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Abstract. Rain is a common natural phenomenon. Taking images in the
rain however often results in degraded quality of images, thus compro-
mises the performance of many computer vision systems. Most existing
de-rain algorithms use only one single input image and aim to recover a
clean image. Few work has exploited stereo images. Moreover, even for
single image based monocular deraining, many current methods fail to
complete the task satisfactorily because they mostly rely on per pixel
loss functions and ignore semantic information. In this paper, we present
a Paired Rain Removal Network (PRRNet), which exploits both stereo
images and semantic information. Specifically, we develop a Semantic-
Aware Deraining Module (SADM) which solves both tasks of seman-
tic segmentation and deraining of scenes, and a Semantic-Fusion Net-
work (SFNet) and a View-Fusion Network (VFNet) which fuse semantic
information and multi-view information respectively. We also propose
new stereo based rainy datasets for benchmarking. Experiments on both
monocular and the newly proposed stereo rainy datasets demonstrate
that the proposed method achieves the state-of-the-art performance.

Keywords: Stereo deraining; semantic understanding; rethinking loop;
view fusion; deep learning

1 Introduction

Stereo images processing has become an increasingly active research field in com-
puter vision with the development of stereoscopic vision. Based on stereo images,
many key technologies such as depth estimation [1–3], scene understanding [4–6]
and stereo matching [7–9] have achieved a great success. As a common natural
phenomenon, rain causes visual discomfort and degrades the quality of images,
which can deteriorate the performance of many core models in outdoor vision-
based systems. However, there are few studies for stereo deraining. In this paper,
we address the problem of removing rain from stereo images.

In fact, stereo deraining has an intrinsic advantage over monocular deraining
because the effects of identical rain streaks in corresponding pixels from stereo
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Fig. 1. The illustration of stereo cameras. One pair of images captured by stereo
cameras. Same rain can cause different effects on images from two views.

images are different. As Fig. 1 shows, the mapping of object Iobj on stereo images
can be represented as

Ileft = Iobj ∗
d

f
, Iright = Irefobj ∗

d

f
, (1)

where d and f are the distance between object and camera and the camera focal
length, respectively. Irefobj is the reflection of Iobj . Assuming that the object Iobj

is in the middle of two cameras, the lengths of identical objects, Irefobj and Iobj ,
on stereo views are the same. However, the effects of rain across stereo images
are different. For example, the degraded regions by rain I1rain on the two images
can be denoted as

D1
left = I1rain ∗

drain
f

, D1
right = 0. (2)

I1rain degrades the quality of the object on the left image but does not affect
the visual comfort of the right view. drain is the distance between the camera
and the raindrop. There is also rain influencing different regions on both stereo
images like I3rain. The image in Fig. 1 shows the different effects of identical rain
streaks on stereo views.

Moreover, the geometric cue and semantics provide important prior infor-
mation, serving as a latent advantage for removing rain. Recently, most deep
monocular deraining methods achieve a great success by reconstructing objects
based on pixel-level objective functions like MSE. However, these methods ignore
modeling the geometric structure of objects and understanding the semantic in-
formation of scenes, which in fact benefit deraining. Hu et al. [10] try to remove
rain via depth estimation, but they also fail to understand the rainy scenes.

In this paper, we first propose a semantic-aware deraining module, SADM,
which removes rain by leveraging scene understanding. Fig. 2 illustrates the
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concept of SADM. It contains two parts. The first part is an encoder which
takes a rainy image as input and encodes it as semantic-aware features. Then the
representations are fed into the second part, a conditional generator, to transform
them into the deraining image and scene segmentation. Based on a multi-task
shared learning mechanism and different input conditions, the single SADM is
capable of jointly removing rain and understanding scenes. To further enhance
the understanding of input images, a Semantic-Rethinking Loop is proposed
to utilize the difference between the outputs of the conditional generators in
different stages.

Based on SADM, we then present a stereo deraining model, Paired Rain Re-
moval Network (PRRNet), which consists of SADM, Semantic-Fusion Network
(SFNet) and View-Fusion Network (VFNet). SADM is utilized to learn the se-
mantic information and reconstruct deraining images, while SFNet and VFNet
are to fuse the semantic information with coarse deraining images, and obtain
the final deraining images by fusing stereo views, respectively. Currently, there is
no public large-scale stereo rainy datasets. In order to evaluate the performance
of the proposed method and compare against the state-of-the-art methods, two
large stereo rainy image datasets are thus constructed.

