
All at Once: Temporally Adaptive Multi-Frame Interpolation
with Advanced Motion Modeling

Zhixiang Chi, Rasoul Mohammadi Nasiri, Zheng Liu
Juwei Lu, Jin Tang, Konstantinos N Plataniotis

In this document, we provide the proof and derivation of the cubic motion modeling equations in Sec-
tion 1 and 7, additional analysis for motion relaxation in Section 2, architecture of the flow estimation
network in Section 3, temporal consistency analysis in Section 4 and more visual examples in Section 6.

1 Proof of the cubic flow prediction

In this section, we provide the details in deriving equations of our proposed cubic motion model. We can
consider pixel displacement representing an object motion in the real world. From physics of motion, we
can formulate object displacement with a variable acceleration between two times of 0 and t as

st − s0 = v0 × t +
a0
2
× t2 +

∆a0
6
× t3, (1)

where v0, a0, and ∆a0 are the velocity, acceleration, and acceleration change rate estimated at time 0. st and
s0 are the positions for pixels at time 0 and t. We use this model for any time between 0 and 1 (for I0 and
I1) to predict pixels displacement from I0 to It for 0 < t < 1. We are using I0 as the reference point and
Since st − s0 represents the displacement between corresponding pixels at t and 0, it equals to the optical
flow as f0→t. We first set t in (1) to obtain displacement to times 1 and −1 as

f0→1 = v0 +
a0
2

+
∆a0

6
, (2)

f0→−1 = −v0 +
a0
2
− ∆a0

6
, (3)

From the above equations, we can compute a0 by

a0 = f0→1 + f0→−1. (4)

We can follow the same approach to calculate a1 by using I1 as reference in (1) and substitute t as 0 and 2
to obtain

a1 = f1→2 + f1→0. (5)

The acceleration change rate ∆a0 can be computed as a1 − a0; however this pixel-wise difference needs to
be performed on corresponding pixels between two frames, not just on pixels in the same coordinate. To
compute a1 for pixels based on their location at I0, we set t to 2 in (1) which computes f0→2 as:

f0→2 = 2v0 + 2a0 +
8× (a1 − a0)

6
, (6)

Using (2) and (6), we can calculate a1 as

a1 = f0→2 − 2× f0→1, (7)

which equals the equation (3) in the paper. Even though an extra step needed to compute f0→2 our method
is still efficient because of the one-shot structure.

1



To compute v0 and show why the calculation in [1] does not hold for cubic motion modeling, we first
rearrange (2) as:

v0 = f0→1 −
a0
2
− a1 − a0

6
. (8)

(8) is the same as equation (4) in the paper, where a0 and a1 are both previously computed by the optical
flows at reference point I0. Then we substitute (4) to (8) as:

v0 = f0→1 −
f0→1 + f0→−1

2
− a1 − a0

6
(9)

and rearrange:

v0 =
f0→1 − f0→−1

2
− a1 − a0

6
. (10)

The v0 proposed in [1] has only the first term at the right of (10) and does not consider the acceleration
change (the second term).

Finally, the optical flows from time 0 to a middle frame ti (for i ∈ [1..7] for 7 frame interpolation) can
be computed by substituting v0 in (1) with (10) as

f0→ti = f0→1 × ti +
a0
2
× (t2i − ti) +

a1 − a0
6

× (t3i − ti). (11)

and furthermore, a0 and a1 in the above equation can be replaced by (5) and (7) to write equation based on
using only optical flows

f0→ti = f0→1×ti+
f0→1 + f0→−1

2
×(t2i−ti)+

f0→2 − 2× f0→1 − (f0→1 + f0→−1)

6
×(t3i−ti). (12)

Similarly, optical flow from time stamp t = 1 to the middle frames ti can be computed as the same manner
as:

f1→ti = f1→0 × t̂i +
f1→0 + f1→2

2
× (t̂2i − t̂i) +

f1→−1 − 2× f1→0 − (f1→0 + f1→2)

6
× (t̂3i − t̂i), (13)

where t̂i = 1− ti.

2 Additional analysis for motion relaxation

2.1 Relaxed warping loss for O.F. estimation

TOFlow [2] reveals that precise optical flow is not tailored for task-oriented applications, including frame
interpolation. They have observed that precise optical flow does not lead to an optimal solution, especially
for the occlusions. They address this problem by joint training the flow estimation and interpolation network
without any constraints on the flow estimation.

In contrast, in our paper, we proposed a relaxed loss term for the flow estimation network to boost
motion prediction as well as the final interpolation results. The effectiveness of the motion relaxation has
been evaluated in the ablation studies by replacing it with L`1 . Here we perform an additional comparison
of these cases with the model, which completely removes the loss function (No loss) for flow estimation, as
reported in Table 1.

