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Abstract. Domain Adaptation as an important tool aims to explore a
generalized model trained on well-annotated source knowledge to address
learning issue on target domain with insufficient or even no annotation.
Current approaches typically incorporate data from source and target
domains for training stage to deal with domain shift. However, most do-
main adaptation tasks generally suffer from the problem that measuring
the domain shift tends to be impossible when target data is inaccessible.
In this paper, we propose a novel algorithm, Hybrid Generative Network
(HGNet) for Zero-shot Domain Adaptation, which embeds an adaptive
feature separation (AFS) module into generative architecture. Specifi-
cally, AFS module can adaptively distinguish classification-relevant fea-
tures from classification-irrelevant ones to learn domain-invariant and
discriminative representations when task-relevant target instances are
invisible. To learn high-quality feature representation, we also develop
hybrid generative strategy to ensure the uniqueness of feature separa-
tion and completeness of semantic information. Extensive experimental
results on several benchmarks illustrate that our method achieves more
promising results than state-of-the-art approaches.
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1 Introduction

Computer vision community always suffers from insufficient annotation issue,
which dramatically obstructs the practical applications of most techniques. How-
ever, domain adaptation provides an alternative strategy to handle with such
a problem [24, 9, 28]. Concretely, it attempts to borrow knowledge from well-
annotated modality (source domain) to solve classification task on target domain
without any label information [30, 32, 35]. Although various domains share the
high-level semantic information, their data distributions contain significant dis-
crepancy defined as domain shift [10, 34, 13]. For example, due to light condition
or occlusions, visual instances involving the same object are different from each
other [4]. As a result, the previously-trained model generally tends to be fragile
when evaluated on target domain.

Domain adaptation (DA) as a solution to learn domain-invariant knowledge
attracts great interest [7, 2, 20, 22]. To learn transferable information, it assumes
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that instances of target modality are available [23, 17, 5]. Under such an assump-
tion, recent works mainly explore two approaches: discrepancy measurement [16]
and domain adversarial confusion [15, 35]. Specifically, the first strategy aims to
define novel statistic indicators like maximum mean discrepancy (MMD) [7]
promoting the consistency of distribution. While methods based on domain ad-
versarial confusion expect to transform data of source and target domain into
the similar hidden space by using adversarial relationship between generator and
discriminator. They actually have achieved promising improvement in distinctive
tasks. In real-world scenarios, however, the assumption which they depend on is
infeasible due to the absence of target domain. The general situation is defined
as zero-shot domain adaptation (ZSDA) [21], which is also known as missing
modality transfer learning [8]. For instance, to protect privacy of patient, hospi-
tal fails to share medical records to train the model, even though they expect to
apply the trained model for their work, where these documents represent target
domain. In this sense, the current DA methods are more likely to be invalid since
the guidance of target datatset becomes invisible.

The awkward situation inspires [19] to proposes domain-invariant component
analysis (DICA) by using multiple source domains with identical label space to
build a generalized model for unseen target recognition. However, they hardly
collect sufficient source domains to observe the information of unseen target
modality. To solve this problem, the intuitive motivation is to introduce aux-
iliary task-irrelevant dataset (TIR), which also includes two same modalities
with the task-relevant one (TR) [8]. Alternatively, [21] develops the first deep
model for zero-shot domain adaptation which firstly attempts to achieve the fea-
ture alignment on task-irrelevant datasets and then allows source modalities in
TR and TIR to share the same network. Moreover, the generalization of neural
network facilitates the consistency of cross-domain distribution on task-relevant
dataset. Albeit the training manner enables model to generate domain-invariant
representation, features tend to be less discriminative without the guidance of
annotation when training model on task-irrelevant inputs, leading to the decrease
of recognition. Meanwhile, due to the huge achievement of generative adversarial
model in abundant practical scenarios, it is appropriate to utilize this manner
to synthesis missing modality and directly perform domain adaptation in TR
datasets [27] named CocoGAN. However, the drawbacks of generative adver-
sarial network is that there exists bias between generated instances and real
samples, since synthesised images only try to approximate the real distribution.
Thus, estimating the influence of bias on the final classification task tend to
be very difficult. On the other hand, we naturally post a question about Coco-
GAN: “Is the explicit generation of missing target dataset necessary for learning
domain-invariant feature?”.

