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Abstract. As machine learning models and dataset escalate in scales
rapidly, the huge memory footprint impedes efficient training. Reversible
operators can reduce memory consumption by discarding intermediate
feature maps in forward computations and recover them via their inverse
functions in the backward propagation. They save memory at the cost of
computation overhead. However, current implementations of reversible
layers mainly focus on saving memory usage with computation overhead
neglected. In this work, we formulate the decision problem for reversible
operators with training time as the objective function and memory usage
as the constraint. By solving this problem, we can maximize the training
throughput for reversible neural architectures. Our proposed framework
fully automates this decision process, empowering researchers to develop
and train reversible neural networks more efficiently.

Keywords: reversible neural networks, efficient training, machine learn-
ing framework

1 Introduction

The backpropagation [20] mechanism is widely used in training neural networks.
However, since intermediate results need to be saved for backward computations,
the backpropagation requires considerable memory footprint. As neural networks
become larger and deeper, the increasing memory footprint is forcing the usage
of smaller mini-batch sizes. In extreme cases, deep networks have to be trained
with a mini-batch size of 1 [25]. The issue of memory consumption impedes the
explorations of desirable deep learning models.

Researchers have proposed several methods to address the challenge of in-
flating memory footprint [21]. Chen et al. [6] propose gradient checkpoint mech-
anism to store partial intermediate results. The discarded activations will be
recovered through recomputations in the backward pass. The memory swapping
method [19, 24] moves intermediate activations to other devices to reduce the
memory footprint of the current device. The extra memory transfer imposes
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overhead on training efficiency. Reversible operators [7] allow recovering the in-
termediate feature maps in backward pass through the corresponding inverse
functions. All these three methods reduce the memory footprint at the cost of
extra computation or memory transfer. They do not affect the model accuracy
as the training process is numerically unchanged.

Specifically, reversible neural architectures have been successfully adopted in
computer vision research, e.g., the reversible U-net for volumetric image segmen-
tation [3], and the reversible architecture for 3D high-resolution medical image
processing [2]. The lower memory footprint allows deeper models to be trained,
inducing more predictive capability and higher accuracy.

Figure 1 shows two extremes in neural network training. Standard backprop-
agation achieves the extreme of computation efficiency at the expense of the
highest memory footprint, such that it does not contain any redundant com-
putations. On the other extreme, the fully reversible strategy has the lowest
memory footprint with imposing the greatest computation overhead. However,
The design space between two extremes is less studied. Existing research regard-
ing reversible neural networks mainly focuses on saving memory consumption.
All the reversible layers are executed in the memory-efficient mode. The compu-
tation overhead of their inverse functions is overlooked.

Reversible
Network

Computation
S
Q
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Fig.1: Two extremes when training neural networks. The lower right extreme
stands for the standard backpropagation method, which does not contain any
redundant computations. The upper left extreme can achieve the lowest memory
footprint by fully leveraging the reversibility of the neural network.

In this paper, we explore the design space by considering the trade-off be-
tween computation and memory footprint. We derive the mathematical formula-
tion of the decision problem for reversible neural architectures. We formulate the
training time as the objective function with memory usage as an optimization
constraint. By showing that it is a standard 0/1 knapsack problem in essence,
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we use a dynamic programming algorithm to find the optimal solution. We also
discuss the relationship between mini-batch size and training throughput.
Our contributions are highlighted as follows.

— New Perspective. We explore the design space for reversible neural archi-
tectures from a novel perspective of joint optimization.

— Optimality. Our framework guarantees to obtain the maximum training
throughput for reversible neural architectures under given memory con-
straints.

— Automation. Our framework provides a fully automated solution, enabling
more efficient development and training for reversible neural networks.

2 Background

In this section, we discuss the background of reversible neural architectures and
the scheduling framework for the training process.

2.1 Reversible Neural Architectures
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Fig.2: (a) non-reversible and (b) reversible neural architectures. For a non-
reversible layer, we often need to save its original input = for backward com-
putations. For a reversible layer, the original input x can be calculated via its
inverse function z = f~1(y).

