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Abstract. Fitting a matrix of a given rank to data in a least squares
sense can be done very effectively using 2nd order methods such as
Levenberg-Marquardt by explicitly optimizing over a bilinear parame-
terization of the matrix. In contrast, when applying more general sin-
gular value penalties, such as weighted nuclear norm priors, direct op-
timization over the elements of the matrix is typically used. Due to
non-differentiability of the resulting objective function, first order sub-
gradient or splitting methods are predominantly used. While these offer
rapid iterations it is well known that they become inefficent near the
minimum due to zig-zagging and in practice one is therefore often forced
to settle for an approximate solution.
In this paper we show that more accurate results can in many cases be
achieved with 2nd order methods. Our main result shows how to con-
struct bilinear formulations, for a general class of regularizers including
weighted nuclear norm penalties, that are provably equivalent to the
original problems. With these formulations the regularizing function be-
comes twice differentiable and 2nd order methods can be applied. We
show experimentally, on a number of structure from motion problems,
that our approach outperforms state-of-the-art methods.1

1 Introduction

Matrix recovery problems of the form

min
X

f(σ(X)) + ‖AX − b‖2, (1)

where A is a linear operator and σ(X) = (σ1(X), σ2(X), ...) are the singular
values of X, are frequently occurring in computer vision. Applications range
from high level 3D reconstruction problems to low level pixel manipulations
[39, 7, 46, 17, 3, 16, 42, 12, 31, 23, 18]. In structure from motion (SfM) the most
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common approaches enforce a given low rank r without additionally penalizing
non-zero singular values [39, 7, 20] (a special case of (1) by letting f assign zero
if fewer than r singular values are non-zero and infinity otherwise).

Since the rank of a matrix X is bounded by to the number of columns/rows
in a bilinear parameterization X = BCT , the resulting optimization problem can
be written minB,C ‖A(BCT )− b‖2. This gives a smooth objective function and
can therefore be optimized using 2nd order methods. In SfM problems, where
the main interest is the extraction of camera matrices from B and 3D points
from C, this is typically the preferred option [8]. In a series of recent papers
Hong et al. showed that optimization with the VarPro algorithm is remarkably
robust to local minima converging to accurate solutions [20–22]. In [24] they
further showed how uncalibrated rigid SfM with a proper perspective projection
can be solved within a factorization framework. On the downside, typically the
iterations are costly since (even when the Schur complement trick is used) 2nd
order methods require an inversion of a relatively large hessian matrix, which
may hinder application when suitable sparsity patterns are not present.

For low level vision problems such as denoising and inpainting, eg. [31, 23,
18], the main interest is to recover the elements of X and not the factorization.
In this context more general regularization terms that also consider the size of
the singular values are often used. Since the singular values are non-differentiable
functions of the elements in X first order methods are usually employed. The
simplest option is perhaps a splitting methods such as ADMM [6] since the
proximal operator arg minX f(σ(X)) + ‖X − X0‖2, can often be computed in
closed form [23, 18, 31, 14, 27]. Alternatively, subgradient methods can be used
to handle the non-differentiability of the regularization term [12].

It is well known that while first order methods have rapid iterations and
make large improvements the first couple of iterations they have a tendency to
converge slowly when approaching the optimum. For example, [6] recommends
to use ADMM when a solution in the vicinity of the optimal point is acceptable,
but suggests to switch to a higher order method when high accuracy is desired.
For low level vision problems where success is not dependent on achieving an
exact factorization of a particular size, first order methods may therefore be
suitable. In contrast, in the context of SfM, having roughly estimated elements
in X causes the obtained factorization B, C to be of a much larger size than
necessary yielding poor reconstructions with too many deformation modes.