To answer this question, we rethink Zero-shot Domain Adaptation from fea-
ture separation and propose Hybrid Generative Network (HGNet), which not
only synthesises domain-invariant feature but also effectively facilitates high-level
representation to be more discriminative. Specifically, the whole network archi-
tecture mainly consists of four components: feature extractor, adaptive feature



Hybrid Generative Network for Zero-shot Domain Adaptation 3

separation module, hybrid generator and classifier. Input signals of TR and TIR
datasets firstly pass through feature extractor and are transformed into shallow
convolutional units. For the second step, feature separation module adaptively
selects several channels to form classification-relevant high-level feature, while
others are considered as classification-irrelevant information. In the final stage,
on one hand, we apply the supervision of annotation to learn more discrimi-
native units. On the other hand, hybrid generator will integrate object context
and domain information belonging to various datasets to reconstruct input data.
Extensive experimental performances illustrate that the hybrid strategy guaran-
tees the uniqueness of feature separation as well as the completeness of semantic
information. The contributions of our method are summarized in three folds:

– From the perspective of feature separation, we introduce a novel strategy
named Hybrid Generative Network (HGNet) to fight off ZSDA more effec-
tively. The proposed feature separation module guided by annotation ex-
plores global information from shallow convolutional layers to extract more
discriminative and domain-invariant units.

– To perform high-quality feature separation, we develop hybrid generation
module assisting model to capture association between task-relevant (TR)
and task-irrelevant (TIR) datasets. The benefit of such a relationship is to
utilize cross-domain knowledge learned from TIR to eliminate domain shift
on TR datasets.

– We assess our model on several visual cross-domain tasks, and HGNet out-
performs competitive approaches by large margin in most cases, illustrating
the effectiveness on solving ZSDA challenge. We further conduct extensive
empirical study to demonstrate the function of hybrid generation.

2 Related Work

Domain adaptation (DA) has attracted great interest as it addresses limited
annotation problem [25]. And recent works attempt to apply DA strategy in
computer vision like image classification [12, 18], object segmentation [29, 36,
26] and image caption [3]. However, they generally suffer from a primary chal-
lenge defined as domain shift deriving from the difference of distribution across
domains. To mitigate such an issue, current proposed approaches are divided
into two branches: dissimilarity measurement using statistic indicators to align
distribution [16, 11] and domain adversarial confusion [15, 35, 30] adopting ad-
versarial manner to generate cross-domain features in the same latent space.
Although these methods effectively learn domain-invariant representation, they
significantly depend on the existence of samples from target domain. As a result,
the situation where we fails to have access to the target modality dramatically
obstructs the practical application of these techniques, which triggers another
hot research topic named zero-shot domain adaptation (ZSDA) [27] also known
as missing modality transfer learning [8]. The novel problem assumes that we
just are given task-relevant source domain and auxiliary datasets including task-
irrelevant source and target domains.
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For the existing methods to solve ZSDA, they firstly attempt to utilize task-
irrelevant samples to eliminate cross-domain discrepancy and then they trans-
form samples of task-relevant source and target domain into the same hidden
space [21]. In addition, with the advance of generative adversarial network in
recent year, [27] proposes conditional coupled GAN (CoCoGAN) to generate
task-relevant paired samples in the first step and train classifier on synthesised
dataset. Different from them, we rethink ZSDA from the perspective of fea-
ture separation selecting more discriminative feature as domain-invariant fea-
ture, which effectively promote the generalization of model. And to obtain high-
quality feature separation, we propose hybrid generative strategy ensuring the
uniqueness of feature and the completeness of semantic information.

3 The Proposed Method

3.1 Preliminaries and Motivation

Zero-shot Domain Adaptation aims to exploit all accessible data to learn robust
and generalized model used to deal with classification issue on target domain.
Concretely, we are given well-annotated task-relevant source dataset Dr,s =
{(Xr,s

i , Y r,si )}ni=1, where Xr,s
i and Y r,si separately denote i-th visual instance and

its corresponding label. In addition, we also have access to task-irrelevant cross-
domain paired datasets Dir,s = {(Xir,s

i , Y ir,si )}
m

i=1 and Dir,t = {(Xir,t
i , Y ir,ti }

m

i=1.