Figure 2a demonstrates a conventional non-reversible neural architectures.
The layer y = f(z) is non-reversible if and only if there is no inverse computation
x = f~1(y) for the original function f. For a non-reversible layer, we often
need to store its original input x during forward computation so that we can
compute gradients during backpropagation. As an example, for a linear layer
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y = f(z) = 07z, where 0 represents the weight vector, its backward computation
0dy/00 = x depends on the original input x.

Traditional neural networks are mostly based on these non-reversible layers.
The memory consumed by the feature maps dominates the total memory utiliza-
tion, especially in deep neural networks [19]. Therefore, the memory footprint
can decrease significantly by discarding those feature maps.

Figure 2b illustrates a reversible operator. When using the reversible layer
y = f(x), it is possible recover x in the backward computation by calling its
inverse function x = f~!(y) . Therefore the memory consumption can be saved
by discarding the intermediate feature map x.

Some of the commonly used operators in neural networks are implicitly re-
versible, such as convolution layers with a stride of 1 [12], and fully connected
layers with invertible weight matrix. Inplace Activated Batch Normalization
(ABN) [4] leverages the reversibility of the batch normalization [8] and some acti-
vation functions (such as leaky ReLU). Neural ordinary differential equations [5]
can achieve constant memory usage through reversibility in backpropagation.

Researchers also propose many variations of explicit reversible neural archi-
tectures [9]. The reversible residual architecture [7] does computations on a pair
of inputs (z1,z2) as shown in Equation 1.

y1 =21+ F(22),92 = 22 + G(y1) (1)

It is reversible since the inputs can be recovered from output pairs as demon-
strated in Equation 2.

2 =1y2 — G(y1),x1 = y1 — F(x2) (2)

This technique can be combined with traditional recurrent neural networks to
get reversible RNNs [16]. Kitaev et al. apply the above architecture to the Trans-
former [22] and obtain Reformer [13] as shown in Equations 3 and 4.

y1 = o1 + Attention(zz), y2 = z2 + FeedForward(y;) (3)
X9 = yo — FeedForward(y ), x1 = y1 — Attention(zs) (4)

Although the computation overhead is considered and discussed, these prior
studies mainly focus on memory footprint reduction. They do not explore the
space between the two extremes illustrated in Figure 1.

2.2 Scheduling for Training

For most developers, the primary concern regarding the training process is how
to maximize the training throughput given existing machines, especially GPUs.
Specifically, there is a need for a framework to automate the training process
to fully utilize the computation capability and memory capacity of specific ma-
chines.

Frameworks for the scheduling problem with gradient checkpoints are great
examples. The scheduling problem seeks the minimum computation overhead
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with a memory footprint constraint. Researchers propose many algorithms to
find optimal solutions for gradient checkpoint selection. Kusumoto et al. pro-
vide a dynamic programming algorithm from the perspective of computation
graphs [14]. Jain et al. formulate the scheduling problem as a mixed integer lin-
ear program and solve it via standard solvers [10]. However, a similar problem
for reversible neural architectures does not get much attention. We formulate
and solve this problem in this work.

There are also work focused on the scheduling for distributed training. Jia et
al. optimize how each layer is parallelized in distributed and parallel training [11].
However, they do not consider the reversibility. Our framework can be used
directly in every single machine in the distributed training scenario.

3 Method

In this section, we first describe two modes for reversible neural architectures. We
denote them M-Mode and C-Mode, respectively. We then formulate the decision
problem, and propose an algorithm and our framework. We also discuss the
problem when mini-batch sizes are not fixed.

3.1 Memory Centric and Computation Centric Modes

Each reversible layer y = f(z) can be computed in two modes during the training
process. First, we can leverage its reversibility. We denote it M-Mode, which rep-
resents memory centric mode. Precisely, we discard the activation x in forward
computations, then recover it in the backward pass. This mode saves the memory
consumed by x at the cost of inverse computation of z = f~!(y). Another mode
is treating the reversible layer as a conventional non-reversible layer, which is
denoted C-Mode representing computation centric mode. In this mode, we save
the feature map x in the forward pass, then use it directly in the backward com-
putation. This mode does not involve redundant computations but requires an
extra memory footprint. Table 1 summarizes these two modes.

