
Supplementary to "Improving Adversarial
Robustness by Enforcing Local and Global

Compactness"

1 Hyperparameters

The hyperparameters for our experiments as Table 1. The hyperparameters of
local compactness, global compactness, and smoothness are set to be either 1 or
0, meaning they are switched ON/OFF. Although finer tuning of these param-
eters can lead to better results, our method outperforms the baselines in these
initial settings, which demonstrates the effectiveness of those components.

Table 1. Hyper-parameter setting for the experiment section

λlc
com λgb

com λsmt λconf

MNIST 1. 1. 1. 0.
CIFAR-10-CNN 1. 1. 1. 1.
CIFAR-10-ResNet 1. 1. 1. 0.

2 Model architectures and experimental setting

We summarize the experimental setting in Table 2.
For the MNIST dataset, we used the standard CNN architecture with three

convolution layers and three fully connected layers described in [2]. For the
CIFAR-10 dataset, we used two architectures in which one is the standard CNN
architecture described in [2] and another is the ResNet architecture used in [6].
The ResNet architecture has 5 residual units with (16, 16, 32, 64) filters each.
We choose the convolution layers as the Generator and the last fully connected
layers as the Classifier for ResNet architecture. The standard CNN architectures
are redescribed as follow:

CNN-4C3F(32) Generator: 2×Conv(32)→Max Pooling→ 2×Conv(32)→
Max Pooling→ Flatten

CNN-4C3F(32) Classifier: FC(200)→ ReLU→Dropout(0.5)→ FC(200)→
ReLU→ FC(10)→ Softmax

CNN-4C3F(64) Generator: 2×Conv(64)→Max Pooling→ 2×Conv(64)→
Max Pooling→ Flatten

CNN-4C3F(64) Classifier: FC(256)→ ReLU→Dropout(0.5)→ FC(256)→
ReLU→ FC(10)→ Softmax



2 A. Bui et al.

3 Choosing the intermediate layer

The intermediate layer for enforcing compactness constraints immediately fol-
lows on from the generator. We additionally conduct an ablation study to in-
vestigate the importance of choosing the intermediate layer and report natural
accuracy and robust accuracy against non-targeted/multiple-targeted attacks
respectively. We use the standard CNN architecture (which has 4 Convolu-
tion layers in Generator and 3 FC layers in Classifier), with four additional
variants corresponding to different choices of the intermediate layer (right af-
ter the generator). We use PGD (k = 100, ε = 0.3, η = 0.01 for MNIST,
k = 100, ε = 0.031, η = 0.007 for CIFAR-10) to evaluate these models. It can be
seen from the results as showing in Table 3 that the performance slightly down-
grades if choosing shallower layers. The higher impact is expected on a larger
architecture (i.e., Resnet), which can be investigated in future.

4 The performance of TRADES

TRADES aims to find the most divergent adversarial examples, while ADV
aims to find the worst-case examples to improve a model (see Sec. 2.2 in our
paper for more detail). Hence theoretically, there is no guarantee that TRADES
outperforms ADV. In practice, the performance of TRADES is influenced by
the classifier architectures and parameter tunings. The works [7,4] also reported
that TRADES cannot surpass ADV all the time (Table 1 and footnote 8 in [7],
Table 1 in [4]), which is in line with the findings in our paper.

5 Further experiments

We conduct an additional evaluation with further state-of-the-art attack meth-
ods (e.g., the Basic Iterative Method - BIM [5] and the Momentum Iterative
Method - MIM [3]) to convince that our method indeed boots the robustness
rather than suffers the gradient obfuscation [1]. Three attack methods PGD,
BIM and MIM share the same setting, i.e., {k = 100, ε = 0.3, η = 0.01} for
MNIST and {k = 100, ε = 0.031, η = 0.007} for CIFAR-10. The result as in
Table 4 show that our components can improve the robustness of the baseline
framework against all three kind of attacks which again proves the efficacy of
our method.

5.1 Loss surface of adversarial examples

We separate adversarial examples into two classes: positive adversarial exam-
ple which successfully fools a defense method and negative adversarial example
which is an unsuccessful attack. The loss surface of positive adversarial example
as Figure 1. In particular, both ADV (ADR-None) and our method (ADR+LC)
predicted xa with the label 8, whereas its true label is 3. From Figure 1, it is



Improving Adversarial Robustness by Local and Global Compactness 3

Table 2. Experimental settings for our experiments. The model architectures are from
[2] [6] and redescribed in the supplementary material.

MNIST CIFAR-10 (CNN) CIFAR-10 (Resnet)
Architectures CNN-4C3F(32)[2] CNN-4C3F(64)[2] RN-34-10[6]
Optimizer SGD Adam SGD

Learning rate 0.01 0.001 0.1
Momentum 0.9 N/A 0.9

Training stratery Batch size 128, 100 epochs Batch size 128, 200 epochs Batch size 128, 200 epochs
Perturbation k = 20, εd = 0.3, ηd = 0.01, l∞ k = 10, εd = 0.031, ηd = 0.007, l∞ k = 10, εd = 0.031, ηd = 0.007, l∞

Table 3. Performance comparison on different choices of the intermediate layer.
The results in each setting are natural accuracy and robust accuracy against non-
targeted/multiple-targeted attacks respectively.