Although Xir,s
i and Xir,t

i lie in various domains (source and target), they belong

to the same category i.e., Y ir,si = Y ir,ti . To this end, it is impossible for model

to capture any knowledge of task-relevant target dataset Dr,t = {Xr,t
i }

n

i=1 only
available in the test stage. The current scenario mainly involves two challenges:
1) Generation of domain-invariant representation: The absence of Dr,t re-
sults in huge difficulty of directly measuring cross-domain discrepancy between
Dr,s and Dr,t; 2) Fusion of various datasets: Tremendous difference among
Dr,s, Dir,s and Dir,t dramatically interferes their connection.

To capture domain shift between Dr,s and Dr,t, the intuitive idea [27] is to
firstly synthesize missing modality Dr,t and then transform them into the similar
latent space, which arises a question: “Is the explicit generation of missing target
dataset necessary for learning domain-invariant feature?” To answer this ques-
tion, we rethink and explore the extraction of domain-invariant representation
from the perspective of feature separation. Specifically, the intrinsic knowledge
of input data generally is stored in high-level semantic representation via fea-
ture extractor. However, these semantic information is not equally necessary in
terms of classification task. Admittedly, partial abstract representations record
abundant essential content as visual style or background in object image, but
they are drastically various across domains. We consider these representations
as classification-irrelevant features, which are undesirable in domain adaptation.
On the other hand, the remaining part defined as classification-relevant feature
has positive influence on our final object classification task. Considering the
previous approaches about domain-invariant feature learning, it is irrational or
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Fig. 1: Overview of the proposed HGNet, which mainly includes four components:
encoder, decoder, classifier and adaptive feature separation module. The encoder
firstly aims to extract convolutional features, and then the adaptive feature
separation module attempts to learn classification-relevant and classification-
irrelevant units. On one hand, we utilize label information to guarantee the effect
of feature separation. On the other hand, we explore two reconstruction manners
to promote the completeness of semantic information and the uniqueness of
learned feature.

even counterproductive to incorporate all information into the same represen-
tation. Therefore, we achieve two primary conclusions: 1) Feature separation is
important to distinguish domain-invariant feature out of classification-irrelevant
features instead of generating missing dataset Dr,t; and 2) we should only explore
discriminative information on the the selected classification-relevant representa-
tions. According to these discussions, we propose our adaptive feature separation
module embedded into auto-encoder framework.

Due to feature separation, classification-irrelevant representations of instances
from Dr,s and Dir,s should preserve high-similarity. Such relationship is also ap-
plied to Dr,t and Dir,t. Cross-domain paired datasets Dir,s and Dir,t tend to be
transformed into the same hidden space with respect to classification-relevant
feature, which is also suitable for Dr,s and Dr,t. Based on these above analyses,
we develop hybrid reconstruction strategy to build the connection among various
datasets and promote the performance of domain adaptation.

3.2 Adaptive Feature Separation

To effectively learn domain-invariant hidden units, we propose adaptive feature
separation module, which is capable of distinguishing classification-relevant fea-
tures from classification-irrelevant ones. As a result, the mechanism tends to



6 H. Xia and Z. Ding.

describe same instance from two completely distinctive semantic views. To be
specific, a branch of this module guided by discriminative information (anno-
tation) aims to generate classification-relevant features, while the other branch
will store other semantic contents. Moreover, auto-encoder framework combines
them to reconstruct the input signal, which indeed guarantees the completeness
of information and the difference between these two types of feature. From this
property, we explore automatic feature selection from channel level.

Additionally, due to the generalization of deep neural network on feature
learning, Dr,s and Dir,s belonging to the same modality should share the network
architecture and corresponding parameters. For Dir,t, the difference between
source and target domain inspires us to adopt a distinctive network framework
sharing parameters in higher network layers with the network for source domain.
As shown in Figure 1, two various encoders involving convolutional operation
convert the input signals Xr,s, Xir,s and Xir,t into abstract representations Fr,s,
Fir,s, Fir,t ∈ RW×H×C , where W , H separately denote the width and height of
each tensor, and C is the number of channel in tensor. At this time, the extracted
features incorporate all semantic information of input data.

