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Abstract. Most state-of-the-art approaches to road extraction from
aerial images rely on a CNN trained to label road pixels as foreground
and remainder of the image as background. The CNN is usually trained
by minimizing pixel-wise losses, which is less than ideal to produce binary
masks that preserve the road network’s global connectivity.
To address this issue, we introduce an Adversarial Learning (AL) strat-
egy tailored for our purposes. A naive one would treat the segmentation
network as a generator and would feed its output along with ground-truth
segmentations to a discriminator. It would then train the generator and
discriminator jointly. We will show that this is not enough because it does
not capture the fact that most errors are local and need to be treated as
such. Instead, we use a more sophisticated discriminator that returns a
label pyramid describing what portions of the road network are correct
at several different scales.
This discriminator and the structured labels it returns are what gives our
approach its edge and we will show that it outperforms state-of-the-art
ones on the challenging RoadTracer dataset.

Keywords: Road networks, Adversarial learning, Generative adversar-
ial network, Topology learning

1 Introduction

Many state-of-the-art algorithms for reconstructing road networks from aerial
images approach the problem in terms of foreground/background binary seg-
mentation [20, 19, 18, 8, 3], where the road pixels are the foreground ones. They
rely on deep networks and often deliver better performance than approaches that
directly predict the road networks as graphs instead of binary masks [2, 17, 9],
even though they fail to account for the connectivity patterns of road networks.
There have been several recent efforts at enforcing connectivity constraints on
the segmentation outputs by designing topology-aware loss functions [23, 22] or
by relying on multi-task learning [3, 33]. These approaches to enforcing connec-
tivity on the output of a binary segmentation algorithm are mostly implicit:
The network or the loss functions are modified in such a way that the resulting
segmentations yield a more road-like connectivity.
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Fig. 1: Network Architecture. We use a segmentation network to predict the
road probability maps which is then passed through a straight through estimator
(STE) to generate binarised predictions. This is followed by multiplication with
dilated ground truth masks to generate prediction based input to the discrim-
inator. Another input to the discriminator is the ground truth mask which is
used only during discriminator training. The road masks are concatenated with
the input image before feeding them to the discriminator. Discriminator is then
trained to predict spatial-aware dynamic decisions on the topological correctness
of inputs.

In this paper, we propose a different and more explicit approach that relies
on Adversarial Learning (AL). We use the training methodology of Generative
Adversarial Networks (GAN) depicted by Fig. 1 to reduce topological discrep-
ancies between the probability maps produced by our segmentation network and
that of real road networks. A naive way to do this would be to treat the segmen-
tation network as a generator and to feed its output along with ground-truth
segmentations to a discriminator and then to train them jointly. Unfortunately,
we will show that this approach is too global for the discriminator to learn to
detect local topological errors and for the segmentation network to avoid making
them. To remedy this, we introduce the following two key modifications:

– Spatially aware labels. Labeling a delineation as globally correct or in-
correct is too coarse. As shown in Fig. 2, the discriminator returns a label
pyramid that describes what portions of the road network are correct at
several different scales.

– Dynamically assigned labels. These correctness decisions are not made a
priori. Instead, the segmentations produced by the generator are evaluated
for correctness in the course of the training procedure.

Our main contribution is therefore a novel AL strategy for imroving connectivity
constraints on the output of road segmentation networks. We will refer to it
as TopoAL. We will use the RoadTracer dataset [2] to show that it compares
favorably to state-of-the-art methods.
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Fig. 2: Label generation for discriminator training. Two example patches
with the corresponding multi-scale labels. One patch is topologically correct,
the other contains an interruption. The labels are generated from the processing
of ground-truth and predicted masks. (a) Ground truth road masks and corre-
sponding (b) predictions from segmentation network. (c) Thresholded predicted
masks. (d) Masks generated by multiplying (c) with the dilated form of (a). (e)
Spatial-aware labels made by comparing (a) with (d). White and black boxes
denote label 1 (correct topology) and 0 (topology error).