In this paper we aim to extend the class of methods that can be optimized
using bilinear parameterization allowing accurate estimation of a low rank fac-
torization from a general class of regularization terms. While our theory is ap-
plicable for many objectives we focus on weighted nuclear norm penalties since
these have been successfully used in SfM applications. We show that these can be
optimized with 2nd order methods which significantly increases the accuracy of
the reconstruction. We further show that with these improvements the model of
Hong et al. [24] can be extended to handle non-rigid reconstruction with a proper
perspective model, as opposed to the orthographic projection model adopted by
other factorization based approaches, e.g. [27, 14, 17, 46].
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1.1 Related Work and Contributions

Minimization directly over X has been made popular since the problem is convex
when f is convex and absolutely symmetric, that is, f(|x|) = f(x) and f(Πx) =
f(x), where Π is any permutation [29]. Convex penalties are however of limited
interest since they generally prefer solutions with many small non-zero singular
values to those with few large ones. A notable exception is the nuclear norm
[15, 35, 33, 10, 11] which penalizes the sum of the singular values. Under the RIP
assumption [35] exact or approximate low rank matrix recovery can then be
guaranteed [35, 11]. On the other hand, since the nuclear norm penalizes large
singular values, it suffers from a shrinking bias [9, 12, 28].

An alternative approach that unifies bilinear parameterization with regular-
ization approaches is based on the observation [35] that the nuclear norm ‖X‖∗
of a matrix X can be expressed as ‖X‖∗ = minBCT =X

‖B‖2F +‖C‖2F
2 . Thus when

f(σ(X)) = µ
∑
i σi(X), where µ is a scalar controlling the strength of the regu-

larization, optimization of (1) can be formulated as

min
B,C

µ
‖B‖2F + ‖C‖2F

2
+ ‖ABCT − b‖2. (2)

Optimizing directly over the factors has the advantages that the number of
variables is much smaller and the objective function is two times differentiable
so second order methods can be employed. While (2) is non-convex because of
the bilinear terms, the convexity of the nuclear norm can still be used to show
that any local minimizer B,C with rank(BCT ) < k, where k is the number
of columns in B and C, is globally optimal [2, 19]. The formulation (2) was for
vision problems in [9]. In practice it was observed that the shrinking bias of
the nuclear norm makes it too weak to enforce a low rank when the data is
noisy. Therefore, a “continuation” approach where the size of the factorization
is gradually reduced was proposed. While this yields solutions with lower rank,
the optimality guarantees no longer apply. Bach et al. [2] showed that

‖X‖s,t := min
X=BCT

k∑
i=1

‖Bi‖2s + ‖Ci‖2t
2

, (3)

where Bi,Ci are the ith columns of B and C respectively, is convex for any choice
of vector norms ‖ · ‖s and ‖ · ‖t. In [19] it was shown that a more general class
of 2-homogeneous factor penalties result in a convex regularization similar to
(3). The property that a local minimizer B, C with rank(BCT ) < k, is global
is also extended to this case. Still, because of convexity, it is clear that these
formulations will suffer from a similar shrinking bias as the nuclear norm.

One way of reducing shrinking bias is to use penalties that are constant for
large singular values. Shang et al. [37] showed that penalization with the Schatten

semi-norms ‖X‖q = q

√∑N
i=1 σi(X)q, for q = 1/2 and 2/3, can be achieved using

a convex penalty on the factors B and C. A generalization to general values
of q is given in [44]. An algorithm that address a general class of penalties for
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symmetric matrices is presented in [26]. In [40] it was shown that if f is given by
f(σ(X)) =

∑
i g(σi(X)), where g is differentiable, concave and non-decreasing

then (1) can be optimized using 2nd order methods such as Levenberg-Marquart
or VarPro. This is achieved by re-parameterizing the matrix X using a bilinear
factorization X = BCT and optimizing

min
B,C

f(γ(B,C)) + ‖A(BCT ) + b‖2. (4)

Here γ(B,C) = (γ1(B,C), γ2(B,C), ...) and γi(B,C) = ‖Bi‖2+‖Ci‖2
2 . In contrast

to the singular value σi(X) the function γi(B,C) is smooth which allows opti-
mization with second order methods. It is shown in [40] that if X∗ is optimal in
(1) then the factorization B = L

√
Σ,C = R

√
Σ, where X∗ = LΣRT is the SVD

of X∗, is optimal in (4). (Here we assume that L is m × r, Σ is r × r and R is
n× r, with rank(X) = r.) Note also that this choice gives γi(B,C) = σi(X

∗).
A less restrictive way of reducing bias is to re-weight the nuclear norm and use

f(σ(X)) =
∑
i aiσi(X) [23, 18, 27]. Assigning low weights to the first (largest)

singular values allows accurate matrix recovery. In addition the weights can be
used to regularize the size of the non-zero singular values which has been shown
to be an additional useful prior in NRSfM [27]. Note however that the singular
values are always ordered in non-increasing order. Therefore, while the function
is linear in the singular values it is in fact non-convex and non-differentiable in
the elements of X whenever the singular values are not distinct (typically the
case in low rank recovery).