To learn domain-invariant features, we implement convolutional transfor-
mation to generate classification-relevant feature F → F̂cr ∈ RW×H×C and
classification-irrelevant one F → F̂cir ∈ RW×H×C , where F is selected from
{Fr,s,Fir,s,Fir,t}. The first transformation F→ F̂cr performs a positive activa-
tion on convolutional layer via the guidance of label information to capture more
discriminative information while gradually eliminating classification-irrelevant
semantic content preserved in F̂cir with negative activation. Concretely, we
firstly operate global average pooling technique on shallow convolutional feature
F to obtain the information increment of each channel defined by V ∈ R1×1×C .
Intuitively, each element vi ∈ V roughly reflects content and style of the corre-
sponding channel. To observe the connection across channels and separate fea-
tures, we first adopt two distinctive non-linear manners to compress V to Ṽcr and

Ṽcir ∈ R1×1×C
γ , where γ is a ratio controlling the scale of dimension-reduction

and then utilize various full-connection layers to obtain new channel-wise statis-
tics V̂cr and V̂cir ∈ R1×1×C . After the activation operation, V̂cr ideally promotes
performance of several channels recording extensive discriminative information,
while V̂cir enhances representation of others. Based on the above explanation,
convolutional conversion can be formulated as:

V̂cr = σ
(
Wcrδ

(
gcr(V)

))
, V̂cir = σ

(
Wcirδ

(
gcir(V)

))
, (1)

where Wcr, Wcir ∈ RC×C
γ , σ(·) and δ(·) represent Sigmoid and ReLU acti-

vation functions, gcr(·) and gcir(·) refer to the non-linear dimension-reduction
operations. To achieve the feature separation based on classification-task, we
conduct channel-wise multiplication (⊗) between original convolutional features
F and learned channel-wise indicators V̂cr, V̂cir as the following:

F̂cr = V̂cr ⊗ F = {v̂cr,i · Fi}Ci=1, F̂cir = V̂cir ⊗ F = {v̂cir,i · Fi}Ci=1. (2)
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To guide feature separation on convolutional layer, we enforce F̂cr and F̂cir
to pass through a series of operations including Pooling, FC, ReLU and FC
to synthesize high-level semantic features hcr and hcir ∈ Rd×1, where d is the
dimension of feature. The learned representation hcr as domain-invariant fea-
ture should be fed into the corresponding classifier to promote its discriminative
ability. Considering that hcir is required to preserve classification-irrelevant in-
formation, the concatenation of hcr and hcir will be taken as input for decoder
including several deconvolutional layers [33] to achieve the reconstruction about

the input data, i.e., X̂ = G(hcr, hcir), where G denotes neural network of de-
coder. Therefore, the objective function of adaptive feature separation module
is written as:

min
Θ

Lc(C(hcr), Y ) + ‖X− G(hcr, hcir)‖2F

hcr ∈ {hr,scr , hir,scr , h
ir,t
cr }, Y ∈ {Y r,s, Y ir,s, Y ir,t}

hcir ∈ {hr,scir, h
ir,s
cir , h

ir,t
cir }, X ∈ {Xr,s,Xir,s,Xir,t},

(3)

where Θ refers to all parameters of model, C = {Cr,Cir} represents classifier
(hir,scr and hir,tcr share classifier Cir, while classifier Cr is target for hr,scr ), Lc(·)
means cross-entropy loss and G consists of two types: Gs shared by source domain
and Gt used by target domain. Note that the application of objective function
requires the consistence of superscript.

3.3 Hybrid Generation

The benefit of adaptive feature separation is to extract more discriminative
domain-invariant feature with the guidance of label information. To further elim-
inate domain shift, we propose hybrid reconstruction strategy capturing the con-
nection across various datasets. In other words, we explore the feature alignment
between Dir,s and Dir,t as well as the consistence of modality over Dr,s and Dir,s
to reduce cross-domain discrepancy of Dr,s and unavailable Dr,t.