In summary, the contributions of this paper are three-fold:

– Firstly, a multi-task shared learning deraining model, SADM, is proposed to
remove rain via scene understanding. This model not only considers pixel-
level objective functions like previous methods, but also models the geometric
structure and semantic information of input rainy images. Inside SADM,
a novel Semantic-Rethinking Loop is employed to further strengthen the
connection between scene understanding and image deraining.

– Secondly, we propose PRRNet, the first semantic-aware stereo deraining net-
work. PRRNet fuses the semantic information and multi-view information
via SFNet and VFNet, respectively, to obtain the final stereo deraining im-
ages.

– Thirdly, we synthesize two stereo rainy datasets for stereo deraining, which
may be the largest datasets for stereo image deraining. Experiments on
monocular and stereo rainy datasets show that the proposed PRRNet achieves
the state-of-the-art performance on both monocular and stereo deraining.

2 Related Work

2.1 Single Image Deraining

Deraining from a single rainy image is a highly ill-posed task, whose mathemat-
ical formulation is expressed as

O = B +R , (3)

where O, B and R are the observed rainy image, the latent clean image and the
rain-streak component, respectively.
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For traditional methods of recovering the clean deraining image B from the
rainy version O, Kang et al. [11] first detect rain from the high/low frequency
part of input images based on morphological component analysis and remove
rain streaks in the high frequency layer via dictionary learning. Similarly, Huang
et al. [12] and Zhu et al. [13] use sparse coding based methods to remove rain
from a single image. Some works aim to remove rain based on low-rank repre-
sentation [14, 15]. Chen et al. [14] generalize a low-rank model from matrix to
tensor structure, which does not need the rain detection and dictionary learning
stage. In addition, Li et al. [16] use a GMM trained on patches from natural
images to model the background patch priors.

Recently, deep learning achieves significant success in low-level vision tasks
such as image super-resolution [17, 18], deblurring [19, 20], dehazing [21, 22],
which also include deraining [23–32]. These methods learn a mapping between
input rainy images and their corresponding clean version using CNN/RNN based
models. Some of them use an attention mechanism to pay attention to depth
[10], heavy rain regions [33] or density [28]. However, to the best of our knowl-
edge, there are few deep deraining works which try to remove rain via scene
understanding [34].

2.2 Video Deraining

Video deraining is to obtain a clean video from an input rainy video. Compared
with single image deraining, methods for video deraining can not only learn the
spatial information, but also leverage temporal information in removing rain.

Traditional methods try to use prior-based methods to use the temporal con-
text and motion information [35, 36]. Researches formulate rain streaks based on
their intrinsic characteristics [37–41] or propose some learning-based methods to
improve the performance of deraining models [42–46]. For example, Santhasee-
lan et al. [39] and Barnum et al. [47] extract phase congruence features and
Fourier domain features, respectively, to remove rain streaks. Chen et al. [42]
apply photo-metric and chromatic constraints to detect rain and utilize filters
to remove rain in the pixel level.

Deep learning methods are also proposed for video deraining [48–51]. Chen et
al. [50] propose a robust deep deraining model via applying super-pixel segmen-
tation to decompose the scene into depth consistent unites. Liu et al. [48] depict
rain streaks via a hybrid rain model, and then present a dynamic routing residue
recurrent network via integrating the hybrid model and using motion informa-
tion. Yang et al. [51] consider the additional degradation factors in real world
and propose a two-stage recurrent network for video deraining. Their model is
able to capture more reliable motion information at the first stage and keep the
motion consistency between frames at the second stage. Although these methods
use the information of multiple rainy images, all of them extract features from
a sequence of monocular frames and ignore the stereo views.
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2.3 Stereo Deraining

Stereo images provide more information from cross views and have thus been
utilized to improve the performance of various computer vision tasks, including
traditional problems [1, 4, 7] and novel tasks [52–55]. However, there are few
methods that leverage the stereo images to remove rain so far. Yamashit et al. [56]
remove the rain via utilizing disparities between stereo images to detect positions
of noises and estimate true disparities of images regions hidden into rain. In
order to obtain the deraining left-view images, Kim et al. [57] warp the spatially
adjacent right-view frames and subtract warped frames from the original frames.
However, these traditional methods do not consider the importance of semantic
information. Meanwhile, the strong capability of learning features implied in
deep neural networks is also ignored by them.