In this paper we show that this type of penalties allow optimization with
γ(B,C) instead of σ(X). In particular we study the optimization problem

minB,C f(γ(B,C)) (5)

s.t. BCT = X, (6)

and its constraint set for a fixed X. We characterize the extreme-points of the
feasible set using permutation matrices and give conditions on f that ensure that
the optimal solution is of the form γ(B,C) = Πσ(X), where Π is a permutation.
For the weighted nuclear norm f(σ(X)) = aTσ(X) we show that if the elements
of a are non-decreasing the optimal solution has γ(B∗, C∗) = σ(X). A simple
consequence of this result is that

min
B,C

aTγ(B,C)) + ‖A(BCT )− b‖2 (7)

is equivalent to minX a
Tσ(X)+‖AX−b‖2. While the latter is non-differentiable

the former is smooth and can be minimized efficiently with second order methods.
Our experimental evaluation confirms that this approach outperforms current

first order methods in terms of accuracy as can be expected. On the other hand
first order methods make large improvments the first coupler of iterations and
therefore we combine the two approaches. We start out with a simple ADMM im-
plementation and switch to our second order approach when only minor progress
is being made. Note however that since the original formulation is non-convex
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local minima can exist. In addition bilinear parameterization introduces addi-
tional stationary points that are not present in the original X parameterization.
One such example is (B,C) = (0, 0), where all gradients vanish. Still our exper-
iments show that the combination of these methods often converge to a good
solution from random initialization.

2 Bilinear Parameterization Penalties

In this section we will derive a dependence between the singular values σi(X)
and the γi(B,C), when BCT = X. For ease of notation we will suppress the
dependence on X and (B,C) since this will be clear from the context. Let X have
the SVD X = RΣLT , B = R

√
Σ and C = L

√
Σ. We will study other potential

factorizations X = B̂ĈT using B̂ = BV , Ĉ = CH and V HT = Ir×r. In this
section we will further assume that V is a square r× r matrix and therefore HT

is its inverse. (We will generalize the results to the rectangular case in Section 3).

We begin by noting that γj =
‖B̂j‖2+‖Ĉj‖2

2 =
‖BVj‖2+‖CHj‖2

2 , where Vj and
Hj are columns j of V and H respectively. We have ‖BVj‖2 = V Tj B

TBVj =

V Tj ΣVj = ‖
√
ΣVj‖2, and similarly ‖CHj‖2 = ‖

√
ΣHj‖2 and therefore γj =

‖
√
ΣVj‖2+‖

√
ΣHj‖2

2 . This gives γj =
(
σ1(v21j+h2

1j)+σ2(v22j+h2
2j)+...+σr(v2rj+h2

rj)

2

)
, or

in matrix form
γ1

γ2

...
γr

 =
1

2


v2

11 v
2
21 . . . v

2
r1

v2
12 v

2
22 . . . v

2
r2

...
...

. . .
...

v2
1r v

2
2r . . . v

2
rr


︸ ︷︷ ︸

=V T�V T


σ1

σ2

...
σr

+
1

2


h2

11 h
2
21 . . . h

2
r1

h2
12 h

2
22 . . . h

2
r2

...
...

. . .
...

h2
1r h

2
2r . . . h

2
rr


︸ ︷︷ ︸

=HT�HT


σ1

σ2

...
σr

 . (8)

Minimizing (5) over different factorizations is therefore equivalent to solving

minγ,M∈S f(γ), (9)

s.t. γ = Mσ. (10)

where S = { 1
2 (V T �V T +HT �HT ); V HT = I}. It is clear that V = H = ΠT ,

where Π is any permutation, is feasible in the above problem since permutations
are orthogonal. In addition they contain only zeros and ones and therefore it is
easy to see that this choice gives γ = 1