Table 1: Comparisons of two modes.

mode | forward backward computation cost/memory cost
M-Mode|discard z|recover = from y| =z = f T(y) 0
C-Mode| save x | use x directly 0 size of x

3.2 Formulation

Let f be a neural network with (k+4n) layers, among which there are n reversible
layers {f;}*_,. For each of these n reversible layers, we can decide to do forward
and backward computation following one of the modes above. Let = € {0,1}"
be the decision variable. x; = 0(1) means that the reversible layer f; follows
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the M-Mode (C-Mode). Thus, for n reversible layers, the 2™ choices constitute the
whole solution space.

The two extremes in Figure 1 can be written as t = 0 and z = 1. z = 0
represents that we discard all the intermediate results to achieve the lowest
memory footprint. We treat it as baseline-M. We denote the other extreme
without redundant computations (z = 1) as baseline-C. Currently, most of the
implementations of reversible neural networks use baseline-M directly.

Let tg1,ty1(tr2,ts2) € R, be the execution time vector of forward and
backward pass in the M-Mode (C-Mode) respectively. Compared with the C-Mode,
the extra execution time consumed by the M-Mode is te = (t 1+ 1) — (tr2 +tp2).
The total execution time of forward and backward computation of all these
reversible layers {f;}7_, are

(1 —2)T(tp1 +tpr) a7 (tpo +tpe) = 1T (tp1 + 1) — tla

Similarly, let m € Z% | be the extra memory footprint of C-Mode compared
with M-Mode, i.e., the size of corresponding intermediate activations. The total
extra memory footprint of these feature maps is m” z.

Finally, the time centric optimization problem can be written as Problem 5.
min 17 (¢t +ty1) — tla
xr

st. mTz+ me < M (5)
z; €{0,1},i=1,...,n

where M is the memory capacity of the machine, m, represents the memory allo-
cated for other tensors (such as feature maps of non-reversible layers, and neural
network parameters) when we achieve peak memory in a training iteration. Users
can also specify the memory capacity M explicitly.

For other parts of the training process, such as the optimizer, the computation
of non-reversible layers, their execution time is constant and independent of our
decisions. Therefore, we can minimize the training time by minimizing the total
wall-clock time of all these reversible layers.

3.3 Algorithm and Framework
Problem 5 can be rewritten as Problem 6.
max teTx
st. mTx <M —m, (6)

x; € {0, 1},i =1,..,n

Problem 6 can be interpreted as follows. We take the baseline-M (x = 0) as
the reference. The object function ¢!z is the execution time reduction when we
apply the decision z. The remaining memory capacity for these reversible layers
is M — m,.
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Problem 6 is a standard 0/1 knapsack problem in essence [17]. Note that
the memory-related variables and parameters m, M, m, are all positive integers
since all of them are in the unit of bytes. Therefore, it can be solved by dynamic
programming, as shown in Algorithm 1.

Algorithm 1 Dynamic programming algorithm for 0/1 knapsack problem

Input: te,m, M — mo,n. {Indices of vectors t. and m strat from 1.}
Define saved[n, M —m,] and initialize all entries as —1, which means the entry is un-
defined. {The entry saved|[i, j] records the maximum saved time under the condition
that we consider first ¢ items with total memory limit of j.}
foo(i, j) {This recursive function calculates saved[, j|.}
if i==0o0r j <0 then
return 0 {No time saved under this condition}

end if

if saved[i — 1, j] == —1 then
saved[i — 1, j] = foo(i — 1, )

end if

if m[i] > j then
saved[i, j] = saved[i — 1, j]

else

if saved[i — 1,j — m[i]] == —1 then

saved[i — 1,5 — m[i]] = foo(i — 1,5 — m[i])

end if

saved([i, j| = max{saved[i — 1, j],saved[i — 1,5 — m[i]] + te[i]}
end if
return saved[s, j]

end foo

saved[n, M — m,| = foo(n, M —m,)
Initialize decision variables x = 0 {Do backtracking to find the optimal solution.}
ji=M—m,
fori=n,n—1,...,1do
if saved[i, j] # saved[i — 1, j] then
z[i] =1
j=j—mli
end if
end for
return saved[n, M —m,|,z {Return optimal values and solutions.}