3 The Semantic-aware Deraining Module

The ultimate goal of our work is to recover the deraining images from their
corresponding rainy versions. In order to improve the capability of our model, a
semantic-aware deraining module is proposed to learn semantic features based
on clean images, rainy images and semantic labels. In this section, we will first
introduce the consolidation of different tasks in Sec. 3.1 and how to train the
proposed module based on images and semantic-annotated images in Sec. 3.2.
Then, a semantic-rethinking loop is discussed in Sec. 3.3 to further enhance our
module and extract powerful features.

3.1 The Consolidation of Different Tasks

Currently, most deep deraining methods directly learn the transformation from
rainy images to derained ones [23]. Inspired by [10], which proposes a depth-
aware network to jointly learn depth estimation and image deraining via two
different sub-networks. In this paper, an autoencoder architecture is employed
to merge different tasks in the learning stage. Fig. 2 illustrates the architecture of
the proposed module. Images are input into the encoder of the proposed module
to extract semantic features F . Then the semantic features F combined with a
task label T are fed into the following decoder architecture to obtain a prediction
P corresponding to label T . Based on different task labels like deraining or scene
understanding, different outputs will be obtained. The learning stage can be
formulated as

P = D(E(I), T ) , (4)

where E and D are the encoder and decoder of SADM, respectively. I is the
input image. T represents the label of different tasks. Based on the output of
the encoder and T , different predictions will be derived.

The branch of image deraining can be denoted as

Ide = σde(P | Tde) , (5)
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Fig. 2. The architecture of the proposed semantic-aware deraining module.
Rainy images are fed into the encoder to extract features. Then the decoders generate
deraining and segmentation results for different tasks.

where Tde corresponds to the label of deraining image. σde is the mapping func-
tion.

The branch of understanding scenes can be denoted as

Iseg = σseg(P | Tseg) , (6)

where Tseg corresponds to the semantic segmentation label. σseg is a softmax
function.

Based on the conditional architecture [58], the proposed SADM can jointly
learn scene understanding and image deraining, which can extract more powerful
semantic-aware features via sharing the information learned from different tasks,
therefore being beneficial to multiple tasks.

3.2 Image Deraining and Scene Segmentation

Image Deraining. When T is set to Tde, the output of the proposed module is
the deraining image. To learn the image deraining model, we compute the image
reconstruction loss based on the MSE loss function:

Lde = ||Ic − σde(D(E(Irainy), Tde))||2 , (7)

where Ic is the clean image.
Scene Segmentation. Most existing deraining methods focus on pixel-level

loss function and thus fail to model the geometric and semantic information.
This makes it difficult for models to understand the input image and generate
deraining results with favorable details. To address this problem, we remove rain
from rainy images by leveraging semantic information. The learning process of
scene understanding can be denoted as

Lseg = σh(Igtseg, Iseg) , (8)

where Iseg and Igtseg indicate the scene understanding of the model and ground
truth labels from auxiliary training sets. σh is the cross-entropy loss function.
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Fig. 3. The Semantic-rethinking Loop. During training, rainy images are fed into
SADM to generate deraining and segmentation results in stage I. Then the deraining
images are utilized to generate segmentation results again in stage II. Through compar-
ing the two segmentation results from rainy and deraining images, SADM can better
understand scenes and remove the undesired rain. SADM s in the two stages share the
weights.

3.3 Semantic-rethinking Loop

Semantic information plays an important role in various tasks of computer vision
[59–64]. In order to further enhance the semantic understanding of our model and
help remove rain, a semantic-rethinking loop is proposed to refine the error-prone
semantic understanding. Fig. 3 illustrates its scheme. It consists of an “updating”
part and a “verification” part, whose core architecture is the semantic-aware
deraining module, which has been illustrated in Fig. 2.

