
binations of Office-31.



14 S. Rakshit et al.

(a) (b) (c)

Fig. 4: (a)The training graphs showcasing the evolution of LSA and LCLS +
Lmargin for A,D 7→ W (Office-31) for 50 epochs, (b) Effects of explicit source
alignment on OS and OS∗ for A,D 7→W(Office-31). # in the figure refers to the
first term of Equation 1. (c)Openness analysis of full model and model without
Lmargin for D,W 7→ A (Office-31),

for D,W 7→ A (a challenging scenario of Office-31). The full model in this case
consistently produces superior OS scores.
Effects of aligning the source-domains: In order to assess the importance
of the source alignment term (first term in Equation 1), we train two separate
models with and without the first term of Equation 1 for A,D 7→W (Office-31).
As can be observed in Figure 4(b), we observe sharp improvements of more than
10% both in OS and OS∗ when source-domains are explicitly aligned.
Visualization: In Figure 3(c), we depict the t-SNE plot to highlight the discrim-
inating nature of the shared feature space as provided by our full MOSDANET
model for A,D 7→W (Office-31). It can be seen that the open-set target-domain
classes are mostly clustered around the center while the known-class samples of
all the domains are properly overlapped with clear discrimination among the dif-
ferent categories. Besides, the evolution of different loss terms for the full model
during training can be found in Figure 4(a) which shows early convergence.

5 Conclusions

We formally introduce the learning paradigm of multi-source open-set domain
adaptation in this paper and propose a novel framework which seeks to learn a
shared feature space for all the source and target domains under consideration. In
the process, we explicitly align the source-domains using class information while
an improved adversarial learning paradigm is introduced to map the known-class
samples from the target-domain with the source-domains. We judiciously incor-
porate target-domain samples with pseudo known-class labels during training to
encourage fine-grained domain alignment. We believe that the proposed problem
paradigm opens a new set of possibilities that can be expanded. For instance, in
the future, we would be interested to explore the inclusion of open-set categories
in the different source domains.
Acknowledgment: B. Banerjee was partially supported by grant ECR-2017-
000365 from SERB, DST.
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