2 (Π �Π +Π �Π)σ = Πσ. In the next
section we will show that these are extreme points of the feasible set, in the
sense that they can not be written as convex combinations of other points in the
set. Extreme points are important for optimization since the global minimum is
guaranteed to be attained (if it exists) in such a point if the objective function
has concavity properties. This is for example true if f is quasi-concave, that is,
the super-level sets Sα = {x ∈ Rr≥0; f(x) ≥ α} are convex. To see this let x =
λx1+(1−λ)x2, and consider the super-level set Sα where α = min(f(x1), f(x2)).
Since both x1 ∈ Sα and x2 ∈ Sα it is clear by convexity that so is x and therefore
f(x) ≥ min(f(x1), f(x2)).
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2.1 Extreme Points and Optimality

We now consider the optimization problem (9)-(10) and a convex relaxation of
the constraint set. For this purpose we let D be the set of doubly stochastic
matrices D = {M ∈ Rr×r; mij ≥ 0,

∑
imij = 1,

∑
jmij = 1}. Note that if

V is orthogonal, and therefore H = V , then the row sum
∑r
j=1

v2ij+h2
ij

2 , and the

column sum
∑r
i=1

v2ij+h2
ij

2 are both one. Hence such a matrix is in D. To handle
non-orthogonal matrices we define the set of superstochastic matrices SW as
all matrices M = D + N , where D ∈ D and N is a matrix with non-negative
elements. It can be shown that (see Theorem 6 in [4]) that S ⊂ SW . In addition
it is easy to see that SW is convex since it consists of affine constraints. Therefore
the problem

minγ,M∈SW f(γ), (11)

s.t. γ = Mσ. (12)

is a relaxation of (9)-(10). Next we show that the two problems have the same
minimum if a minimizer to (11)-(12) exists when f is quasi-concave (on Rr≥0).
As mentioned previously, the minimum (over SW ) is then attained in an extreme
point of SW . We therefore need the following characterization.

Lemma 1. The extreme points of SW are r × r permutation matrices.

Proof. First we note that any extreme point of SW has to be in D since if
M = D + N with N 6= 0 then M = 1

2D + 1
2 (D + 2N), which is a convex

combination of two points in SW . By Birkhoff’s Theorem [5] any matrix in D
can be written as a convex combination of permutation matrices.

Since permutation matrices are orthogonal with 0/1 elements it is clear they
can be written Π = 1

2 (Π �Π +Π �Π), with ΠΠT = I. Therefore the extreme
points of SW are also in S. Hence if the minimum of (11)-(12) is attained, there
is an optimal extreme point of SW which also solves (9)-(10), and therefore the
solution is given by a permutation V = H = Π.

We conclude this section by giving sufficient conditions for the minimum of
(11)-(12) to exist, namely that f is lower semi-continuous and non-decreasing
in all of its variables, that is, if γ̃i ≥ γi for all i then f(γ̃) ≥ f(γ). Since
the singular values are all positive it is clear that the elements of (D+N)σ are
larger than those of Dσ. Hence when f is non-decreasing it is enough to consider
minimization over D. We then have a lower semi-continuous objective function
on a compact set for which the minimum is known to be attained.

We can now summarize the results of this section in the following theorem:

Theorem 1. Let f be quasi-concave (and lower semi-continuous) on Rr≥0 fulfill-
ing f(γ̃) ≥ f(γ) when γ̃i ≥ γi for all i. Then there is an optimal γ∗ of (9)-(10)
that is of the form γ∗ = Πσ where Π is a permutation.
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3 Non-square Matrices

In the previous section we made the assumption that V and H where square
matrices, which corresponds to searching over B̂ and Ĉ consisting of r columns
when rank(X) = r. In addition since V and H are invertible this means that B̂
and Ĉ have linearly independent columns. In this section we generalize the result
from Section 2.1 to rectangular matrices V and H. Therefore we suppose that
V and H are non-square of size r × p, p > r, with V HT = Ir×r, and consider
the slightly modified problem

minγ,V,H f(γ), (13)

γ =
1

2
(V T � V T +HT �HT )σ (14)

V HT = Ir×r (15)

Note that V HT do not commute and we therefore only assume that V is a left
inverse of HT . In what follows we show that by adding zeros to the vector σ we
can extend V , H into square matrices without changing the objective function.

