
Learn distributed GAN with Temporary
Discriminators - Appendix

1 Training algorithm of TDGAN

The training algorithm and communication details between the central generator
and distributed discriminators of TDGAN are shown in Algorithm 1.

2 Loss function of TDGAN

Vt(Gt, D
1:Kt
t ) = min

Gt

Digesting Loss+ λ ·Reminding Loss

Digesting Loss
∆
= max

D
1:Kt
t

Kt∑
k=1

πkt Ey∼gkt (y){Ex∼p(x|y)[logDk
t (x, y)]

+ Eu∼unif(0,1)[log(1−Dk
t (Gt(u, y), y))]}

Reminding Loss
∆
= Ey∼st−1(y)Eu∼unif(0,1)[‖Gt(u, y)−Gt−1(u, y)‖2]

(1)

3 Missing Proof in Analysis Section

Lemma 1 (Reminding Loss enforces consistency). Suppose Gt has enough
model capacity, the optimal Gt for loss function:

min
Gt

Ey∼st−1(y)Eu∼unif(0,1)[‖Gt(u, y)−Gt−1(u, y)‖2]

given Gt−1 is Gt(u, y) = Gt−1 for all u and y ∈ Ω(st−1(y)).

Proof :

min
Gt

Ey∼st−1(y)Eu∼unif(0,1)[‖Gt(u, y)−Gt−1(u, y)‖2]

= min
Gt

∫
y

st−1(y)

∫
u

‖Gt(u, y)−Gt−1(u, y)‖2dudy

≥
∫
y

st−1(y)

∫
u

min
Gt

‖Gt(u, y)−Gt−1(u, y)‖2dudy

When Gt(u, y) = Gt−1(u, y) for all u, y the inequality becomes equality. ut
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Algorithm 1 Training algorithm of TDGAN at time step t.

1: Initialized Gt with Gt−1 if t > 1.
2: for number of total training iterations do

// Update online Discriminators
3: for each online node k ∈ [Kt] do
4: – Sample minibatch of of m variables {yk1 , ..., ykm} from gkt (y).
5: – Send the minibatch from Dk

t to Gt.
6: – Generate m fake data from Gt, {x̂k1 , ..., x̂km} ∼ qt(x̂|y).
7: – Send the fake data from Gt to D

k
t .

8: – Update the discriminator Dk
t by ascending its stochastic gradient:

∇θ
Dk

t

1

m

m∑
i=1

[
logDk

t (x
k
i ) + log(1−Dk

t (x̂
k
i ))

]
.

9: end for
// Compute the gradients of Gt using the digesting loss

10: for each online node k ∈ [Kt] do
11: – Sample minibatch of m variables {yk1 , ..., ykm} from gkt (y).
12: – Send the minibatch from Dk

t to Gt.
13: – Generate m fake data from Gt, {x̂k1 , ..., x̂km} ∼ qt(x̂|y).
14: – Send the fake data from Gt to D

k
t .

15: – Collect error from Dk
t for Gt.

16: end for
17: – Compute gradients on the digesting loss:

∇θGt

1

m

Kt∑
k=1

πkt

m∑
i=1

log(1−Dk
t (x̂

k
i )).

// Compute the gradients using the reminding loss if t > 1
18: if t > 1 then
19: – Sample minibatch of n variables {y1, ..., yn} from st−1(y). (We approximate

st−1(y) by storing the empirical distribution in central server)
20: – Generate n copies of u from unif(0, 1): {u1, ..., un}.
21: – Compute gradients on the reminding loss:

∇θGt

1

n

n∑
i=1

‖Gt(ui, yi)−Gt−1(ui, yi)‖2.

22: end if
23: Update Gt using gradients from both losses.
24: end for

Lemma 2 (Digesting Loss Learns correct distribution). Suppose discrim-
inator Dk

t , k ∈ [Kt] always behave optimally and let qt(x|y) be the distribution
of Gt(u, y), the the optimal Gt(u, y) for digesting loss:

min
Gt

max
D

1:Kt
t

Kt∑
k=1

πkt Ey∼gkt (y){Ex∼p(x|y)[logDk
t (x, y)]

+ Eu∼unif(0,1)[log(1−Dk
t (Gt(u, y), y))]}
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is qt(x|y) = p(x|y) for all y ∈ Ω(gt(y)).