According to Section 3.2, any input signals passing through correspond-
ing encoder and adaptive feature separation module will be transformed into
classification-relevant features and classification-irrelevant ones. Due to the paired
relationship between Xir,s and Xir,t, it is reasonable to assume that there exists
high similarity between hir,scr and hir,tcr (i.e. hir,scr ≡ hir,tcr ) derived from correspond-
ing input data. In terms of such equivalent property, we can assert the decoder
Gt performed on (hir,scr , hir,tcir ) and (hir,tcr , hir,tcir ) tend to generate the same result,
which is formulated as:

Gt(hir,scr , h
ir,t
cir ) ≡ Xir,t ≡ Gt(hir,tcr , h

ir,t
cir ). (4)

With respect to the decoder of source domain Gs, we can similarly draw the
conclusion as:

Gs(hir,scr , h
ir,s
cir ) ≡ Xir,s ≡ Gs(hir,tcr , h

ir,s
cir ). (5)
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To this end, the loss function of hybrid reconstruction and feature alignment
is defined:

Lirhr = λ‖hir,scr − hir,tcr ‖2F + ‖Gt(hir,scr , h
ir,t
cir )−Xir,t‖2F

+ ‖Gs(hir,scr , h
ir,s
cir )−Xir,s‖2F ,

(6)

where λ is the hyper-parameter controlling the reconstruction and feature align-
ment. The first term in Eq. (6) not only achieves distribution alignment over
task-irrelevant datasets, but also gradually eliminates the difference of models
on feature learning. Under such condition, even though target dataset Dr,t is
unavailable for training stage, the similarity of model effectively facilitates the
consistency of feature representation across Dr,s and Dr,t. Meanwhile, hybrid
reconstruction loss plays an essential role in achieving the goal of feature sepa-
ration, which aims to preserve abundant meaningful and discriminative feature
in classification-relevant representation via the last two terms.

From Figure 1, we observe that classification-irrelevant units derived from
Xr,s and Xir,s ideally should maintain high correlation, since their correspond-
ing input signals belong to the same modality. However, hr,scr and hir,scr tend to
describe distinctive objects of images. The expected association between Dr,s
and Dir,s is expressed as:

Gs(hr,scr , h
r,s
cir) ≡ Xr,s ≈ Gs(hr,scr , h

ir,s
cir ). (7)

Gs(hir,scr , h
ir,s
cir ) ≡ Xir,s ≈ Gs(hir,scr , h

r,s
cir). (8)

Therefore, we explore hybrid generation to satisfy such a requirement and
reformulate our objective function as:

Lshr = ‖Gs(hr,scr , h
ir,s
cir )−Xr,s‖2F + ‖Gs(hir,scr , h

r,s
cir)−Xir,s‖2F . (9)

Remarks: If we have access to the missing target modality Xr,t, the constraint
of Eq. (9) enables the model to capture relationships: Gt(hr,tcr , h

ir,t
cir ) ≈ Xr,t ≡

Gt(hr,tcr , h
r,t
cir) and Gt(hir,tcr , h

r,t
cir) ≈ Xir,t ≡ Gt(hir,tcr , h

ir,t
cir ). Moreover, under the

supervision of Eq. (9), we also achieve the conclusion Gt(hr,scr , h
r,t
cir) ≈ Xr,t ≡

Gt(hr,tcr , h
r,t
cir) and Gs(hr,tcr , h

r,s
cir) ≈ Xr,s ≡ Gs(hr,scr , h

r,s
cir). Through such mediate

manner, the model finally achieves domain adaptation across Dr,s and Dr,t.

3.4 Training and Inference

Given accessible datatsets Dr,s, Dir,s and Dir,st, we firstly perform initial feature
separation within each dataset. And then hybrid reconstruction as an important
component captures delicate association across all datasets to gradually reduce
cross-domain discrepancy between Dr,s and missing target dataset Dr,t. Finally,
we utilize the feature extractor of target domain to learn feature of Xr,t and
apply classifier Cs(·) to perform classification task. Therefore, the overall process
is summarized as three steps:
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Step A: Input data including Xr,s, Xir,s and Xir,t first is fed into the encoder
to learn convolutional features. And then we perform adaptive feature separation
on convolutional layers to obtain classification-relevant unit hcr and hcir. Finally,
the concatenation of hcr and hcir is exploited to reconstruct input signal. During
learning stage, we explore objective function (3) to update model.
Step B: To achieve the expected feature separation and domain adaptation,
we should integrate hybrid reconstruction and the guidance of label information
into a unified loss function as:

min
Θ

Lirhr + Lshr + Lc
(
C(hcr), Y

)
hcr ∈ {hr,scr , hir,scr , h

ir,t
cr }, Y ∈ {Y r,s, Y ir,s, Y ir,t},

(10)

where C consists of Cs classifier used by hr,scr and Ct classifier shared by hir,scr

and hir,tcr . We train the network according to Eq. (10) until convergence.
Step C: During inference stage, instances Xr,t will be passed through the en-

coder used by Xir,t to obtain high-level feature hr,tcr . Eventually, we utilize clas-
sifier Cs to predict the annotation of hr,tcr .