Based on the algorithm, we propose a framework to automate the decision
process. Figure 3 shows the four stages of our framework. Initially, we verify
the reversibility of each operator. The correctness of the original and inverse
functions will be verified. In the second stage, we will obtain parameters t.
and m from realistic measurements. Our framework is hardware-aware since we
use realistic profiling data from specific machines. Then we use Algorithm 1
to get the optimal solution. Finally, we can train the network with maximum
throughput. The dynamic programming algorithm will only be executed once
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DP Training

Fig. 3: Four stages in our framework

to obtain the optimal schedule. After that, this schedule can be used in all the
training iterations. Thus, the added complexity is negligible compared with the
training process.

3.4 Various Mini-batch Size

The above discussions are based on the assumption that the mini-batch size
is fixed. When we have many choices on the mini-batch size (denoted b), the
optimization problem will be more complicated.

We assume that for each layer, its execution time is linear to the batch
size, whether it is reversible or not. Namely, the execution time satisfies that
t(b) = t© 4+ bt The total execution time of all the non-reversible layers is

9 + bt!). The total execution time of all the reversible layers is
17 (b1 + ton) — 172 = 175 + 60) + 017 (1) +15)) — 107w — 0t "2

The execution time of the optimizer, scheduler, and control are independent of
mini-batch size, denoted by t,. The execution time per sample is

T
to+ 1) + 17t + 7)1«
b

O 417+ ) — 1D 2+

The memory footprint is also linear to the mini-batch size. The size of network
parameters is independent of the mini-batch size. The size of the feature maps
of the non-reversible layers is proportional to the mini-batch size. Thus, the
memory constraint can be rewritten as bmTx + m(()O) + me,” < M.

The optimization problem is now

ootk AT ) - 10"
b
st. bmTz+m® +om) < M (7)
x; €{0,1},i=1,...,n
b€ b,by],beZ

min ¢ +17(¢) +4))) - ¢

where b;, b, are lower and upper bounds of the mini-batch size.
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Rewrite the problem as Problem 8.

T C - t(O)Tx
max f(x,b) =t 2 — TE
st. bmTx+ mgo) + bmgl) <M (8)

x; € {0, 1},i =1,..,n
b€ [b,b,],beZ

where C = t, + t + 1T(t§col) +19) is a constant.

Problem 8 is a non-linear integer programming optimization problem, which
is hard to get the optimal solution. A simple method is to sweep the mini-batch
size in the range of [b;, b,] with our framework. Empirically the Problem 6 is fast
to solve using Algorithm 1. Thus, it is affordable to apply the simple method of
sweeping the mini-batch size. We further discuss various mini-batch size in in
Section 4.6. We leave Problem 8 as an open problem for future research.

4 Experiments

In this section, we provide the experimental settings initially. Then we discuss the
details of profiling. We analyze three reversible neural architectures: RevNet-104,
ResNeXt-101 with inplace ABN, and Reformer. We further discuss the results
in terms of various mini-batch sizes.

4.1 Settings

We adapt source codes from MemCNN! [15], Inplace ABN? [4], and Reformer? [13].
We follow their original settings and hyperparameters except that we can decide
what modes each reversible layer will use.

Unless otherwise stated, we use PyTorch[18] 1.4.0. The training process runs
on a Linux server with Intel Core i9-7900X CPU and 1 NVIDIA TITAN Xp
GPU, whose memory capacity is 12,196 MiB. All the tensor operations are on
the GPU. We report the mean of 100 training iterations.