Proof :

Similar to [1], we first analyze the behavior of optimal discriminators w.r.t a
fixed generator.

max
D

1:Kt
t

Loss(Dt) = max
D

1:Kt
t

Kt∑
k=1

πkt

∫
y

gkt (y)

∫
x

p(x|y)logDk
t (y, x)

+ qt(y|x)log(1−Dk
t (y, x))dxdy

≤
Kt∑
k=1

πkt

∫
y

gkt (y)

∫
x

max
Dt

{p(x|y)logDk
t (x, y) + q(y|x)log(1−Dk

t (x, y))}dxdy

by setting Dk
t (y, x) = p(x|y)

p(x|y)+qt(x|y) for all y ∈ Ω(gkt (y)) we can make the inequal-

ity hold with equality. Given a consistent optimal discriminator in each step of
optimization process, the loss function of generator becomes:

Loss(Gt) =

Kt∑
k=1

πkt Ey∼gkt (y){Ex∼p(x|y)[logDk
t (x,y)]

+ Ex̂∼q(x|y)[log(1−Dk
t (x, y))]}

⇐⇒

Loss(qt, γ) =

Kt∑
k=1

πkt

∫
y

gt(y)

∫
x

p(x|y)log
p(x|y)

p(x|y) + qt(x|y)

+ qt(x|y)log
qt(x|y)

p(x|y) + qt(x|y)
dx+

∫
x

qt(x|y)− 1dxdy

where γ is Lagrangian Multiplier for constraint
∫
x
qt(x|y)dx = 1. We have:

Loss(qt, γ)≥
∗

∫
y

gt(y)

∫
x

min
qt

p(x|y)log
p(x|y)

p(x|y) + qt(x|y)

+ qt(x|y)log
qt(x|y)

p(x|y) + qt(x|y)
+ γqt(x|y)− γ dxdy

Minimizing p(x|y)log p(x|y)
p(x|y)+qt(x|y) + qt(x|y)log qt(x|y)

p(x|y)+qt(x|y) + γqt(x|y) requires
p(x|y)

p(x|y)+qt(x|y) to be constant for all possible value of x and y. Such constraint

enforces p(x|y) = qt(x|y) and γ = − log 2, which makes inequality ∗ holds with
equality. ut

Above two lemmas describes the behavior of digesting loss and reminding
loss separately. In next theorem, we show that the design of loss can work coop-
eratively when mixtured thus the overall loss function leads to a correct global
distribution.
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Theorem 1. Suppose the generator has enough model capacity to obtain q1(x|y) =
p(x|y) for all y ∈ g1(y) and the loss Vτ (Gτ , Dτ ) defined in Equation 1 is opti-
mized optimally for each τ ∈ [t], then qt(x|y) = p(x|y) for all y ∈ Ωt.

Proof :
We will rely on induction for proof of the statement. The statement is true for
t = 1 according to our assumption and the fact that g1(y) = s1(y). Assuming
qt−1(x|y) = p(x|y) for all y ∈ Ωt−1, we will show qt(x|y) = p(x|y) for all y ∈ Ωt.
Formally:

Vt(Gt, Dt) = min
Gt

max
D

1:Kt
t

Ey∼gt(y){Ex∼p(x|y)[logDk
t (x, y)]

+ Eu∼unif(0,1))[log(1−Dk
t (Gt(u, y), y))]}

+ λmin
Gt

Ey∼st−1(y)Eu∼unif(0,1)[‖Gt(u, y)−Gt−1(u, y)‖2]

= min
qt

∫
y∈y∈Ω(gt(y))

Kt∑
k=1

πkt g
k
t (y)

∫
x

p(x|y)log
p(x|y)

p(x|y) + qt(x|y)

+ qt(x|y)log
qt(x|y)

p(x|y) + qt(x|y)
dxdy

+ min
Gt

λ

∫
y∈Ωt−1

st−1(y)

∫
u

‖Gt(u, y)−Gt−1(u, y)‖2dudy

≥
∗

∫
y∈y∈Ω(gt(y))

Kt∑
k=1

πkt g
k
t (y)

∫
x

min
qt

p(x|y)log
p(x|y)

p(x|y) + qt(x|y)

+ qt(x|y)log
qt(x|y)

p(x|y) + qt(x|y)
dxdy

+ λ

∫
y∈Ωt−1

st−1(y)

∫
u

min
Gt

‖Gt(u, y)−Gt−1(u, y)‖2dudy

Next we show the inequality ∗ attains equality if qt(x|y) = p(x|y) for all y ∈ Ωt.
First we note that for y ∈ Ω(gt(y)) ∩ Ωt−1 the digesting loss and reminding
loss shares the same optimal solution. Note Gt(u, y) = Gt−1(u, y) is equivalent
to qt(x|y) = qt−1(x|y) since Gt and Gt−1 shares the same random seed u. We
have for y ∈ Ω(gt(y)) ∩Ωt−1, qt(x|y) = qt−1(x|y) = p(x|y) due to the inductive
assumption for reminding loss. The optimality of qt(x|y) = p(x|y) is due to
Lemma 2.

Next we have qt(x|y) = p(x|y) for y ∈ ∆Ωt. For y ∈ Ω(gt(y)) − Ω(st−1(y)),
qt(x|y) = p(x|y) according to Lemma 2. For y ∈ Ωt−1 − Ω(gt(y)), Gt(u, y) =
Gt−1(u, y) according to Lemma 1. ut
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