2 Related Work

Most of the early approaches to extracting road networks relied on handcrafted
features and prior knowledge about road geometry to optimize complex objective
functions [1, 16, 26, 31, 6, 27], to quote only the most recent ones. They have
now been mostly superseded by deep learning techniques. One of the first such
method is the approach of [20] in which image patches were fed as input to a
fully connected neural network. Due to memory constraints, only limited context
information could be exploited. The advent of convolutional neural networks
(CNNs) opened the door to increasing the size of the receptive fields.

Many state-of-the-art approaches formulate road extraction as a segmen-
tation problem and rely on encoder-decoder architectures such as U-Net [25],
D-LinkNet [35], or recurrent versions of these architectures [33, 30]. While these
approaches feature large receptive fields, none of them explicitly takes into ac-
count the connectivity of the resulting binary masks. Several recent approaches
have attempted to remedy this. A topology-aware loss function was introduced
in [22, 23] while the use of an additional centerline extraction module was pro-
posed in [33]. In [3], orientation prediction is used as an auxiliary task to improve
the connectivity of the predicted masks. [18] introduced a post-processing algo-
rithm to reconstruct the graph from segmentation outputs by reasoning about
missing connections and applying a number of heuristics. A unified approach
to segmentation and connectivity reasoning was presented in [21]. It uses a seg-
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mentation network and a classifier that shares the same encoder representation.
The classifier is used to reason out the connectivity in the segmentation out-
put. Finally, [17] proposed an approach to predict road segments in the form of
vector representation instead of pixel-wise segmentations. Their approach use a
CNN to extract key-points and edge evidences from a given patch, which were
then fed sequentially to a recurrent neural network (RNN) to produce vector
representations of the underlying road segments.

A radically different approach is to directly build the graph without seg-
menting. This is typically done iteratively by adding road segments one by one.
In [28], a CNN is trained to predict the local connectivity among the central
pixel of an input patch and its border points. To reconstruct the road network
corresponding to the whole image, the algorithm iteratively performs patch-wise
identification of input and exit points and the associated connections. In [2], a
CNN-based decision function is used to guide an iterative search process, which
starts from a search point known to be part of the road network. At each step,
the CNN takes the point and the already reconstructed roads in its neighbor-
hood as input and outputs the decision to walk a fixed distance along a certain
direction or to stop and return to previous search point. In a similar spirit, a
Neural Turtle Graphics can be used to iteratively generate new nodes and the
corresponding edges connecting to the existing nodes [9]. This approach relies
on RNNs instead of CNNs, as in [28, 2].

Both segmentation based approaches and graph-based approaches have some
clear vulnerabilities. The former are subject to small-scale topological errors in
the form of missing connections. The latter, though free from topological errors,
are vulnerable to error propagation due to the iterative reconstruction policy.
We will show that our proposed approach is less affected by these difficulties as
compared to other state-of-the-art algorithms.

Some of the recents works have proposed to use multiple discriminators in
generative adversarial networks setups [7, 13, 29]. A domain adaptation technique
for semantic segmentation is proposed in [7]. They divide the discriminator in-
put into different spatial regions, and associate different classifiers to each region.
The concepts of multi-scale discriminator [29] and local-global discriminators [13]
were introduced to examine the input data at different context levels. Unlike all
these methods, our approach differs in multiple aspects including label genera-
tion, the use of a single network architecture, and the input characteristics that
the discriminator has to learn.