4.2 Profiling

To ensure hardware-awareness, our framework needs to do profiling on the exe-
cution time and memory allocation to obtain t., m,m, based on realistic mea-
surement. It is easy to collect memory-related terms m,m, since the memory
footprint is stable throughout a whole training process.

For the execution time t., the most accurate way to obtain it is running the
model in two modes respectively and collect all the four corresponding vectors

! https://github.com/silvandeleemput /memcnn
2 https://github.com/mapillary/inplace_abn
3 https://github.com/lucidrains/reformer-pytorch
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(t1, to1, tya, tez). We can also directly compare these two modes and conclude
their difference. For the feature maps in the C-Mode, it takes extra time for the
memory writes in the forward computation, and memory read in the backward
pass. In the M-Mode, there is overhead in reading y from memory and the inverse
computation.

It is complicated to analyze the memory behaviour, and the analysis is beyond
discussions of this paper. Fortunately, we observe that tf1 ~ tr2 = tp1 — tpo.
For instance, the average execution time of the RevNet-104 [7] with mini-batch
size of 64 on ImageNet is tyy = 10.425ms, typ = 10.404ms, t,; = 29.276ms,
and tpo = 18.865ms. This observation is prevalent in current machine learning
frameworks, since memory accesses are hidden by computations [18,1]. Thus,
we can only take computation into account when analyzing the difference in
execution time. In short, t. = (ty1+tp1) — (ty2+tp2) = ty1 =~ ty2 The assumption
is verified for all the following experiments. We use t. = t¢; in the optimization
problem directly.

4.3 RevNet

We apply our framework on RevNet-104 [7] for image classification on ImageNet.
By sweeping the mini-batch sizes, we can obtain various memory budgets and
computation overhead. Figure 4 illustrates our decision for different mini-batch
sizes. When the mini-batch size is smaller than 65, the GPU memory capacity
is large enough to contain all the intermediate activations. Thus, the optimal
decision is saving all of them to achieve maximum training throughput. Starting
from a mini-batch size of 65, we have to use the M-Mode in partial reversible
layers due to the limited memory budget. Our dynamic programming solver will
obtain the optimal decision for each setting. If the mini-batch size is larger than
117, we will encounter the issue of out of memory even if we use baseline-M,
the most memory-efficient decision. As shown in Figure 4, the optimal decision
is non-trivial across different mini-batch sizes.

‘mini-batch size
70 75 80 85 90 95 100 105 110 115

T

ﬁ-__

layer index

M-Mode [JllC-Mode

Fig.4: The heat map of the optimal solutions throughout different mini-batch
sizes on RevNet-104 with 13 reversible layers. The horizontal and vertical axes
represent the mini-batch size and the layer index, respectively.
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Fig.5: Training time and speedup comparison of RevNet-104 and ResNeXt-101
with Inplace ABN on ImageNet. Training time per iteration is the time of one
complete iteration (forward, backward, and optimizer updating). Training time
per sample is the multiplicative inverse of training throughput. The curves of
baseline-C are truncated due to device memory limitation.
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Figure ba shows the training time per iteration of baseline-M, baseline-C
and our optimal solution. The solid red line and the green dashed line repre-
sents the baseline-M and optimal settings provided by our framework. The
baseline-C is highlighted in the lower left corner, since it is limited by the
device’s memory capacity and cannot contain a large batch size. Our optimal
solution overlaps with the baseline-C when baseline-C is feasible, i.e., mini-
batch size smaller than 65. When baseline-C is not available, our framework
approach the baseline-M gradually. The reason is that as the mini-batch size
grows, the harsh memory constraint pushes us forward to the extreme of memory
efficiency. The gap between the two curves (baseline-M and optimal) demon-
strates the absolute time saved by applying our method.