In the training stage, the “updating” part takes a rainy image as input,
and then generates the deraining image and semantic segmentation. Loss func-
tions introduced in above sections are calculated and then update the weights
of layers in the semantic-aware deraining module. Then the deraining image ob-
tained in the “updating” part is fed into the “verification” part to obtain new
semantic segmentation. The semantic understanding can improve the perfor-
mance of deraining, which will be demonstrated in the next section. However,
rain increases the difficulty of scene understanding. Via comparing segmentation
results in different parts and pushing them to be close, SADM can better un-
derstand scenes and thus better deraining. Both “updating” and “verification”
parts employ the semantic-aware deraining module. The main difference between
the “updating” and “verification” parts is that the weights in semantic-aware
deraining module are updated in the “updating” part but fixed in the “verifi-
cation” part. The semantic-rethinking loop provides the content feedback from
the coarse-deraining image and improves the semantic understanding of SADM.
In the testing stage, only the core semantic-aware deraining model is utilized to
remove rain from images. The loss function can be noted as

Lcon = ||Iverseg − Iupseg|| , (9)

where Iverseg and Iupseg are the semantic segmentation results from the “verification”
and “updating” parts, respectively.
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Fig. 4. The architecture of SFNet. The coarse deraining images and semantic seg-
mentation results from SADM are fed into SFNet to generate features volume with
semantic information.

4 The Paired Rain Removal Network

In order to remove rain from stereo images, we further present a PRRNet based
on SADM. The overall of the proposed network will firstly be introduced in Sec.
4.1, and then two core sub-networks will be discussed in Sec. 4.2 and 4.3. Finally,
the objective functions to train the proposed model will be presented in Sec. 4.4.

4.1 Network Architecture

PRRNet consists of three sub-networks, i.e., SADM, Semantic-Fusion Net (SFNet)
and View-Fusion Net (VFNet). SADM is introduced in Sec. 3 to jointly remove
rain and understand semantic information. Semantic-Fusion Net is utilized to
combine the semantic information with coarse deraining images, while View-
Fusion Net is to combine information from different views to obtain final de-
raining images. Due to the above-mentioned stereo semantic-aware deraining
module, the proposed PRRNet simultaneously considers cross views and seman-
tic information to help remove rain from images.

4.2 SFNet

The architecture of SFNet is shown in Fig. 4. The input is semantic segmentation
and coarse deraining images from SADM. Given that the semantic information
can help remove rain, we first process them individually and concatenate them,
and then forward them into the following layers, to generate feature volume,
which is utilized for generating final deraining results.

4.3 VFNet

Fig. 5 illustrates the architecture of VFNet. The input is extracted fusion features
from SFNet. The features extracted from the right view are helpful to remove
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Fig. 5. The architecture of VFNet. Features volumes from stereo images are fused
to generate final stereo deraining images.

the rain in the left-view image. Similarly, removing the rain from the right-
view image also takes advantage of features captured from the left-view image.
Through the VFNet, the final finer deraining stereo images are obtained. The
loss function in this part can be denoted as

Lview = ||I leftde − I leftgt ||+ ||I
right
de − Irightgt ||, (10)

where I leftde and Irightde are stereo deraining images from VFNet, respectively. I leftgt

and Irightgt are the clean version of the stereo images.

4.4 Objective Functions

The loss function consists of two kinds of data terms, which are calculated based
on semantic understanding and deraining reconstruction images. The final loss
function can be written as

Lf = Lde + λ1Lseg + λ2Lcon + λ3Lview, (11)

where Lde and Lview are utilized to remove the rain from rainy images, and
Lseg and Lcon push the model to understand scenes better, which are helpful
for stereo deraining. λ1, λ2 and λ3 are three parameters to balance different loss
functions, which are set as 1.0, 0.2 and 1.0, respectively.

5 Experiments

5.1 Datasets

RainKITTI2012 dataset. To the best of our knowledge, there are no bench-
mark datasets that provide stereo rainy images and their corresponding ground-
truth clean version. In this paper, we first use Photoshop to create a synthetic
RainKITTI2012 dataset based on the public KITTI stereo 2012 dataset [65]. The
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training set contains 4, 062 image pairs from various scenarios, and the testing
set contains 4, 085 image pairs. The size of images is 1242× 375.

RainKITTI2015 dataset. The KITTI2015 dataset is another set from the
KITTI stereo 2015 dataset [65]. Therefore, we also synthesize a RainKITTI2015
dataset, whose training set and testing set contain 4, 200 and 4, 189 pairs of
images, respectively.