3 Method

As shown in Fig. 1, our approach closely traces the structure of a GAN [12].
For this reason and simplicity in the terminology, we refer to the segmentation
network as the generator and to the evaluator of the delineated predictions as
the discriminator. In a traditional AL, the discriminator would assign a binary
label to the segmentations it produces. However, this is not suitable for our
purpose because the predicted mask can be correct almost everywhere except
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for few locations that result in poor connectivity. To properly account for this
and to provide spatially-aware supervision, our discriminator predicts the more
sophisticated labels depicted by Fig. 2. They are computed online by splitting
the image into increasingly fine partitions and then labeling each element of these
partitions as valid or not given the ground-truth data. The labels corresponding
to ground truth masks have the same structure but are uniformly valid and the
corresponding loss function takes all labels at all scales into account.

The combination of using these more sophisticated labels and computing
them dynamically during training, instead of fixing them a priori as is usually
done is what gives our approach its edge. We now formalize it and describe its
individual components in turn.

3.1 Formalization

Let x ∈ RH·W ·C be a C-channel input image of size H × W , and let y ∈
{0, 1}H·W be the corresponding ground-truth road mask, with 1 indicating pixels
corresponding to a road and 0 indicating the background pixels. Let us consider a
segmentation network G that takes x as the input and outputs a probability map
ŷ = G(x) ∈ [0, 1]H·W . For any given pixel i, ŷi is taken to be the probability that
it is a road pixel. The weights of the network are typically learned by minimizing
the pixel-wise binary cross-entropy (BCE) loss

Lbce(ŷ,y) = −
∑
i

[(1− yi) · log(1− ŷi) + yi · log ŷi] . (1)

Such a loss function penalizes mistakes everywhere equally regardless of their
influence on the underlying geometry of the predicted road network. To remedy
this, we use the segmentation network G as the generator of the GAN of Fig. 1
and define a discriminator network D whose role is to identify topological errors
in the generator output. G and D are trained by making them play a game:
The weights of G are optimized to generate segmentations that D cannot distin-
guish from ground-truth ones and the weights of D are optimized to make that
distinction as well as possible.

3.2 Discriminator Network: D

In a traditional GAN, D is trained to return a binary label that is 1 if a sample
is a ground-truth one and 0 if it is one generated by the G network. We will show
in the result section that this does not help much in our case, mostly because
the errors that G makes are local and that a single binary label is not enough
to characterize them. Instead, we designed D to classify different portions of
the predicted masks at different scales as correct or not. This pyramid approach
allows the discriminator to provide both local and global supervision to the
generator and to model spatial dependencies between neighboring locations. We
now describe the label generation and the discriminator architecture in detail.
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Scale Space Labels. The most challenging aspect of road network reconstruc-
tion is recovering the connectivity of the network by avoiding topological errors.
They most often manifest themselves as short breaks in road segments that
spoil an otherwise mostly correct binary mask. An effective discriminator must
therefore detect and localize such mistakes so that the generator can fix them.

To this end, we define spatially-aware labels as follows. We consider a pyramid
of increasingly zoomed-out versions of the predicted mask, as shown in Fig. 2(e).
At level k of the resulting pyramid, we divide the mask into non-overlapping
patches of size Hk ×Wk and associate a binary value to each one, depending
on the topological correctness within it. The label matrix generated at level k
is of size H

Hk
× W

Wk
. The collection of such label matrices can be regarded as a

representation of topological correctness at different scales and locations.
In practice, our input images are of size 256 × 256 and we have used four

levels with Hk = Wk = {256, 128, 64, 32}. At one extreme of the range, we assign
a single label to the whole image and, at the other, we assess the correctness
within 32×32 patches. As shown in Fig. 2(e), for a road mask that has topological
error, the values in the label matrices are neither all zeros nor all ones. Instead,
they encode fine- or coarse-level locations of topological errors in the generators
output. This allows the discriminator to effectively use multi-scale information.

Dynamic Label Assignment. There is no way to know a priori in which of the
patches discussed above the topology is correct. Therefore, unlike in traditional
GANs, we cannot predefine the labels we assign to the generator output. Instead,
we must do this dynamically for each prediction made by the generator.