4 Experiments

4.1 Datasets and Comparisons

We perform experiments on three popular benchmarks involving MNIST [14],
Fashion MNIST [31] and EMNIST [6] to verify the effectiveness of our method.
For the convenience and clarity, we utilize dataset IDs DM , DF and DE to refer
to them. In addition, there exists three techniques to transform each gray-scale
image into the corresponding negative, color and edge images.

MNIST (DM ) dataset is developed to identify handwritten digit image. The
dataset includes 70,000 gray-scale images, where 60,000 training instances and
10,000 testing images. Each visual instance with same size 28×28 only represents
one of ten digits from 0 to 9.

Fashion MNIST (DF ) dataset includes abundant fashion trappings im-
ages. Experts in fashion field artificially divide them into ten categories: T-shirt,
trouser, pullover, dress, coat, sandals, shirt, sneaker, bag, and ankle boot. The
dataset has the same sample scale with MNIST, i.e 60,000 training instances
and 10,000 testing samples. The image size of each sample is also 28×28.

EMNIST (DE) dataset different from MNIST records extensive handwrit-
ten alphabets images. The uppercase and lowercase letters are merged into a
balanced dataset with 26 categories. The image size of each sample is 28 × 28.
Moreover, it involves 124,800 images for training and 20,800 images for testing.

Modality Transformation: All instances in the above mentioned datasets
are gray-scale images and we define this modality as G-domain. To perform
domain adaptation, We firstly follow the operations in [27] to convert all original
data into negative image (N-domain) by using Xn = 255 − X, X ∈ Rm×n×1

where m and n are the spatial dimensions of image. Moreover, we apply canny
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Table 1: Classification Accuracy (%) of our method and three baselines for do-
main adaptation from gray-scale modality (G-domain) to color modality (C-
domain). The best result in each column is in bold.

RT MNIST (DM ) Fashion-Mnist EMNIST (DE)

IRT DF DE DM DE DM DF

ZDDA [21] 73.2 94.8 51.6 65.3 71.2 47.0

CoGAN [27] 68.3 74.7 39.7 55.8 46.7 41.8

CoCoGAN [27] 78.1 95.6 56.8 66.8 75.0 54.8

HGNet 85.3 95.0 64.5 71.1 71.3 57.9

detector to create edge images Xe (E-domain). Finally, in terms of color version,
we randomly extract several patches (P ∈ Rm×n) from the BSDS500 dataset [1]
and then blend them with images X to form color images Xc (C-domain).

Comparisons: To evaluate the performance of our method, we select three
baselines as competed methods which are currently the only works exploring
the application of deep learning on zero-shot domain adaptation problem. The
first compared approach is ZDDA [21], which propose sensor fusion to solve
domain shift. Moreover, [27] utilizes two models named CoGAN and CoCoGAN
to address ZSDA issue, which are considered as two various approaches.

4.2 Implementation Details

The network architecture of our method mainly includes three components: en-
coder, decoder and classifier. Although source and target utilize various net-
works, they have the same network structure. Thus, we take the branch of source
domain as an example to illustrate the specific implementation. With respect
to the encoder, we adopt three convolutional layers with stride 2 to extract
channel-level feature and apply ReLU to activate the output of the first two
layers. Symmetrically, the decoder has three deconvolutional layers with stride
2 to recover hidden representation to input data. There are two classifiers used
in our proposed method and they both have two full-connection layers followed
by Softmax function.

4.3 Experimental Results

In order to validate the effectiveness of our method, we create five different zero-
shot domain adaption settings. We firstly consider gray-scale images as source
domain and the other three domains will be target domain. Thus, there are three
domain adaptation tasks: G-domain → N-domain, G-domain → E-domain and
G-domain→ C-domain. In addition, we also attempt to transfer knowledge from
color domain or negative domain to gray domain, i.e., C-domain → G-domain
and N-domain→ G-domain.
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Table 2: Classification Accuracy (%) of our method and three baselines for two
domain adaptation tasks :N-domain → G-domain and G-domain → N-domain.
The best result in each column is in bold.

