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Fig. 1: Our Box2Seg model is able to produce high quality semantic segmentation
using only bounding box annotations. Each image pair shows ground-truth (left)
and predicted segmentation (right).

Abstract. We propose a weakly supervised approach to semantic seg-
mentation using bounding box annotations. Bounding boxes are treated
as noisy labels for the foreground objects. We predict a per-class atten-
tion map that saliently guides the per-pixel cross entropy loss to focus on
foreground pixels and refines the segmentation boundaries. This avoids
propagating erroneous gradients due to incorrect foreground labels on the
background. Additionally, we learn pixel embeddings to simultaneously
optimize for high intra-class feature affinity while increasing discrimi-
nation between features across different classes. Our method, Box2Seg,
achieves state-of-the-art segmentation accuracy on PASCAL VOC 2012
by significantly improving the mIOU metric by 2.1% compared to pre-
vious weakly supervised approaches. Our weakly supervised approach
is comparable to the recent fully supervised methods when fine-tuned
with limited amount of pixel-level annotations. Qualitative results and
ablation studies show the benefit of different loss terms on the overall
performance.
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1 Introduction

The accuracy of semantic segmentation approaches has improved significantly
in recent years [8,10,32,35,53,54,56]. The mean Intersection-over-Union (mIoU)
metric on the PASCAL VOC semantic segmentation benchmark has improved
by over 20% in the last five years. The success of these efforts can be broadly
attributed to (i) advancements in deep neural network architectures and loss
functions, (ii) efficient processing (better GPUs), and (iii) the availability of
large datasets of images with human labeled per-pixel annotations [13,30]. Im-
provements in network architectures and hardware capabilities benefit all deep
learning tasks. However, large datasets with per-pixel semantic labels are both
expensive and slow to obtain [4,13] (typically 4-10 minutes per image), making
it challenging to scale to a large number of object categories. Consequently, even
the largest semantic segmentation datasets [30,58] include less than a couple of
hundred object categories.

To address the scarcity of labeled data, some previous works have used syn-
thetic datasets [43]. While labeling synthetically generated datasets involves little
annotation effort, models trained on them do not always generalize well to the
real world due to the domain gap between the real and the synthetic images. Al-
ternative training strategies such as semi-, self-, or weak-supervision that require
simpler/fewer labels (eg. image-level labels or bounding box annotations) have
also been proposed. In this work, we show how to leverage real images with weak
supervision to advance the state-of-the-art (SOTA) for semantic segmentation
(refer to Fig. 1 for sample results).

Bounding box annotations yield high quality ground truth at a small cost.
According to [4,13], per-pixel labeling takes over 4 minutes per image compared
to ∼ 7 seconds (35x faster) for annotating bounding boxes [36]. Furthermore,
large datasets with bounding box annotations containing over 9 million images
are publicly available [25]. Weakly supervised approaches using bounding box
annotations have been shown to be more accurate when compared to meth-
ods that use only image-level labels. SOTA segmentation result on VOC using
bounding box annotations [46] outperforms the SOTA methods using image-level
labels [27] by ∼ 4%. Our work, Box2Seg, builds upon previous approaches that
use bounding box annotations.

A key intuition of our paper is to consider bounding box annotations as con-
taining label noise for the foreground object. Since bounding box annotation is
a super-set of the actual object segmentation, this label noise is one-sided. In
other words, some foreground labels are incorrectly assigned to background pix-
els within the bounding box. However, all foreground pixels inside the box and
background pixels outside all boxes are correctly labeled. Typical fully supervised
segmentation training considers the label for every pixel as correct and gradients
are back-propagated from all pixels. This would be an issue for a weakly super-
vised segmentation algorithm. To handle this, our algorithm predicts a novel
per-pixel class-specific attention map and pixel embeddings in addition to the
per-pixel segmentation output. The attention map is used to modulate the per-
pixel cross entropy loss to handle label noise and reduces propagation of incorrect
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gradients. Thus, the attention map allows us to automatically discover salient
regions of the object within the bounding box. The attention map is regularized
using a soft filling-rate constraint for each training image.

We learn discriminative feature embeddings to capture long-range pairwise
relationships between pixels across an image. We pretrain these embeddings to
maximize the affinity between pixels belonging to same classes, while at the
same time increasing the distance between features corresponding to different
classes. During training, we define a novel loss function on pairs of pixels such
that it encourages the pixel affinities to align with the predicted segmentation
probabilities. A few methods have also proposed using feature affinity as an ex-
plicit measure to improve segmentation in fully-supervised and co-segmentation
settings [5,18,22,31,33]. Affinities have also been used in some weakly supervised
approaches [1,2], but they are trained in a fully-supervised manner using pseudo
ground truth derived from class activation maps, as opposed to our embeddings
which are trained by minimizing disagreements between them and estimated
segmentation output (Sect. 3.4). We show how discriminative feature learning
obtained using the model predictions can also be incorporated and is helpful in
the context of weakly supervised semantic segmentation.