For example, the patches outlined in green or red in Fig. 2 are deemed correct
or incorrect, respectively. To make this assessment, we compare the probability
map produced by the generator to the ground-truth within the patch of interest.
Alongside, to match with the labelling strategy, we use a transformed form of
ŷ to construct the corresponding input to the discriminator. To generate the
inputs and labels for the discriminator training we use the following steps:

1. Differentiable Thresholding. We binarize the probability map produced by
the generator. To preserve differentiability, we use STE [4, 34] that thresholds
during the forward pass while behaving as the identity function during the
backward pass. We set the threshold to be 0.5 in our experiments.

2. Multiplication by the dilated ground truth. The generator can produce false
negatives—road pixels that are classified as background as highlighted in
Fig. 2(d)—and false positives—background pixels that are classified as road
pixels as highlighted in Fig. 2(c). The false negatives are those that cause
disconnections and break the connectivity of the network. Furthermore, it is
not unusual for some real roads to be missing from the ground-truth. We have
therefore found empirically that ignoring the false positives and focusing on
the false negatives to be beneficial. Before feeding the thresholded prediction
to the input of the discriminator, we therefore multiply it with a dilated
version of the ground truth mask. The dilation accounts for the fact that
the centerline locations are not always precise in the ground truth. We set
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Fig. 3: Discriminator. The discriminator is a single fully convolutional network that

downsample the input to the desired scales and locations. Each downsampling stage is

composed of a convolutional layer with stride factor 2, followed by a residual block. The

first convolution layer is set to have 64 feature channels. The channel number doubles

after every strided convolution until it reaches 512. The class prediction are produced

from the latest stages using a 1 × 1 convolutional layer.

the dilation factor to 3. Let us denote the resulting mask as T0(ŷ). Two
examples are shown in Fig. 2(d).

3. Concatenating with Input Image. This final step is used to generate the
complete discriminator input. The ground-truth road masks may contain
genuine interruptions, for example because of road dead ends near to other
road sections as in the top-left corner of second row of Fig. 2 (d). To help
the discriminator distinguish these from unwarranted ones (i.e., erroneous
interruptions of the predicted road network as in the red box in Fig. 2 (d)),
we also feed it the input image x so that it can examine the context in which
these interruptions occur. To this end, we concatenate x with the road mask
before feeding it to the discriminator. We will refer to the discriminator
formed by concatenating T0(ŷ) with x as T (ŷ).

4. Assigning Label Values. To generate the label values, we compare the ground
truth skeleton with the prediction T0(ŷ) and count the false nagatives (num-
ber of pixels in the skeleton that are not covered in T0(ŷ)). We use the count
of false negatives to identify the cell that is likely to contain topological
errors. We assign zero to these patches and a 1 otherwise.

The operations corresponding to STE, dilation, and concatenation are repre-
sented by the pink, green, and blue boxes in Fig. 1. Detailed illustration on the
proposed label generation scheme can be found in Fig. 2.

Architecture. To implement D, we use a fully convolutional network similar
to PatchGAN [14], but with four outputs, each having a different resolution. As
a result, D outputs a pyramid of probability maps having the same structure
as the spatially aware labels. Fig.3 depicts its architecture. It comprises eight
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stages that downsample to 1
256

th
of the input resolution. Each stage is made of

a convolutional layer with stride factor 2 followed by a residual block. The first
convolution layer has 64 feature channels. The channel number doubles after
every strided convolution until stage 4; the number of channels are kept at 512
afterward. The final residual block is followed by a single convolutional layer
to output the prediction at the last stage. Features from the output of residual
blocks at stages 5-7 are passed through a single convolutional layer to generate
predictions at respective resolutions.

3.3 Generator Network: G

One could use any standard segmentation network as the generatorG. To demon-
strate this, we experimented with two different ones, a standard UNet [25] and
a recurrent version [30] of it, which we will refer to as DRU.