Table 1 shows the performance of our network trained with different warping loss function for the un-
supervised flow estimation module on two datasets of Adobe240 and GOPRO. For all models evaluated in
frame interpolation task, a flow estimation module is first trained using L`1 as the warping loss, and then

2



Table 1: Investigating the impact of relaxation variations on Adobe240 and GOPRO dataset.

Loss for O.F.
Adobe240 GOPRO

PSNR SSIM IE TCC PSNR SSIM IE TCC

L`1 33.92 0.955 6.14 0.851 32.45 0.936 7.09 0.828
No loss 34.10 0.957 6.02 0.856 32.68 0.939 6.94 0.832
Lwrelax

34.37 0.959 5.89 0.860 32.91 0.943 6.74 0.837

each model applies one of the loss functions in Table 1 for joint training with the rest of the network. The
model trained without any constraint on O.F. [2], No loss, has better performance than the model trained
with L`1 . However, it does not set a lower bound for the error that the flow estimation can tolerate. If the
optical flow maps a pixel far away from its ground truth location as the reference frame, the performance for
model prediction will be degraded as well as the final interpolation results.

In contrast, our proposed loss, Lwrelax
, provides the flexibility for the O.F. to move around the pixels

only in the small neighborhood of their ground truth location. It accepts certain errors but also enforces
a lower bound for the O.F. estimation constraint by limiting the window to a small neighborhood. Thus,
the model trained with Lwrelax

as the warping loss for O.F. estimation yields the best performance for final
interpolation results.

2.2 Motion relaxation impact on warping, prediction and final results.

Table 5 in the main paper reports the effectiveness of Lwrelax
by comparing the warped I1 with correspond-

ing ground truth. In Table 2, we show the comparison by warping I0 as well as the final interpolation results
for the middle frame. The results in Table 2 are consistent with Table 5 in the main paper, where with
Lwrelax

, a better motion prediction and better final results are achieved.

Table 2: Motion relaxation evaluation in warping, middle frame prediction and final interpolation results.
(warping from I0)

Datasets
PSNR(Iw→1

0 , I1) PSNR(Iw→t4
0 , Igtt4 ) PSNR(Ît4 , Igtt4 ))

L`1 Lwrelax
L`1 Lwrelax

L`1 Lwrelax

DAVIS 29.47 22.85 25.03 25.48 27.15 27.91

3



2.3 More visual examples to show the effectiveness of the motion relaxation

Figure 1 provides more samples from Adobe240 (first example) and DAVIS (second & third example) to
show the impact of using Lwrelax

.

Inputs & GT Error (Iw→0
1 ) Error (Iw→t4

1 ) Error (Ît4 ) Ît4

Figure 1: Comparison between O.F. estimation with/without (top/bottom row) relaxation in terms of the
interpolation error for motion prediction and final interpolation result.

4



3 Architecture of the two-stages flow estimation

3.1 Network details for the flow estimation

warp
Enc-decC

warp

2

2
C Enc-dec

warp

warp

2

2
C Enc-dec

Network for the first stage flow estimation 2

C

Up-sample x2

Concatenation

Addition

Figure 2: The coarse-to-fine architecture of the first stage flow estimation network where the first level
(most left) estimate flow using 4x smaller resolution, the middle level refine flow estimation on 2x smaller
resolution and final step work on original resolution

warp
Enc-decC

warp

2

2
C Enc-dec

warp

warp

2

2
C Enc-dec

Network for the second stage flow estimation First stage

First stage

-

-

2

C

Up-sample x2

Concatenation

Addition

- Negation

Figure 3: The second stage flow estimation network has the same structure as the network in the first stage.
Except that we add −f0→−1 and −f2→1 to the input at the finest scale.

Since TOFlow [2] reveals that an accurate optical flow will result in sub-optimal performance of the
interpolation results. Thus, instead of the heavy state-of-the-art flow networks [5, 4], we follow the light-
weight coarse-to-fine flow estimation network in SPyNet [3]. We customize this network for efficiently
computing the bidirectional O.F., and also benefiting from the multi-frame inputs.

Figure 2 shows the coarse-to-fine architecture for computing bidirectional O.F. between two input frames
which is used in the first stage of our flow estimation network. The architecture of the second stage displayed
in Figure 3 has the similar structure as the first stage. To benefit form I−1 and I2 as the additional informa-
tion, we first compute f0→−1 using I−1, I0 and f2→1 using I1, I2 using the first stage network. As −f0→−1
and−f2→1 are proper estimation of f0→1 and f1→0 respectively, we add them to the input of the finest scale
(third level) in the second stage to help improve f0→1 and f1→0.

We employ the same encoder-decoder structure throughout the networks at both stages. Both stages

5



share the weights of two coarser levels (first and second levels), as indicated by the same color in Figure 2
and 3. The detailed architecture of the encoder-decoder structure will be provided in Section 3.2.