Cityscapes dataset. Cityscapes dataset is utilized as the semantic segmen-
tation data to train PRRNet. This dataset contains various urban street scenes
and provides images with pixel-wise segmentation labels. It includes 2, 975 im-
ages and their corresponding ground truth semantic labels.

RainCityscapes dataset. This dataset is built by Hu et al. [10] based on
the Cityscapes dataset [66]. The training set contains 9, 432 rainy images and
the corresponding clean images and depth labels. For evaluation, the testing
set contains 1, 188 images. We use this dataset to evaluate the performance of
monocular deraining.

5.2 Implementation Details

SADM is an encoder-decoder architecture. The encoder network consists of 13
CNN layers, which is initialized by a VGG16 network pre-trained for object
classification. The decoder also has 13 CNN layers. SFNet contains three CNN
layers (32 × 3 × 3) which are utilized to fuse the semantic information. VFNet
contains five ResBlocks [67] to generate final deraining results. Each ResBlock
consists of three CNN layers of 64×3×3 kernels and two ReLU activation layers.
The proposed PRRNet is trained with Pytorch library. The base learning rate
is set to 10−4 and then declined to 10−5. The model is updated with the batch
size of 2 during the training stage. The branches of deraining and segmenta-
tion in SADM are optimized based on the data from RainKITTI2012/2015 and
Cityscapes, respectively.

5.3 Ablation Study

The proposed PRRNet takes advantage of semantic information to remove rain
from images. In order to show the effectiveness of semantic information, we com-
pare the performance of our model with that which is trained without semantic
information. Another advantage of PRRNet is that it fuses the varying informa-
tion in corresponding pixels across two stereo views to remove rain. Therefore,
we also compare models trained on monocular and stereo images. Table 1 and
Fig. 6 show the quantitative and qualitative comparison results. PRRNet(D) is
the model trained on monocular images with the single deraining task. PRR-
Net(D+S) is the one trained on monocular images with both deraining and seg-
mentation tasks. PRRNet(D+S+L) is the model trained on monocular images
with the above two tasks plus the semantic-rethinking loop. PRRNet(stereo) is
our full model trained based on stereo images.
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Table 1. Ablation study on the RainKITTI2012 dataset.

Methods PSNR SSIM

PRRNet (D) 30.71 0.923
PRRNet (D+S) 31.56 0.928
PRRNet (D+S+L) 31.89 0.930

PRRNet (stereo) 33.01 0.936

(a) Input (b) PRRNet(D) (c) PRRNet(D+S)

(d) PRRNet(D+S+L) (e) PRRNet(stereo) (f) Ground truth

Fig. 6. Deraining evaluation of different baseline models on RainKITTI2012.

The results in Table 1 suggest that, the plain PRRNet(D) accomplishes the
task fairly well. Additionally considering the semantic segmentation task, PRR-
Net(D+S) improves the performance. With the semantic-rethinking loop, the
results are further improved by PRRNet(D+S+L). However, the improvement
is not as significant as that from PRRNet(D+S+L) to PRRNet(stereo) in the
stereo case. This is also verified by the qualitative results in Fig. 6. Additional
components incrementally improve the visibility of the input image, and the
image generated by PRRNet(stereo) is the closest to the ground truth.

5.4 Stereo Deraining

We quantitatively and qualitatively compare our PRRNet with current state-
of-the-art methods, which include DDN [27], DID-MDN [28], DAF-Net [10] and
DeHRain [33]. Table 2 and Table 3 show the quantitative results on our synthe-
sized RainKITTI2012 and RainKITTI2015 datasets, respectively. In both tables,
our monocular version, PRRNet(monocular), outperforms the existing state-of-
the-art methods, with remarkable gain. The model PRRNet(stereo) achieves the
best performance with additional improvement. This demonstrates the superi-
ority of stereo deraining over monocular deraining.
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(a) Left input (b) DAF-Net (c) DeHRain (d) Ours (e) GT

(f) Right input (g) DAF-Net (h) DeHRain (i) Ours (j) GT

Fig. 7. Qualitative evaluation of current SOTA models on RainKITTI2012.