UNet is a fully convolutional encoder-decoder network with skip connections
that serves as the backbone of several recent road extraction algorithms [22, 21].
We follow the standard UNet design with four levels. Each one comprises two
convolutional operations followed by max pooling. We set the first convolutional
unit to have 64 feature channels. DRU [30] is a UNet with Dual-gated Recurrent
Units. It performs recursion on the input-output and in multiple internal states of
the network to improve the overall performance with only minimal increments
in model size. In the original paper, a lightweight UNet architecture with 32
channels was used. Here we use 64 channels as in the standard UNet.

By combining our proposed discriminator with the two generator networks
UNet and DRU, we build two different methods and dub them as UNet-TopoAL
and DRU-TopoAL respectively.

3.4 Training

To train the generator G and discriminator D, we follow the usual GAN ap-
proach, which is to alternatively minimize the loss functions with respect to the
generator and the discriminator. The difference, however, resides in the discrim-
inator that takes as input T (ŷ), the generator’s output transformed as described
before, and c[y,x] formed by concatenating the ground truth mask y with x.
We train the discriminator to minimize the BCE loss between T (ŷ) outputs and
the corresponding spatially aware labels. We write the loss function as

LD1(ŷ,y) =
∑
k

Lbce(D
k(T (ŷ)),dk) +

∑
j

− logDk
j (c[y,x]) , (2)

where k ∈ {0, 1, 2, 3} is used to index the four outputs from the discriminator.
Dk

j refers to jth element of kth discriminator output, and dk is the spatial-aware
labels for the level k.

The generator is trained using a combination of BCE Loss and adversarial
loss given by

LG1(ŷ,y) = Lbce(ŷ,y) + λA
∑
k

∑
j

− logDk
j (T (ŷ)) , (3)
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where λA is a scalar weight that controls the influence of adversarial loss. In our
experiments we set λA to be 0.005, an empirically found optimal value.

Note that if we use a single discriminator output at level k = 0 in Eq. 2,
predefined label value of 0 for the generator output, that is, d0 = 0, and (ŷ, y)
as the two inputs to the discriminator network, this reduces to a standard GAN.
We will use this as a baseline that we will refer to as VanillaGAN.

4 Experiments

We now describe the dataset we have tested our approach on, the performance
measures we used to assess the quality of the reconstructions, and baselines we
used for comparison purposes. We then show that our approach can be used to
enhance the performance of two of them and report our performance against that
of the others. Additional experimental results including performance comparison
on the DeepGlobe Dataset [10] and the ablation studies revealing the importance
of each component of our approach are provided in the supplementary material.

4.1 Datasets, Metrics, and Baselines

Dataset. We perform our experiments on the RoadTracer dataset [2], which
is one of the most recently published, largest, and most challenging road net-
work dataset. It contains high-resolution satellite images covering the urban
areas of forty cities in six different countries. The labels are generated using
OpenStreetMap in the form of graphs. It covers areas featuring highways, ur-
ban roads, and rural paths, which results in extreme appearance variations. The
roads are often occluded by trees, buildings, and shadows, making it difficult
for segmentation approaches to preserve topology. Finally, the set of 25 training
cities and 15 testing cities are totally disjoint, which makes generalization more
difficult than if the training and testing images were from the same city.

Metrics. Many metrics have been developed to compare the estimated road
networks to that of the ground truth. These metrics can be broadly classified
into two categories, pixel-based and topology-based. We use both kinds for the
sake of completeness.