The remainder of this paper is organized as follows. We discuss related work
in Sect. 2. Our learning algorithm and loss functions are described in Sect. 3.
We demonstrate SOTA results on the PASCAL VOC 2012 segmentation bench-
mark (Sect. 4), outperforming previous weakly-supervised approaches by 2.1%
on the mIoU metric. We also show that our weakly supervised model serves as
a good starting point for semi-supervised learning tasks, surpassing fully super-
vised baselines pre-trained with ImageNet [12] with only a fraction of pixel-level
segmentation annotations.

2 Related Work

Previous works on weakly-supervised semantic segmentation have used image-
level annotations [17,20,26,27,42,50,52], points/clicks [4], scribbles [29,47,48,49],
bounding box annotations [11,19,37,41,46,55] and adversarial training [3,21]. We
take a closer look at some of these methods and categorize them based on the
labels required and their methodology.
Image Level Labels: Deep learning approaches that use image-level labels typ-
ically train a classification model first to recover coarse class activation maps [57],
which describe class-discriminative image regions. The predicted class activation
maps are then used as ‘seeds’ for optimization methods that grow the coarse ac-
tivation maps to larger pseudo segmentation maps. A number of optimization
methods such as super-pixelization [26], deep seeded region growing [20], condi-
tional random fields [42,52], and combinatorial grouping [40] have been proposed.
Finally, the pseudo segmentation maps are used as ground truth to train the
segmentation model [28]. Some approaches additionally employ a class-agnostic
saliency estimation model [6,50,52] to capture objectness of pixels, and others
employ Expectation-Maximization (EM) [17] to iteratively refine the pseudo
ground truth and the parameters of the segmentation model.
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Fig. 2: Distribution of filling rate in PASCAL VOC 2012 training dataset. The
per-class filling rates vary widely, especially for the categories such as sofa, dining
table and bicycle. Unlike [46] that proposes using 1-3 filling rates per class, we
use a per-image class specific filling rate.

Bounding Box Labels: The availability of bounding box annotations alle-
viates the need to estimate class activation maps for localizing objects of in-
terest. The bounding boxes serve as crude segmentation masks which are re-
fined using heuristic cues [23] and graph based optimization algorithms such
as GrabCut [44] or mean-field inference [24] on a densely-connected conditional
random field [37,41,46]. Previous works have used the refined masks for train-
ing the segmentation model [28]. Some of these approaches additionally use
EM [11,23,37,55] for iterative refinement of the ground truth and model pa-
rameters. However, training models with EM is time-consuming and is prone to
propagation of errors over iterations; In contrast, our proposed approach does
not require iterative refinement and outperforms these methods by a large mar-
gin (Sect. 4).

Multi-tasking: Hu et al. [19] train an object detector and segmentation model
simultaneously using the Mask-RCNN framework [15] assuming a closed form
relationship between parameters of the detection and segmentation branches.
While [19] is able to benefit from the advantages of multi-tasking, it requires
(a) (limited) training data with per-pixel annotations, (b) a region of interest
(RoI) proposal method, and (c) uses the RoI warping module which captures
local context alone. Our approach does not require any per-pixel annotations
and uses a fully-convolutional network. We capture global image context via
long-range interactions by training pixel embeddings.

Label Noise: We consider bounding boxes as noisy labels for foreground objects.
Some fully-supervised approaches [39,34] have tackled noise in the segmentation
ground truth by consolidating predictions from two or more independent clas-
sifiers and discarding pixels with ambiguous predictions from the training data.
Among weakly supervised methods, Song et al. [46] propose the idea of using
the filling-rate as a cue to supervise training with bounding box ground truth.
The filling-rate of a class [46] is defined as the average proportion of pixels in a
bounding box that instances of the class occupy, and is estimated by applying
dense-CRF [24] for foreground extraction within bounding boxes. For example,
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suppose in the PASCAL VOC 2012 dataset, instances of ‘sheep’ occupy roughly
60% of pixels in each bounding-box. During training, their approach ignores
gradients from the 40% pixels with the lowest confidences in each bounding box
containing ‘sheep’. In contrast, we advocate estimating a per-image class-specific
spatial attention map, to allow for large intra-class variations in object appear-
ance (see Fig. 2). Instead of ignoring loss on pixels with low-confidence as in [46],
which is a hard constraint, we use the filling rate to regularize the attention map
as a soft constraint. Therefore, our attention map offers a continuous modulation
of cross-entropy loss, rather than a binary decision. Attention maps have also
been employed in [1,59] where they are trained in a fully-supervised manner us-
ing pseudo segmentation ground truth. In contrast, our attention modulated loss
offers a principled way of handling label noise present in segmentation ground
truth derived from bounding box annotations. We validate our approach with
quantitative and qualitative comparisons with [46] in Sect. 4.