Note that we may assume that V has full row rank since otherwise X 6=
BVHTCT . Let V † be the Moore-Penrose pseudo inverse and OV⊥ a (p− r)× p
matrix containing a basis for the space orthogonal to the row space of V (and
the column space of V †). Since V HT = Ir×r the matrix HT is of the form
HT = V †+OTV⊥K1, where K1 is a (p−r)×r coefficient matrix. We now want to

find matrices Ṽ and H̃ such that

[
V

Ṽ

] [
V † +OTV⊥K1 H̃

T
]

=

[
Ir×r 0

0 I(p−r)×(p−r)

]
.

To do this we first select H̃T = OTV⊥ since V OTV⊥ = 0. Then we let Ṽ =
OV⊥ + K2V , where K2 is a size (p − r) × r coefficient matrix, since this gives
Ṽ H̃T = I(p−r)×(p−r). To determine K2 we consider Ṽ (V †+OTV⊥K1) = K2Ir×r+
I(p−r)×(p−r)K1 = K2 + K1. Selecting K2 = −K1 thus gives square matrices

such that

[
V

Ṽ

] [
HT H̃T

]
= I. Further letting Σ̃ =

[
Σ 0
0 0

]
shows that ‖BVi‖ =

‖
√
Σ̃

[
Vi
Ṽi

]
‖ and ‖CHi‖ = ‖

√
Σ̃

[
Hi

H̃i

]
‖ and the results of the previous section

give that the minimizer of f(γ1, γ2, ..., γp) is a permutation of the elements in
the vector (σ1, σ2, ..., σr, 0, ..., 0). We therefore have the following result:

Corollary 1. Let f be quasi-concave (and lower semi-continuous) on Rp≥0 ful-
filling f(γ̃) ≥ f(γ) when γ̃i ≥ γi for all i. Then an optimizer γ∗ of (13)-(15)
is of the form γ∗ = Πp×rσ where Πp×r contains the first r columns of a p × p
permutation matrix.

4 Linear Objectives - Weighted Nuclear Norms

We now consider weighted nuclear norm regularization f(γ) = aTγ. To ensure
that the problem is well posed we assume that the elements of a are non-negative.
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It is then clear that f(γ̃) ≥ f(γ) when γ̃i ≥ γi. Since linearity implies concavity
the results of Sections 2.1 and 3 now show that the minimum of f(Mσ), over
M ∈ S is attained in M = Π for some permutation matrix. To ensure that
the bilinear formulation is equivalent to the original one we need to show that
the optimum occurs when Π = I. Suppose that the elements in a are sorted in
ascending order a1 ≤ a2 ≤ ... ≤ ap. It is easy to see that forΠ to give the smallest
objective value it should sort the elements of γ so that γ1 ≥ γ2 ≥ ... ≥ γp, which
means that Π = I and γ = σ. We therefore conclude that minimizing (4) with
a linear objective corresponds to regularization with a weighted nuclear norm
with non-decreasing weights.

5 Experiments

In this section we start by describing implementation details of our method and
then apply it to the problems of low matrix recovery and non-rigid structure re-
covery. Solving the weighted nuclear norm regularized problem (7) now amounts
to minimizing

p∑
i=1

ai
‖Bi‖2 + ‖Ci‖2

2
+ ‖A(BCT )− b‖2. (16)

Note that the terms in the (16) can be combined into a single norm term by verti-
cally concatenating the vectors Bi and Ci, weighted by

√
ai/2, with A(BCT )−b.

We define the resulting vector as ra := Aa(BCT ) − ba, giving the objective
‖ra(BCT )‖2, where the subscript reflects the dependence on the weights a. Since
the objective is smooth, standard methods such as Levenberg-Marquardt can be
applied and Algorithm 1 shows an overview of the method used. Additional
information about the algorithm is provided in the supplementary material.

The remainder of this section is organized as follows. The particular form of
the data fitting term in (16) when applied to structure from motion is described
in Section 5.1. In Section 5.2 we compare the convergence of first and second-
order methods, and motivated by the ADMM fast iterations but low accuracy, as
opposed to the bilinear parameterization’s high accuracy but slower iterations,
we combine the two methods by initializing the bilinear parameterization with
the ADMM’s solution [6, 27] for a non-rigid structure structure recovery problem.
Our work focus on the increased accuracy of our method compared to first-
order methods, so the comparison of our results with works such as [43, 45, 1, 34]
(without the desired regularization term) are not covered.