– Correctness/Completeness/Quality (CCQ). This is a pixel-based met-
rics intended to measure the similarity between a skeletonized prediction and
the corresponding annotation. In segmentation tasks, predictions are often

evaluated using precision = |TP|
|PP| , recall = |TP|

|AP| , and intersection-over-union

= TP
PP∪AP , where PP is the set of foreground pixels in the prediction, AP is the

set of foreground pixels in the ground truth, and TP = PP∩AP. To account
for the shift between predictions and the ground truth, precision, recall, and
intersection-over-union have been relaxed [32]. The resulting quantities are
named correctness, completeness, and quality respectively. To assess the per-
formance using a single metric we report the values of quality (qual.). In our
experiments, we set the allowable pixel shift to 2 pixels.
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– Too Long/Too Short (TLTS ). TLTS [31] compares the lengths of the
shortest paths between randomly sampled ground-truth nodes matched to
the prediction. If the length of the path in the predicted graph is within 5%
of that of the path in the ground-truth the path is declared to be correct.
We use the percentage of correct paths, denoted as TLTS-corr, to assess the
prediction quality. We set the threshold defining if nodes from the ground-
truth are matched to the prediction to 25.

– Average Path Length Similarity (APLS ). APLS [11] aggregates the
differences in optimal path lengths between nodes in the ground truth and
predicted graphs. The Average Path Length Similarity is computed as

1− 1

N

∑
min

{
1,
L(a, b)− L(â, b̂)

L(a, b)

}
(4)

where a and b are nodes in the ground truth graph, â and b̂ are the corre-
sponding nodes in the predicted graph, N is the number of nodes in ground
truth, and L denotes the length of the shortest path connecting them. To
penalize false positives, the same procedure is repeated by swapping ground-
truth and prediction. The final score is the harmonic mean of the two.

– Junction (JUNCT ). JUNCT [2] compares the degree of corresponding
nodes with at least three incident edges, called junctions. The correspon-
dences are established greedily by matching closest nodes. For each ground-
truth junction v that is matched to a predicted junction u, the per-junction
recall fu,correct is computed by taking into account the fraction of edges inci-
dent on v that are also captured around u. The same operation is performed
to compute the per-junction 1-precision fv,error which is the fraction of edges
incident on u that do not appear around v. For this metric we report the
f1-score compute using fu,correct as recall and 1 − fv,error as precision. We
used the implementation provided in [2] with default parameters.

– Holes and Marbles (H&M ). This metric first extracts small subgraphs
from the ground-truth and match them to the prediction. Then, compares
sets of locations in the two subgraphs accessible by traveling a predefined
distance away from a randomly sampled point. Virtual control points, namely
holes, are dropped at regular intervals along the paths in the ground truth
graph. The same process is repeated in the predicted graph, these control
points are called marbles. A hole is said to be matched if it lies sufficiently
close to one of the marbles. The process is repeated for many subgraphs and
the total count of matched and unmatched points are then used to compute
precision and recall. To asses the prediction quality using a single value, we
report the f1-score as in [5]. We set the threshold defining if nodes from the
ground-truth are matched to the prediction to 25. We extracted subgraph of
radius 300 and sampled 1000 of them for each sample.

Baselines and Variants. We use the following approaches that are briefly de-
scribed in Section 2 as baselines.

– UNet [25]: Fully-convolutional network with skip connections.
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– UNet-VGG [22]: Fully-convolutional network with skip connections and
topology-aware loss function.

– DRU [30]: Fully-convolutional network with skip connections and recursion.

– Seg-Path [21]: Two-branch network that jointly learns to segment linear
structures and to classify candidate connections.

– MultiBranch [3]: Recursive architecture jointly trained for road segmentation
and orientation estimation.

– RCNN-UNet [33]: Fully convolutional network with recursive convolutional
layers.

– DeepRoadMapper [18]: A fully convolutional network based segmentation
followed by heuristics based post-processing to generate the graph.

– Roadtracer [2]: Graph constructed iteratively with new node locations being
selected by a convolutional network.

We compare these baselines against three variants of our approach introduced
in Sections 3.3 and 3.4.

– DRU-TopoAL: We use the network of DRU [30] as our generator.

– UNet-TopoAL: We use the network of UNet [25] as our generator.

– UNet-VanillaGAN: We use the network of UNet [25] as our generator and
replace our sophisticated discriminator by a simple one that returns a simple
binary flag for each input mask.