3 Proposed Approach

Image

Pretraining

Fig. 3: Overview of our weakly supervised Box2Seg training pipeline. Our seg-
mentation model is a three branch CNN which outputs segmentation probabil-
ities y, per-class spatial attention maps α, and pixel embeddings β. B denotes
segmentation masks defined using bounding box annotations. GrabCut is applied
to B to obtain refined segmentation masks M . We use B and M to supervise
the three outputs of the model. Pixel embeddings capture long-range pairwise
relationships and the attention map refines the segmentation output y by reduc-
ing the effect of label noise. At test time we only use the branch producing the
segmentation probabilities y, and discard the other branches that output α, β.

In this section, we describe our Box2Seg algorithm in detail. We discuss
our pipeline and loss functions that allow us to learn a per-image, class-specific
attention map as well as pixel embeddings.



6 V. Kulharia∗, S. Chandra∗ et al.

3.1 Feed Forward Network Architecture

Let I ∈ Rn×3 denote a 3−channel input color image with n pixels. Our segmen-
tation model S is a fully-Convolutional Neural Network (CNN) which takes I
as input and produces three outputs: (i) the segmentation output probabilities
y ∈ Pm×(L+1),P ∈ [0, 1], (ii) the attention map α ∈ Pm×L, and (iii) the pixel
embeddings β ∈ Rm×d. Here d denotes the size of the pixel embeddings and m
denotes the spatial resolution of the outputs. Each pixel in the output image can
assume one of the L + 1 labels (L object categories and the background class).
The ground truth bounding boxes are denoted by Bbox ∈ RK×5, where K is
the number of bounding boxes comprising of 4 coordinates and a class label. To
simplify the notation, we denote by B ∈ Rm×(L+1) the box-segmentation tensor
obtained by setting all pixels inside a bounding box to 1 for the corresponding
class label (channel). In the case two boxes overlap, we assign 1 to the class
corresponding to the smaller bounding box (assuming that the smaller box is in
the front). Note that this assumption may not always be true and can result in
incorrect label assignments for B (See eg. Fig. 8).

Similar to prior works [37,41,46], we generate pseudo ground-truth segmen-
tation maps M ∈ Rm×(L+1) by applying classical graph-based unsupervised
segmentation approach (Grabcut [44]) on each bounding box in our training
dataset. The segmentation masks obtained by classical methods, albeit noisy
and imprecise, provide a good prior for training deep learning models.

Fig. 3 gives an overview of our approach. Training involves passing the input
image I through a common feature encoder that feeds into the three branches
of network S to produce y, α, and β, as follows:

y = Softmax(S(I, θy)); α = σ(S(I, θα)); β = S(I, θβ),

where θy, θα, θβ denote the parameters of the model S for the respective branches.
Softmax denotes the softmax over all the classes and σ denotes the sigmoid ac-
tivation function. Note that the segmentation output probabilities, y, sums up
to 1 for each pixel across classes due to softmax. However, the activation maps,
α, use sigmoid output, making them independent for each class. Note that our
model does not use additional parameters compared to any baselines we compare
against in Sec. 4 as we discard the branches producing α, β at test time.

3.2 Box And GrabCut Based Losses

We use the box-segmentation tensor B to train a simple baseline by minimizing
the following cross-entropy loss:

Lbox = − 1

m

L∑
c=0

m∑
i=1

B(i, c) log (y(i, c)) . (1)

Similar to previous works, we use the GrabCut outputs M obtained from the
bounding boxes to define another baseline by minimizing the following cross-
entropy loss:

LGC = − 1

m

L∑
c=0

m∑
i=1

M(i, c) log (y(i, c)) . (2)
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Since the GrabCut algorithm provides reasonable segmentation outputs (Sect. 4),
we use LGC in addition to our loss functions described in the following sections.

3.3 Attention Weighted Segmentation Loss

Our novel attention modulated cross-entropy loss considers bounding box anno-
tations as noisy labels for the foreground object. Note that since the bounding
box is a super-set of the actual object segmentation mask, the label noise is one-
sided: foreground labels are incorrectly assigned to background pixels, but no
true foreground labels are missing. Additionally, pixels outside all the bounding
boxes can be considered definite background and do not have any label noise.
Since supervised segmentation training typically considers all labels as correct,
in the presence of label noise, erroneous gradients can be back propagated during
training. At pixels close to bounding box and object boundaries, the network
gets conflicting information about the foreground/background labels at similar
pixels. This is the reason for the worse performance of baseline trained with box
annotations only (Table 3).
Attention on Foreground Objects: We propose to modulate the per-pixel
cross-entropy loss using the predicted attention map from the network by mini-
mizing

Lfg =
−1∑m

i B(i, c)

