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(a) Regarding the first term:
||x− b||22

(b) Regarding the second term:
α · ||f(x)− 100%||2

(c) Regarding the third term:
α · ||f

′
(x)− f

′
(b)||22

(d) Regarding the fourth term:
α · ||f

′
(x)− f

′
(t)||22

Fig. 1: The value changing pattern of the four terms in Eq. (1).

Appendix Item 1: Empirical Observation on Optimizing Eq. (1)
using Algorithm 1 (Sec.3)

As to be seen in Sec. 4, the effectiveness of applying Algorithm 1 to optimize Eq. (1)
has been proved by extensive evaluation results. To help understand how applying
Algorithm 1 optimizes the four terms included in Eq. (1), we now show a sample
experiment to illustrate the typical value changing pattern of each term in Eq. (1) due to
this optimization.

In this experiment, we randomly chose a sample from the mnist dataset as the base
instance b, and use a blackcard as the target instance t. We then perform optimization
using Algorithm 1 with a α value of set to be 3.125. We recorded the changing values of
the four terms in Eq. 1 during the optimization process.

Fig. 1 shows the typical value changing pattern of the four terms in Eq. (1) when
performing the optimization (note that we observe the similar changing pattern of these
terms in other experiments using various input data). As seen in Fig. 1, as expected,
the third and fourth terms in Eq. (1) gradually increase and decrease, respectively.
Specifically, the third term increases from 0 to 279.32, ensuring that the feature space
representation of b and x will not be collided under model P. The fourth term decreases
from 296 to 11, representing that the feature spaces of b and t stay close under P. For
the second term, its value actually increases a little from 0 to 0.0096 due to exploring
optimization tradeoff among multiple terms by Eq. (1). Nonetheless, this small value
of merely 0.0096 still implies that x would be classified as b with very high confidence
(although not 100%) under model A after optimization. Also note that the value of the
first term increases a little from 0 to 6.67, which is to ensure the poison instance x to
appear like the base class instance b to a human labeler. Due to perturbation added to the
input image, the first term will have to increase. Nonetheless, according to [4] and our
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evaluation results, such increase is sufficiently small which guarantees that the generated
poisoned data is visually-indistinguishable to human labelers.

Appendix Item 2: Detailed information about dataset, complexity,
and model architecture of each task

Task Dataset Labels Input Size # of Training Images Architecture of P Architecture of T
Hand-written Digit
Recognition

MNIST 10 28*28*1 60000 4 Conv + 1 Dense LeNet-5 [5]

Fashion Item recog-
nition

Fashion-MNIST 10 28*28*1 60000 4 Conv + 1 Dense State-of-the-art [1]

Object Recognition
in Images

CIFAR-10 10 32*32*3 50000 DenseNet121 RESNetv2.56

Traffic Sign Recog-
nition

GTSRB 43 32*32*3 35288 6 Conv + 2 Dense State-of-the-art [2]

Face Recognition
using VGG Face

VGG Face dataset 2622 224*224*3 2622000 12 Conv+3 Dense VGGNet16 [6]

Face Recognition
using Asian Face

CIASIAV 5Dataset 500 224*224*3 2500 4 Conv + 2 Dense State-of-the-art [3]

Table 1: Detailed information about the dataset, complexity, and model architecture used
in the evaluation.
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