4.2 Implementation details

To train our TopoAL networks we rendered the RoadTracer ground-truth graphs
to half resolution to generate pixel-wise annotations. We have experimented
with different input sizes and observed that half-resolution produced the best
results on the Roadtracer dataset when the network is trained using binary
cross-entropy loss (BCE) alone. We take this to mean that the higher resolution
details of this dataset are not key to producing globally correct topologies, and
the half-resolution provides the optimal trade-off between the required details
in the input image and the effective context available to the network. As input,
we used 256× 256 patches randomly cropped from the training images. To im-
prove the generalization of learned network, we employed data augmentations
in the form of random horizontal flip, vertical flip, scaling and rotation. To train
both the generator and discriminator, we used the Adam optimizer [15] with
a 10−4 learning rate and a batch size of 4. All the models are implemented in
Pytorch [24]. To construct the dynamic labels, a 32x32 patch is declared topolog-
ically incorrect if it contains an erroneous road interruption of at least 4 pixels
long. Larger patches are declared incorrect if they contain an incorrect 32x32
sub-patch. We selected this threshold based on visual inspection to separate
road interruptions from misalignment of the predicted and annotated roads.

We trained UNet, UNet-VGG and DRU using the same settings as TopoAL,
as described in Section 3.3. For DRU and DRU-TopoAL, we set the number of
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Pixel-based Topology-aware

CCQ TLTS APLS JUNCT H&M
Method qual. corr. f1 f1

R
o
a
d

T
ra

ce
r UNet [25] 0.632 0.323 0.619 0.792 0.737

UNet-VanillaGAN 0.636 0.328 0.607 0.776 0.748
UNet-TopoAL (Ours) 0.658 0.388 0.666 0.808 0.767

DRU [30] 0.656 0.437 0.697 0.821 0.768
DRU-TopoAL (Ours) 0.657 0.480 0.725 0.837 0.787

Table 1: Quantitative comparison between baselines segmentation networks, our
improved versions, and UNet-VanillaGAN. Our TopoAL approach improves the
baselines on all metrics. On the other hand, UNet-VanillaGAN performance is
only comparable to that of the baseline network UNet.

recursions to 3 and use the sum of losses corresponding to outputs from all the
recursions. For DRU-TopoAL, outputs from all the recursions is used for the
discriminator training, and the total adversarial loss is computed as the sum of
losses corresponding to all the recursions. We retrained the MultiBranch network
on the RoadTracer dataset using the code provided by the authors with default
settings. For DeepRoadMapper, we use the results shared by the authors of [2].
For all other methods we use the predicted road networks made publicly available
by the authors.

4.3 Boosting the Performance of Existing Architectures

In Table 1, we compare UNet and DRU against UNet-TopoAL and DRU-TopoAL,
which use UNet and DRU as their generators. In both cases, we can see our
scheme consistently boosts their performance, especially the TLTS, APLS, JUNCT
and H&M metrics that are designed to assess topological correctness. The first
row of Fig. 4 provides corresponding qualitative results. We also report the per-
formance of UNet-VanillaGAN, which implements a standard GAN, in Table 1.
It can be noted that it is not better than its generator UNet. Therefore, using
a GAN by itself does not bring the same improvements as TopoAL. As is evi-
dent from the first row of Fig. 4, adding our topology loss not only refine the
predictions but also improves the topological correctness. On the other hand,
predictions from UNet-VanillaGAN does not respect the topological correctness.

4.4 Comparison against the State-of-the-Art

We now turn to compare our results to those of all the baselines discussed above
and report the results in Table 2. We provide corresponding qualitative results
in the last three rows of Fig. 4.