5.1 Pseudo Object Space Error (pOSE) and Non-Rigid Structure
from Motion

To compare the performance of 1st and 2nd order methods, we choose as objec-
tive function the Pseudo Object Space Error (pOSE) [24], which consists of a
combination of the object space error `OSE :=

∑
(i,j)∈Ω ‖Pi,1:2x̃j−(pTi,3x̃j)mi,j‖22

and the affine projection error `Affine :=
∑

(i,j)∈Ω ‖Pi,1:2x̃j−mi,j‖22, where Pi,1:2
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Algorithm 1: Bilinear parameterization of weighted nuclear norm

Result: Optimal B,C to (16)

B = UΣ
1
2 , C = V Σ

1
2 , where X = UΣV T is the ADMM solution to (16) ;

Choose initial α > 1 and λ, and define z = [vec(B); vec(CT )];

Compute error = ‖ra(BCT )‖2;
while not converged do

Compute r = ra(BCT ), and the jacobian J of (16) in terms of z;

Update z̃ = z − (JTJ + λI)−1JT r, where z̃ = [vec(B̃); vec(C̃T )];

if error > ‖ra(B̃C̃T )‖2 then

Updata z ← z̃, λ← α−1λ, and error ← ‖Aa(B̃C̃T )− ba‖2;
else

λ← αλ;
end

end

and pi,3 are, respectively, the first two and the third rows of the camera ma-
trix Pi, with i = 1, . . . , F ; x̃j is a 3D point in homogeneous coordinates, with
j = 1, . . . , P ; mi,j is the 2D observation of the j:th point on the i:th camera; and
Ω represents the set of observable data. The pOSE is then given by `pOSE :=
(1−η)`OSE +η`Affine where η ∈ [0, 1] balances the weight between the two errors.
One of the main properties of pOSE is its wide basin of convergence while keep-
ing a bilinear problem strucuture. The `pOSE, originally designed for rigid SfM,
can be extended for the non-rigid case by replacing Pix̃j by a linear combination

of K shape basis, i.e., ΠiŜj , where Πi ∈ R3×(3K+1) and Ŝj ∈ R3K+1 are struc-

tured as Πi =
[
ci,1Ri . . . ci,KRi ti

]
and Ŝj =

[
ST1,j . . . STK,j 1

]T
. We

denote by Π and Ŝ the vertical and horizontal concatenations of Πi and Ŝj , re-

spectively. Note that by construction rank(ΠŜ) ≤ 3K + 1, and for K = 1 we
have ΠiŜj = Pix̃j , which corresponds to the rigid case.

5.2 Low-Rank Matrix Recovery with pOSE errors

In this section we compare the convergence and accuracy of 1st and 2nd order
methods, starting from the same initial guess, for low-rank matrix recovery with
pOSE. In this problem, we define X = ΠŜ and aim at minimizing

min
X

aTσ(X) + `pOSE(X). (17)

We apply our method and solve the problem (16) by using the bilinear factor-
ization X = BCT , with B ∈ R3F×r, and C ∈ RP×r, with r ≥ 3K + 1. We
test the performance of our method in 4 datasets: Door [32], Back [36], Heart
[38], Paper [41]. The first one consists of image measurements of a rigid structure
with missing data, while the remaining three datasets track points in deformable
structures.
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For the Door dataset, we apply two different selections of weights on the
singular values of X, corresponding to the nuclear norm, i.e., ai = µNN , and
truncated nuclear norm, i.e., ai = 0, i = 1, . . . , 4 and ai = µTNN , i > 4. We select
µNN = 1.5 × 10−3, and µTNN = 1. For the Back, Heart and Paper datasets,
we apply the nuclear norm and a weighted nuclear norm, in which the first four
singular values of X are not penalized and the remaining ones are increasingly
penalized, i.e., ai = 0, i = 1, . . . , 4 and ai = (i − 4)µWNN , i > 4. We select
µNN = 7.5 × 10−4, µWNN = 2.25 × 10−3. The values of the weights ai are
chosen such that there is a 3K + 1 rank solution to (17), with K = 1 and K = 2
for the rigid and non-rigid datasets, respectively.