Task N-domain→G-domain G-domain→N-domain

RT DM DF DE DM DF DE

IRT DF DE DM DE DM DF DF DE DE DF

ZDDA [21] 78.5 87.6 56.6 67.1 67.7 45.5 77.9 90.5 62.7 53.4

CoGAN [27] 66.1 76.3 49.9 58.7 53.0 32.5 62.7 72.8 51.2 39.1

CoCoGAN [27] 80.1 93.6 63.4 72.8 78.8 58.4 80.3 93.1 69.3 56.5

HGNet 87.5 95.0 64.6 75.1 78.0 67.9 83.7 95.7 71.7 62.3

According to descriptions of dataset, we know these three datasets involves
three completely distinctive objects: digits, trappings and letters. When selecting
one of them as task-relevant dataset, we can consider others as task-irrelevant
datasets which assist model to capture cross-domain discrepancy and promote
classification accuracy on missing target modality (Dr,t). Firstly, we attempt
to transfer knowledge from gray-scale modality (G-domain) to color modality
(C-color). Compared with gray-scale image, original RGB image generally in-
volve three color channels, which dramatically increase the difficult in achieving
domain adaptation. Experimental performances are summarized in Table 1. In
terms of these results, our proposed method (HGNet) obtains the best classifica-
tion accuracy in three datasets. And there exist significant differences between
HGNet and CoCoGAN achieving the second best performance. Specifically, our
proposed approach surpasses CoCoGAN by 7.7% when Fashion-MNIST and
MNIST separately are task-relevant and task-irrelevant datasets. On the one
hand, the empirical results provide convincing answer (No) to the question in
Section 3.1: is the generation of missing target dataset necessary for learning
domain-invariant feature. On the other hand, it illustrates that hybrid genera-
tive manner guarantees the uniqueness of feature separation and the application
of it enable model to learn more discriminative domain-invariant feature.

For the second step, we conduct transformation between gray-scale modality
(G-domain) and negative modality (N-domain) and summary the correspond-
ing performances in Table 2. From these experimental results, we can obtain
three conclusions. First of all, the proposed algorithm (HGNet) achieves more
promising performances than other baselines in most cases. Specifically, when
separately selecting DE and DF as task-relevant and task-irrelevant datasets,
our approach outperforms CoCoGAN by 5.8% on the domain adaptation task
(G-domain → N-domain). Secondly, we notice that classification accuracy of all
mentioned methods on Fashion-MNIST (task-relevant datatset) is lower than
that on other two datasets. The main reason for this derives from that trap-
pings images are more complex than digits and letters images. However, HGNet
still improve 1%∼3% when compared with the second best result obtained by
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Table 3: Classification Accuracy (%) of our method and three baselines for two
domain adaptation tasks :G-domain → E-domain and C-domain → G-domain.
The best result in each column is in bold.

Task G-domain→E-domain C-domain→G-domain

RT MNIST (DM ) EMNIST (DE) MNIST (DM ) Fashion (DF )

IRT DF DE DM DF DF DE DM DE

ZDDA [21] 72.5 93.2 73.6 50.7 67.4 87.6 55.1 59.5

CoGAN [27] 67.1 81.5 63.6 51.9 54.7 63.5 43.4 51.6

CoCoGAN [27] 79.6 95.4 77.9 58.6 73.2 94.7 61.1 70.2

HGNet 86.5 96.1 81.1 59.5 78.9 95.0 65.9 68.5

CoCoGAN. Finally, although these two transformation (G-domain → N-domain
and N-domain → G-domain) are mutually inverse operations, classification ac-
curacy of most approaches on G-domain → N-domain are better than their
performances on N-domain → G-domain. But the results of HGNet on these
two transformations are competitive, which means our method has much better
generalization.

In the final experiment, we explore G-domain→E-domain and C-domain→G-
domain to further verify the effectiveness of HGNet. Results are reported in
Table 3. The performance of HGNet is better than others in most cases. In-
terestingly, we find that although there exists high similarity between DM and
DE , it difficult for most methods to achieve great transformation on DE with
the assistance of DM . Different from them, our method fully utilizes association
across all available datasets to reduce cross-domain discrepancy, leading to the
improvement on classification accuracy to 81.1%.