DRU-TopoAL does best on three of the four topology-aware metrics and is
second on the fourth, without any of the post-processing that Seg-Path perform.
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Pixel-based Topology-aware

CCQ TLTS APLS JUNCT H&M
Method qual. corr. f1 f1

R
o
a
d
T

ra
ce

r
DeepRoadMapper [18] 0.435 0.069 0.247 0.514 0.469
Roadtracer [2] 0.477 0.420 0.591 0.812 0.714
RCNN-UNet [33] 0.628 0.201 0.474 0.790 0.701
MultiBranch [3] 0.659 0.439 0.682 0.798 0.765
Seg-Path [21] 0.535 0.489 0.679 0.754 0.688
UNet-VGG [22] 0.636 0.328 0.607 0.776 0.748
UNet [25] 0.632 0.323 0.619 0.792 0.737
DRU [30] 0.656 0.437 0.697 0.821 0.768

UNet-TopoAL (Ours) 0.659 0.388 0.666 0.808 0.767
DRU-TopoAL (Ours) 0.657 0.480 0.725 0.837 0.787

Table 2: Quantitative comparison between state-of-the-art road network recon-
struction algorithms and our proposition. Our proposition DRU-TopoAL pro-
duces the best results in four out of five metrics while it comes second to Seg-Path
in TLTS.

For the pixel-based measures, DRU-TopoAL performs honorably but does not
truly dominate the other algorithms. This is not surprising because TopoAL tar-
gets small interruptions in road segment. They are few in numbers but critical
in terms of topological correctness. Since CCQ only performs pixel-wise compar-
isons, it is relatively insensitive to the kind of errors we detect and fix.

As indicated by the example in the second row of Fig. 4, adding VGG loss
(UNet-VGG) helps to suppress spurious prediction errors but does not lead to
significant improvement in the prediction of true roads. From the third row of
Fig. 4 one can observe that, despite the multi-tasking strategy, MultiBranch fails
to predict the roads at occluded regions (highlighted in blue), a limitation that
was reported in [3]. On the other hand, UNet-TopoAL and DRU-TopoAL de-
picts progressive improvements towards filling up such gaps. In comparison with
the proposed methods, Roadtracer and Seg-Path that use trained networks to
enforce connectivity explicitly, either fails to predict some road segments com-
pletely (highlighted in blue) or result in big false positives (highlighted in green)
that maintains connectivity to the other parts of the predicted network. The last
row of Fig. 4 is an exceptional case wherein trees mostly occlude true roads.1

As is evident, among the segmentation methods, DRU-TopoAL shows the most
promising result against occlusion effects, while maintaining favorable perfor-
mance against Seg-Path.

1 Ground truth mask does not show most of the actual roads because of the omission
noise.
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ground truth UNet UNet-Van.GAN UNet-TopoAL DRU DRU-TopoAL

ground truth UNet UNet-VGG RCNN-UNet UNet-TopoAL DRU-TopoAL

ground truth Roadtracer Seg-Path MultiBranch UNet-TopoAL DRU-TopoAL

ground truth Roadtracer Seg-Path MultiBranch DRU DRU-TopoAL

Fig. 4: Road extraction. Ground truth and predicted roads are marked in red. Our

TopoAL approach improves the topological correctness over their respective generators

when used by themselves (1st row), performs better than the segmentation baselines

(2nd row) and connectivity-based methods (3rd row), and generalizes well to challenging

cases (4th row).

5 Conclusion

In this paper, we have proposed an AL strategy that is tailored for extracting
networks of curvilinear structures. Its key ingredient is a discriminator that,
instead of returning a simple yes or no answer, return a spatially-meaningful
descriptor of which parts of the images are well modeled and which are not. The
corresponding decisions are made at run-time as opposed to be taken a priori as
in traditional GANs. As a result, we can outperform the state-of-the-art without
having to resort to particularly complicated architectures.

Networks of curvilinear structures—blood vessels, dendrites and axons, bron-
chi, among others—are prevalent in biomedical imagery and recovering their
connectivity is also crucial. In future work, we will therefore extend this approach
to delineation in 3D image stacks.
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