Figure 5b compares the training time per sample. We can use this metric
to compare the training throughput (which is the multiplicative inverse of the
training time per sample) for different mini-batch sizes. Before applying our
framework, the training speed increases as the mini-batch size grows for two
reasons. First, we leverage the parallelism across batches. Second, the execution
time of the optimizer, scheduler, and control is independent of the mini-batch
size. This part of execution is amortized by the large mini-batch size. After using
our framework, the trend is different. The training throughput decreases as the
mini-batch size grows, because the computation overhead of inverse functions
is much larger than the benefit from large mini-batch size. We also show the
relative speedup of our optimal execution time compared with baseline-M. We
can achieve up to 1.15x speedup for this benchmark.

4.4 Inplace ABN

We follow the settings in the paper of Inplace ABN [4] and use our framework to
train ResNeXt-101 [23] for image classification on ImageNet. Figures 5¢ and 5d
compares the training time per iteration across different mini-batch sizes. The
results are similar to those of RevINet-104 except the relative speedup.

The computation overhead of the Inplace ABN is relatively low compared
with RevNet-104 in the previous subsection. The execution time of baseline-C
is only 0.8 —2% smaller than that of baseline-M. Therefore, the relative speedup
using our method is not as significant as the experiments on RevNet-104. The
reason is that the maximum training throughput of our framework is bounded
by baseline-C. However, the advantage of our method is that we can find the
optimal point across two baselines.

4.5 Reformer

We also do experiments on the enwik8 task with Reformer. Specifically, there
are 8 heads in our 12-layer model. The maximum sequence length is 4,096, and
the number of tokens is 256. For each iteration, we call the optimizer to update
the trainable parameters after accumulating gradients for 4 steps. Table 2 shows
the training time in different modes.
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Table 2: Results of Reformer on enwik8 task. TPI and TPS are abbreviations
for training time per iteration and training time per sample. OOM stands for
out of memory. All the execution time is in the unit of seconds.

mini-batch baseline-C baseline-M optimal baseline-C baseline-M optimal

size TPI TPI TPI TPS TPS Tpg Speedup
1 0.951 1321  0.949  0.951 1.321  0.949 1.392
2 1.738 2533 1.738  0.869 1266 0.860 1.457
3 OOM 3.603  2.752 OOM 1201 0917 1.310
4 OOM 4792 4175 OOM 1198  1.044 1.148
5 OOM 6.020 5236 OOM 1204 1.047 1.150
6 OOM 7210  6.692 OOM 1202 1.115 1.077
7 OOM 8420 7.670 OOM 1203 1.096 1.098
8 OOM 9.490  9.044 OOM 1.186  1.130 1.049
9 OOM 10.603 10.123 OOM 1178 1.125  1.047

—_
o

OOM 11.873 11.295 OOM 1.187 1.129 1.051

Due to the large memory footprint, the baseline-C can only run with a mini-
batch size of 2. The reversibility enables us to train the model with a mini-batch
size up to 10. Our framework provides a smooth transition from baseline-C to
baseline-M. We achieve 1.3x relative speedup when the mini-batch size is 3.

4.6 Various mini-batch sizes

For this subsection, we discuss the optimal mini-batch size from the perspective
of training throughput. In the above experiments, the lowest execution time per
sample (TPS) is approximately obtained at the largest mini-batch size when
baseline-C is feasible. For example, the Reformer get the lowest TPS 0.869s
at the mini-batch size of 2. The reason is that the computation overhead of
inverse functions is much larger than the benefit from large mini-batch size.
In other words, we cannot accelerate the training process via reversible neural

T
architectures. From the perspective of Problem 8, the TPS f(x,b) = tgl) T —

_sT T
% is dominated by the first term ¢\ z.

5 Conclusions

In this paper, we present the framework to execute reversible neural architectures
in the most efficient modes. We formulate the decision problem for reversible
operators. The training time is the objective function with memory usage as a
constraint. By solving this problem, we can maximize the training speed for any
reversible neural architectures. Our framework automates this decision process,
empowering researchers to develop and train reversible networks more efficiently.

For future directions, we may integrate gradient checkpoints and reversible
neural architectures to enlarge the search space, since gradient checkpoints allow
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non-reversible layers to follow M-Mode by doing recomputation. The optimal
mini-batch size in terms of training throughput is another critical issue.
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