We compare the bilinear parameterization with three first-order methods
commonly used for low-rank matrix recovery: Alternating Direction Method of
Multipliers (ADMM) [6], Iteratively Reweighted Nuclear Norm (IRNN) [13], and
Accelerated Gradient Descend (AGD) [30]. We also test the methods for two
different cases of the `pOSE error, with η = 0.05 and η = 0.95, which correspond
to the near-perspective and near-affine camera models, respectively. To improve
numerical stability of the algorithms, as pre-processing step we normalize the
image measurements matrix M by its norm. The methods are initialized with
the closed-form solution of the regularization-free problem, i.e., X = A†(b). The
comparison of the four algorithms in terms of total log-loss over time is shown in
Figure 1. The log-loss is used for better visualization purposes. The plots for the
IRNN for the nuclear norm are omitted since it demonstrated slow convergence
compared to the remaining three methods. A qualitative evaluation of the results
on one of the images of the Door dataset for the truncated nuclear norm and
near perspective camera model is shown in Figure 2. The qualitative results for
the remaining datasets are provided in the supplementary material.

In general, we can observe that first-order methods demonstrate faster initial
convergence, mostly due to faster iterations. However when near minima, the
convergence rate drops significantly and the methods tend to stall. Contrarily,
bilinear parameterization compensates its slower iterations by demonstrating
higher accuracy and and reaching solutions with lower energy. This is specially
visible for the near perspective camera model, which reinforces the advantages
of using a second-order method on image data under perspective projection. To
compensate for the slower convergence, we propose the initialization of the bilin-
ear parameterization with the solution obtained with ADMM. In this way, the
bilinear parameterization starts near the minimum and performs local refinement
to further improve accuracy.

5.3 Non-Rigid Structure Recovery

Consider now that the camera rotations in Π are known (or previously esti-
mated). In this case we have ΠŜ = RX + t1T , with R = blkdiag(R1, . . . , RF )
and t = [tT1 , . . . , t

T
F ]T , where X, the non-rigid structure, and t are the unknowns.

It is directly observed that rank(ΠŜ) ≤ rank(RX)+rank(t1T ), with the later be-
ing equal to 1 by construction and independent on K. As consequence, it follows
that rank(RX) = rank(X) ≤ 3K, and the rank regularization can be applied
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Fig. 1. Convergence of the four methods for low-rank matrix recovery on the Door,
Heart, Back and Paper datasets.
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Fig. 2. Evaluation of the four methods for low-rank matrix recovery on one of the
images of the Door dataset. The red circles show the target image measurements and
the green circles the estimate image points.

Fig. 3. (Left) Example of the non-rigid objects in the 5 datasets of the NRSfM Chal-
lenge. (Right) Estimation (blue) and ground-truth (red) of the non-rigid 3D structure
for the two methods with weighted nuclear norm regularization.
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on X. A similar problem was studied in [14] but for orthogonal camera models,
where the authors propose the rank regularization to be applied on a reshaped
version of X, given by X# = g−1(X), a F × 3P , where the function g performs
the permutation on the elements of X# to obtain X. With this reshaping we
have that rank(X#) ≤ K, meaning that we can factorize it as X# = BCT with
B ∈ RF×K and C ∈ R3P×K . The optimization problem then becomes

min
B,C,t

K∑
i=1

ai
‖Bi‖2 + ‖Ci‖2

2
+ `pOSE(Rg(BCT ) + t1T ). (18)

Solving this optimization problem requires small adjustments to be done to the
proposed Algorithm 1, which can be consulted in the supplementary material.
We apply our methods to the 5 datasets (Articulated, Balloon, Paper, Stretch,
Tearing) from the NRSfM Challenge [25]. Each of these datasets include tracks
of image points for orthogonal and perspective camera models for six different
camera paths (Circle, Flyby, Line, Semi-circle, Tricky, Zigzag), as well as the
ground-truth 3D structure for one of the frames. We use the 2D observation
for the orthogonal camera model to compute the rotation matrix R, as done in
[14], and the ground-truth 3D structure to estimate the intrinsic camera matrix,
which is assumed to be fixed during each sequence. The intrinsic camera matrix
is used to obtain the calibrated 2D observation of the perspective camera model
data. For the nuclear norm (NN), we set ai = 1 × 10−3, i = 1, . . . ,K. For the
weighted nuclear norm (WNN), the weights a are selected similarly to [27] ai =