3.2 Encoder-decoder network

Table 4 reveals the details of the encoder-decoder network used in our flow estimation networks.

Table 3: Encoder-decoder network (activation function: LeakyReLU, with α=0.1).

Input name Output name Kernel Stride Output spatial size
Input - concat ims - - H ×W

Encoder

concat ims Enc conv 1 3× 3× 16 1 H ×W
Enc conv 1 Enc conv 2 3× 3× 24 1 H ×W
Enc conv 2 Enc conv 3 3× 3× 24 1 H ×W
Enc conv 3 Enc ave pool 1 - 2 H/2×W/2

Enc ave pool 1 Enc conv 4 3× 3× 64 1 H/2×W/2
Enc conv 4 Enc conv 5 3× 3× 64 1 H/2×W/2
Enc conv 5 Enc conv 6 3× 3× 64 1 H/2×W/2
Enc conv 6 Enc ave pool 2 - 2 H/4×W/4

Enc ave pool 2 Enc conv 7 3× 3× 80 1 H/4×W/4
Enc conv 7 Enc conv 8 3× 3× 80 1 H/4×W/4
Enc conv 8 Enc conv 9 3× 3× 80 1 H/4×W/4

Decoder

Enc conv 9 Dec conv 1 3× 3× 64 1 H/4×W/4
Dec conv 1 Dec conv 2 3× 3× 64 1 H/4×W/4
Dec conv 2 Dec conv 3 3× 3× 64 1 H/4×W/4
Dec conv 3 Dec up bilinear 1 - - H/2×W/2

Dec up bilinear 1, Enc conv 6 Dec concat 1 - - H/2×W/2
Dec concat 1 Dec conv 4 3× 3× 64 1 H/2×W/2
Dec conv 4 Dec conv 5 3× 3× 64 1 H/2×W/2
Dec conv 5 Dec up bilinear 2 - - H ×W

Dec up bilinear 2, Enc conv 3 Dec concat 2 - - H ×W
Dec concat 2 Dec conv 6 3× 3× 50 1 H ×W
Dec conv 6 Dec conv 7 3× 3× 50 1 H ×W
Dec conv 7 Dec conv 8 3× 3× 4 1 H ×W

6



4 Temporal consistency

4.1 More visual results

D
A

IN
Se

pC
on

v
Su

pe
rS

lo
M

o
Q

ua
dr

at
ic

O
ur

s
G

T

It1 It2 It3 It4 It5 It6 It7

Figure 4: Visualization of the seven intermediate frames of It1 to It7 generated by our method compared
to Quadratic [1], SepConv [6], DAIN [8] and Super SloMo [7] from GOPRO. Our method generates more
visually pleasant and temporally consistent frames. The main degradation is on the upper left and lower
right of both inside and outside of the heart shape piece.

7



4.2 Explain the curves

Figure 5 is the same figure of Figure 9(c) in the main paper. All the methods showed in this figure follow the
similar trend of the expected quality of the intermediate frames as a function of the temporal distance to the
input frames. However, DAIN [8] is one exception with a local peak in the middle frame. The reason is that,
during training, DAIN is interpolating only the middle frame by setting the time stamp ti = 0.5. However,
at inference time, they interpolate multiple frames by setting ti to different values. Thus, it has relatively
better performance at ti = 0.5. In contrast, Quadratic [1] and Super SloMo [7] are trained with frames at
different time stamps ti, and they follow the common trend of quality in generating multiple frames.

Figure 5: Performance trend in multiple frame interpolation.

5 Explain on evaluation of Quadratic

Table 4: Performance evaluation of the proposed method compared to the state-of-the-art methods in differ-
ent datasets.

Methods Adobe240 GoPro Vimeo90K DAVIS

PSNR SSIM TCC PSNR SSIM TCC PSNR SSIM IE PSNR SSIM IE

Quadratic(original paper 960fps data) 32.95 0.966 - 31.27 0.948 - - - - 27.72 0.894 12.32
Quadratic(our 240fps data) 32.80 0.949 0.842 32.01 0.936 0.822 33.62 0.946 5.22 27.38 0.834 12.46
Ours 34.37 0.959 0.860 32.91 0.943 0.837 34.93 0.951 4.70 27.91 0.837 12.40

The reason of causing the discrepancy between the numbers reported by us and Quadratic is that the
original model was trained on 960fps videos which is not publicly available. For fair and faithful compar-
ison, we retrained the Quadratic model on our training data (240fps). We strictly followed the source code
and training procedure provided. The 960fps training data was also down-sampled to 240fps and 480fps
which provides different training data distributions. As for SSIM values, they can be different because of
the parameters of SSIM or the software used (MATLAB yields different values compared to Python). To be
fair, we followed the same SSIM evaluation code used in Super SloMo throughout the paper.