MNIST CIFAR10
G=2Conv, C=2Conv+3FC 99.52/93.88/92.78 68.78/36.46/21.99
G=3Conv, C=1Conv+3FC 99.44/94.38/93.59 69.17/37.05/22.44
CNN (G=4Conv, C=3FC) 99.48/95.06/94.26 69.08/37.06/22.44
G=4Conv+1FC, C=2FC 99.51/94.38/93.47 69.39/37.31/22.87
G=4Conv+2FC, C=1FC 99.52/94.26/93.45 69.13/37.31/22.57

Table 4. Robustness comparison on the MNIST and CIFAR-10 datasets using Stan-
dard CNN with higher attack iteration (i.e., k = 100). The results in each setting are
natural accuracy and robust accuracy against non-targeted/multiple-targeted attacks
respectively.

Dataset ADV ADR-ADV
PGD MNIST 99.43/93.13/92.09 99.48/95.06/94.26
BIM MNIST 99.43/93.00/91.70 99.48/94.86/93.99
MIM MNIST 99.43/94.05/92.63 99.48/95.41/94.56
PGD CIFAR-10 67.61/32.87/18.74 69.16/36.85/22.71
BIM CIFAR-10 67.61/32.89/18.71 69.16/36.82/22.69
MIM CIFAR-10 67.61/33.00/18.59 69.16/36.96/22.56



4 A. Bui et al.

evident that for ADV, that most of its neighborhood region is non-smooth, re-
sulting in incorrect predictions in almost all of the grid. By contrast, for our
method (ADR+LC), the loss surface w.r.t. the input is smoother, resulting in
more correct predictions in this neighborhood region. In addition, in our method,
the prediction surface w.r.t. the latent feature in the intermediate representation
layer is smoother than that w.r.t. input. This means that our local compactness
makes the local region more compact, hence improving adversarial robustness.

We provide the loss surface of negative adversarial examples from adversarial
training method and adversarial training with our components as Figure 2. Both
examples show that the loss function smooth in local region of an adversarial
example.

Fig. 1. Loss surface at local region of a positive adversarial example. Top-left: ADR-
None w.r.t input. Top-right: ADV+LC w.r.t input. Bottom-left: ADR-None w.r.t la-
tent. Bottom-right: ADV+LC w.r.t latent

Fig. 2. Loss surface at local region of a negative adversarial example. Top-left: ADR-
None w.r.t input. Top-right: ADV+LC w.r.t input. Bottom-left: ADR-None w.r.t la-
tent. Bottom-right: ADV+LC w.r.t latent



Improving Adversarial Robustness by Local and Global Compactness 5

5.2 T-SNE visualization of adversarial examples

In addition to positive adversarial examples, we provide the t-SNE visualization
of the negative adversarial examples from adversarial training (ADR-None) and
adversarial training with our components (ADR+LC/GB) as Figure 3. In ad-
versarial training method, the unsuccessful attacks have been mixed insight the
natural/clean data. In contrast, in case adversarial training with our components,
the attack representation consistently is separated from those from natural data,
similar to positive adversarial examples. Additionally, the unsuccessful attacks
in adversarial training have the same confidence level with natural data, while
those in our methods are totally different levels. In summary, our method can
produce a better latent representation which is well separated between natural
data and adversarial example (both positive and negative). This feature can be
used for adversarial detection.

Fig. 3. T-SNE visualization of latent space. Black triangles are (negative) adversarial
examples while others are clean images. Left: ADR-None. Right: ADR+LC/GB

Fig. 4. T-SNE visualization with entropy of prediction with entropy of prediction prob-
ability. Black triangles are (negative) adversarial examples while others are clean im-
ages. Left: ADR-None. Right: ADR+LC/GB



6 A. Bui et al.

References

1. Athalye, A., Carlini, N., Wagner, D.: Obfuscated gradients give a false sense
of security: Circumventing defenses to adversarial examples. arXiv preprint
arXiv:1802.00420 (2018)

2. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In:
2017 ieee symposium on security and privacy (sp). pp. 39–57. IEEE (2017)

3. Dong, Y., Liao, F., Pang, T., Su, H., Zhu, J., Hu, X., Li, J.: Boosting adversarial
attacks with momentum. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. pp. 9185–9193 (2018)

4. Jalal, A., Ilyas, A., Daskalakis, C., Dimakis, A.G.: The robust manifold defense: Ad-
versarial training using generative models. arXiv preprint arXiv:1712.09196 (2017)

5. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial examples in the physical world.
arXiv preprint arXiv:1607.02533 (2016)

6. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017)

7. Qin, C., Martens, J., Gowal, S., Krishnan, D., Dvijotham, K., Fawzi, A., De, S.,
Stanforth, R., Kohli, P.: Adversarial robustness through local linearization. In: Ad-
vances in Neural Information Processing Systems. pp. 13824–13833 (2019)