(a) Left input (b) DAF-Net (c) DeHRain (d) Ours (e) GT

(f) Right input (g) DAF-Net (h) DeHRain (i) Ours (j) GT

Fig. 8. Qualitative evaluation of current SOTA models on RainKITTI2015.

Figs. 7 and 8 compare the qualitative performances between our method
PRRNet(stereo) and various state-of-the-art methods. The results produced by
our method exhibit the smallest portion of artifacts, by referring to the ground
truths.

5.5 Monocular Deraining

The proposed PRRNet is not only able to remove rain from stereo images, but
also has the advantage of removing rain from a single image with its monocular
version. In this section, we also evaluate it on the monocular dataset RainCi-
tyscapes. We compare the PRRNet ’s monocular version, PRRNet(monocular),
with the state-of-the-art methods, including DID-MDN [28], RESCAN [29], JOB
[13], GMMLP [16], DSC [69], DCPDN [68], and DAF-Net [10], from both quan-
titative and qualitative aspects.

The quantitative results on the RainCityscapes dataset are shown in Table
4. DID-MDN [28] and DCPDN [68] perform well and DAF-Net [10] outperforms
these two methods. Our monocular version PRRNet(monocular) achieves the
best performance compared with all the compared methods on this task, re-
vealing the effectiveness of taking semantic segmentation into consideration and
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Table 2. Quantitative evaluation on the RainKITTI2012 dataset.

Methods PSNR SSIM

DDN [26] 29.43 0.904
DID-MDN [28] 29.14 0.901
DAF-Net [10] 30.44 0.914
DeHRain [33] 31.02 0.923

PRRNet(monocular) 31.89 0.930
PRRNet(stereo) 33.01 0.936

Table 3. Quantitative evaluation on the RainKITTI2015 dataset.

Methods PSNR SSIM

DDN [26] 29.23 0.906
DID-MDN [28] 28.97 0.899
DAF-Net [10] 30.17 0.915
DeHRain [33] 30.84 0.921

PRRNet(monocular) 31.64 0.932
PRRNet(stereo) 32.58 0.937

the semantic-rethinking loop. Fig. 9 compares its qualitative performance with
different methods. The results show that the monocular version of our PRRNet
also achieves the best performance in terms of monocular image deraining.

5.6 Evaluation on Real-world Images

To further verify the effectiveness of our method, we show its performance of
deraining on the real world rainy images. Fig. 10 shows the qualitative results on
two exemplar images from the Internet. Compared to other competing methods,
the proposed method achieves better performance via understanding the scene
structure. For example, DAF-Net seems to generate well-derained images, but
the produced derained images suffer from color distortion (e.g., the colors turn
dark in the results). RESCAN and RESCAN+DCPDN perform worse than our
method in removing rain.

(a) Input (b) DID-MDN (c) DAF-Net (d) Ours (e) GT

Fig. 9. Qualitative evaluation of current state-of-the-art models on the
RainCityscapes dataset.
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(a) Input (b) DAF-Net (c) RESCAN (d) RESCAN +
DCPDN

(e) Ours

Fig. 10. Qualitative evaluation on real rainy images. From left to right are
the input images, DAF-Net [10], RESCAN [29], RESCAN + DCPDN [68] and ours,
respectively.

Table 4. Quantitative evaluation of current state-of-the-art models on the RainCi-
tyscapes dataset.

Methods PSNR SSIM

DID-MDN [28] 28.43 0.9349
RESCAN [29] 24.49 0.8852
JOB [13] 15.10 0.7592
GMMLP [16] 17.80 0.8169
DSC [69] 16.25 0.7746
DCPDN [68] 28.52 0.9277
DAF-Net [10] 30.06 0.9530

PRRNet(monocular) 31.44 0.9688

6 Conclusion

In this paper, we present PRRNet, the first stereo semantic-aware deraining net-
work, for stereo image deraining. Different from previous methods which only
learn from pixel-level loss functions or monocular information, the proposed
model advances image deraining by leveraging semantic information extracted
by a semantic-aware deraining model, as well as visual deviation between two
views fused by two Fusion Nets, i.e., SFNet and VFNet. We also synthesize two
stereo deraining datasets to evaluate different deraining methods. The experi-
mental results show that our proposed PRRNet outperforms the state-of-the-art
methods on both monocular and stereo image deraining.
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