8



6 More visual examples

Figure 6, 7, 8 are the sample results of challenging cases. We provide the videos (Compare with SOTA.mp4)
to better show the comparison with other methods in terms of visual quality. In addition, to show the
capability of our multi-frame interpolation method in terms of maintaining the temporal consistency, we
generate another video (Temporal consistency 60 to 1920fps.mp4) with interpolating a different number of
frames, from 1 frame to 63 frames results in videos of 60fps to 1920fps from a 30fps input video.

(a) Input (b) Super SloMo [7] (c) Quadratic [1] (d) Ours

Figure 6: A visual example from DAVIS dataset. In this example, it contains complex motion, such as highly
non-linear and large motion. The leg of the flamingo is very thin, which brings the difficulties to estimate
the optical flow. Our method handles this situation well compared to Super SlowMo and Quadratic.

(a) Input (b) Super SloMo [7] (c) Quadratic [1] (d) Ours

Figure 7: A visual example from GOPRO dataset. It contains severe camera movements (changing in
direction frequently). It is challenging to interpolate consistent multiple frames at the moment when the
camera suddenly changes the direction. Our one-shot pyramidal structure yields better results.

(a) Input (b) Super SloMo [7] (c) Quadratic [1] (d) Ours

Figure 8: A visual example from DAVIS dataset. In this example, it contains the combination of translational
motion, which involves non-constant accelerations. Our methods with advanced motion modeling is able to
handle this situation well.

9



7 Additional analysis on cubic motion modeling

The performance of the cubic motion model is evaluated in Table 3 for frame interpolation tasks, and also
Fig. 2 shows a comparison for a simulated motion scenario.

Further evaluation can be performed on motion prediction for non-rigid objects with complex motions
in real scenarios in which human body motions are a good fit to this end. We evaluated our cubic motion
modeling in Eq. 5 of the paper and (13) in predicting motions of landmarks on the human body using a
comprehensive set of captured motions by MoCap techniques. We specifically used the CMU Graphics
Lab Motion Capture Database [9], which has 109 subjects each has done various motions such as walking,
dancing, jumping, and kicking ball. The motions are captured using 12 Vicon infrared MX-40 cameras in
120 fps rate. Motions are captured for the variable number of landmarks in different captures with at least
41 landmarks in each session. As the captured motions have different lengths, we made non-overlapping
patches of 7 consecutive records from a landmark for our motion analysis. In each path of seven samples,
we considered samples 1, 3, 5, and 7 as consecutive observations used in motion models and tried to predict
landmark position between samples 3 and 5 by using 4 as the ground truth. We used both quadratic and
cubic models for prediction and measured the absolute difference of predicted position as an error metric.
Fig. 9 shows the performance comparison and it reveals that the cubic modeling works better in predicting
complex motion.

Figure 9: Performance of motion prediction models (quadratic vs. cubic) on MoCAP data from CMU
dataset. The prediction error is the absolute difference in the actual position and predicted one.

10



[1] Xu, Xiangyu and Siyao, Li and Sun, Wenxiu and Yin, Qian and Yang, Ming-Hsuan Quadratic video
interpolation. In Advances in Neural Information Processing Systems, 2019.

[2] Xue, Tianfan and Chen, Baian and Wu, Jiajun and Wei, Donglai and Freeman, William T Video en-
hancement with task-oriented flow. In International Journal of Computer Vision, 2019.

[3] Ranjan, Anurag and Black, Michael J Optical flow estimation using a spatial pyramid network. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017.

[4] Ilg, Eddy and Mayer, Nikolaus and Saikia, Tonmoy and Keuper, Margret and Dosovitskiy, Alexey and
Brox, Thomas Flownet 2.0: Evolution of optical flow estimation with deep networks. In Proceedings
of the IEEE conference on computer vision and pattern recognition, 2017.

[5] Sun, Deqing and Yang, Xiaodong and Liu, Ming-Yu and Kautz, Jan Pwc-net: Cnns for optical flow
using pyramid, warping, and cost volume. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018.

[6] Niklaus, Simon and Mai, Long and Liu, Feng Video frame interpolation via adaptive separable convo-
lution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017.

[7] Jiang, Huaizu and Sun, Deqing and Jampani, Varun and Yang, Ming-Hsuan and Learned-Miller, Erik
and Kautz, Jan Super slomo: High quality estimation of multiple intermediate frames for video inter-
polation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018.

[8] Bao, Wenbo and Lai, Wei-Sheng and Ma, Chao and Zhang, Xiaoyun and Gao, Zhiyong and Yang, Ming-
Hsuan Depth-aware video frame interpolation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019.

[9] CMU Graphics Lab Motion Capture Database http://mocap.cs.cmu.edu/ Online; accessed
05-Mar-2020.

11

http://mocap.cs.cmu.edu/