4.4 Ablation Study

Effect of Hybrid Strategy: According to the discussion about hybrid recon-
struction, we know that this part enable the proposed model to further guarantee
the uniqueness of feature separation and promote generalization across various
domains by using association of all given datasets. In order to clearly observe the
effect of hybrid reconstruction, we firstly attempt to remove this part from our
method to form another competed method named as HGNet1, while the overall
version of our method is denoted as HGNet2. The goal of experiments in this
section is to achieve the transformation from N-domain to G-domain and Figure
2 (a) lists results, where the expression A(B) means A is task-relevant dataset
while B represents task-irrelevant one.

As seen in Figure 2 (a), the absence of hybrid reconstruction suffers from sig-
nificant negative influence on the classification accuracy. HGNet2 outperforms
HGNet1 by 10% for DF (DM ), illustrating that hybrid strategy not only effec-



Hybrid Generative Network for Zero-shot Domain Adaptation 13

(a) (b) (c)

Fig. 2: Experiments are performed on adaptation from N-domain to G-domain.
And the expression A(B) means A is the task-relevant dataset while B represents
the task-irrelevant one. (a) We denote our proposed method without hybrid
reconstruction as HGNet1 and the overall version as HGNet2. (b) We select λ
from {0.1, 1.0, 5.0, 10.0, 15.0} and observe the classification accuracy. (c) When
DE is the task-irrelevant datasets, we show the feature visualization on MNIST.

tively generates more discriminative feature representation but also captures
more cross-domain information from all available data to reduce domain shift.

Fig. 3: Visualization of hybrid generation. The first
three columns represents the inputs: Xr,s, Xir,s and
Xir,t, while the last four columns are hybrid gen-
erative visual signals: Gs(hr,scr , h

ir,s
cir ), Gs(hir,scr , h

r,s
cir),

Gt(hir,scr , h
ir,t
cir ) and Gs(hir,tcr , h

ir,s
cir ).

Additionally, we present
the generated images in
Figure 3 via hybrid gen-
eration to verify its abil-
ity performing transfor-
mation between source
and target domains. In
terms of the visualiza-
tion, we find that hybrid
strategy captures cross-
domain discrepancy. Specif-
ically, in the first two
rows, images synthesised
by G(hir,scr , h

ir,t
cir ) actu-

ally integrate main ob-
jects from Xir,s and the
corresponding modality
style (N-domain) from
Xir,t. It means that
our proposed method
achieves high-quality sep-
aration of semantic in-
formation, which assists
model to learn domain-invariant feature and promote classification accuracy.

Parameters Analysis: To show the function of feature alignment on task-
irrelevant dataset, we change the value of λ from 0.1 to 15 and record results (N-
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(a) Confusion Matrix on MNIST (b) Confusion Matrix on Fashion-MNIST

Fig. 4: Visualization of Confusion Matrix. Experiments are performed on adapta-
tion from N-domain to G-domain. For these two experiments, we select EMNIST
as the task-irrelevant datasets.

domain→G-domain) in Figure 2 (b). With the increasing of λ, HGNet achieves
higher accuracy, illustrating that such feature alignment manner has positive
effect on solving the domain shift issue on task-relevant dataset.
Visualization of Latent Space: To further analyse distribution of high-level
feature, we draw feature visualization and confusion matrix on MNIST and
Fashion-MNIST in Figure 2 (c) and Figure 4. For these experiments, we select
EMNIST as task-irrelevant datasets and transfer negative images (N-domain)
into gray-scale modality (G-domain). From the performance, we know that
HGNet learns clear boundary between various categories, which significantly
promotes feature discriminative.

5 Conclusion

Zero-shot Domain Adaptation (ZSDA) assumes that we hardly access target
samples during training stage. To fight off ZSDA more effectively, we propose
a novel approach named Hybrid Generative Network (HGNet) including fea-
ture extractor, adaptive feature separation module, hybrid generator and clas-
sifier. Concretely, feature extractor learns representations from visual signals,
and then adaptive feature separation module distinguishes classification-relevant
units from classification-irrelevant ones storing meaningless semantic informa-
tion. Moreover, we adopt two manners to perform high-quality feature separa-
tion. One is to use annotation as supervision to generate discriminative feature.
Another is to exploit hybrid generative strategy to extract association across
various available datasets. Finally, extensive experimental results validate the
effectiveness of HGNet on solving ZSDA problem.
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