ξ
σi(g−1(X0))+γ , i = 1, . . . ,K where ξ = 5×10−3, γ is a small number for numerical

stability, and X0 is the closed-form solution of the objective minX `pOSE(RX).
For these datasets we choose K = 2 and set the η = 0.05. As baseline we

use the best performing first-order method according to the experiments Sec-
tion 5.2, ADMM, and apply the method described in Algorithm 1 for local
refinement starting from the ADMM’s solution. We also try our method for
the orthogonal camera model (by setting η = 1), and compare it with BMM
[14] and R-BMM [27], which correspond to ADMM implementations for nuclear
norm and weighted nuclear norm, respectively. These methods perform a best
rank K approximation to the obtained ADMM solution if rank(X#) > K after
convergence. We let the ADMM-based methods run until convergence or stalling
is achieved for fair comparison. The average log-losses, before and after refine-
ment, obtained on each dataset are shown in Table 1. The average reconstruction
errors, in millimeters, on each dataset relatively to the provided ground-truth
structure are shown in Table 2. In Figure 3 we also show some qualitative results
of the obtained 3D reconstruction of each of the objects in the 5 datasets. More
qualitative results are provided in the supplementary material.

The results show that our method is able to achieve lower energies for all
datasets comparatively with the ADMM baselines. Similarly to Section 5.2,
the difference is more substantial for the perspective model. Furthermore, even
though we are not explicitly minimizing the reconstruction error expressed in
Table 2, we are able to consistently obtain the lowest reconstruction error for
all datasets, sometimes with great improvements compared to the ADMM (see
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Table 1. Average log-loss on each of the perspective datasets over the 6 camera paths.

Method \Dataset Articulated Balloon Paper Stretch Tearing

Orthogonal

BMM [14] -1.645 -2.267 -1.712 -2.282 -1.453
Ours-NN -1.800 -2.352 -2.188 -2.509 -1.634

R-BMM [27] -1.648 -1.979 -1.855 -1.997 -1.522
Ours-WNN -1.648 -1.979 -1.855 -1.997 -1.522

Perspective

ADMM-NN -2.221 -2.529 -2.338 -2.395 -1.471
Ours-NN -2.415 -2.657 -2.560 -2.622 -2.053

ADMM-WNN -2.455 -2.617 -2.195 -2.651 -1.688
Ours-WNN -2.486 -2.931 -2.777 -2.857 -2.103

Table 2. Average reconstruction errors, in millimeters, on each dataset over the 6
camera paths relatively to the provided ground-truth structure.

Method \Dataset Articulated Balloon Paper Stretch Tearing

Orthogonal

BMM [14] 18.49 10.39 8.94 10.02 14.23
Ours-NN 18.31 8.53 10.94 10.67 17.03

R-BMM [27] 16.00 7.84 10.69 7.53 16.34
Ours-WNN 15.03 8.05 10.45 9.01 16.20

Perspective

ADMM-NN 16.70 8.05 7.96 6.04 9.40
Ours-NN 16.13 6.48 6.80 6.00 9.31

ADMM-WNN 18.33 8.95 10.14 8.06 9.28
Ours-WNN 16.53 6.27 5.68 5.93 8.42

Balloon and Stretch in Figure 3). The same does not apply for the orthogonal
data, where achieving lower energies did not lead to lower reconstruction errors.

6 Conclusions

In this paper we show that it is possible to optimize a general class of singular
value penalties using a bilinear parameterization of the matrix. We show that
with this parameterization weighted nuclear norm penalties turn in to smooth
objectives that can be accurately solved with 2nd order methods. Our proposed
approach starts by using ADMM which rapidly decreases the objective the first
couple of iterations and switches to Levenberg-Marquardt when ADMM itera-
tions make little progress. This results in a much more accurate solution and we
showed that we were able to extend the recently proposed pOSE [24] to handle
non-rigid reconstruction problems.

While 2nd order methods offer increased accuracy, our approach is expen-
sive since iterations require the inversion of a large matrix. Exploring feasible
alternatives such as preconditioning and conjugate gradient approaches is an
interesting future direction.

Something that we have not discussed is adding constraints on the factors,
which is possible since these are present in the optimization. This is very relevant
for structure from motion problems and will likely be an fruitful direction to
explore.
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