L∑
c=1

m∑
i=1

α(i, c)B(i, c) log (y(i, c)) . (3)

Note that the attention map has same spatial resolution as the segmentation
output and is class-specific. The attention weighted loss is only defined for the
L foreground classes. In addition, the loss is normalized with the size of the
bounding box, to give similar weighting to each class.
Background Loss: Since the pixels outside all the bounding boxes can be
considered as definite background, the background loss is defined as

Lbg = −
∑m
i B(i, 0) log(y(i, 0))∑m

i B(i, 0)
, (4)

where 0 denotes the background class. We define the Attention Weighted Loss
(AWL) as

LAW = Lfg + Lbg. (5)

Attention Map Regularization: Without any regularization on the attention
maps, the network can minimize Lfg by predicting all α(i, c) = 0. To prevent
this, we compared two approaches to regularize the attention map. The first
approach regularizes the attention mask using ground truth bounding boxes
(similar to [46]), by minimizing the L2 loss between the attention maps and the
bounding boxes.

Lbboxα =

m∑
i=1

L∑
c=1

‖ B(i, c)− α(i, c) ‖2 . (6)

The second approach regularizes the attention mask using fill-ratios obtained
from GrabCut outputsM as follows. Let ηc denote the per class, per image, filling
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(a) Image + GT (b) Grabcut + Box (c) Attention + Box

Fig. 4: Visualizing attention maps produced by our network. (a) Input images
with overlaid ground truth masks. (b) Grabcut output with ground-truth bound-
ing box. (c) Predicted attention map. Note that while Grabcut output is erro-
neous and often includes background pixels, our attention maps are concentrated
on the objects of interest.

rate defined as the proportion of pixels in the pseudo ground-truth M compared
to its corresponding bounding box.

ηc =

∑m
i M(i, c)∑m
i B(i, c)

. (7)

Similarly, the predicted fill rate of the attention map is computed as

η
′

c =

∑m
i B(i, c)α(i, c)∑m

i B(i, c)
. (8)

We use a margin loss to ensure that the predicted fill rate is at least a factor
γ of the fill rate obtained using M . Lfrα = max(0, γηc − η

′

c), where γ ∈ [0, 1] is
a hyper-parameter which is set to 0.7 in our experiments. Thus, the predicted
fill rate (Eqn. 8) is allowed to vary between γηc and 1. This enforces a soft
constraint that the attention map should allow propagation of loss from at least
70% of ηc pixels inside the bounding box. Using Lbboxα for regularization forces the
attention mask to take the shape of the bounding box. Thus, it is prone to include
background pixels in attention map. Using Lfrα provides a softer constraint and
gives better results in our experiments. Figure 4 shows some qualitative examples
where attention map is able to focus on foreground pixels despite errors in the
underlying GrabCut segmentations, allowing Box2Seg to be robust to label noise.

3.4 Discriminative Feature Learning

We now describe training of our pixel embeddings β which capture long-range
pairwise relationships between different pixels. Pixel embeddings can be denoted
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(a) (b) (c) 
Fig. 5: Visualization of affinities produced by our network. (a) Input image with
overlaid ground truth masks and two pixels marked with purple and green +
signs. (b,c) Affinity heatmaps (Eqn. 9) w.r.t. the purple and green pixels, resp.

as β = {βi}, where βi is the d-dimensional feature for the ith pixel. Affinity
between embeddings at pixel i and j is given by its normalized dot product

A(i, j) = βi · βj =
βTj βi

‖βj‖‖βi‖
. (9)

Intuitively, we want to achieve high affinity between feature vectors of two
pixels that belong to the same class, while ensuring low affinity between features
of two different classes. Similarly, a background pixel should have low affinity
with respect to another pixel that belongs to one of the L foreground classes.
To achieve this, we define a novel loss function on pairs of pixels (i,j), such
that it encourages the pixel affinities to align with the predicted segmentation
probabilities, as follows,

LA =
∑
i,j

(
A(i, j)− yTj yi

)2
. (10)

However, training affinity matrices requires large amount of memory. To avoid
creating large affinity matrices of sizem×m, we randomly sample a small fraction
of pixel empeddings equally from each class to compute this loss. Figure 5 shows
the affinity maps computed from our class discriminative embeddings.

3.5 Training Box2Seg

Our approach optimizes the following loss function:

L = LGC + λAWLAW + λαLα + λALA, (11)

where Lα equals either Lbboxα or Lfrα . λAW , λα and λA are weights applied to the
individual losses.
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4 Experiments and Results

We evaluate the performance of our approach on PASCAL VOC 2012 [13]
dataset. Our ablation studies provide insights into our design choices. Finally,
we demonstrate that our method provides a better initialization than Imagenet
pretraining for the task of semi-supervised segmentation.

4.1 Implementation Details

Our segmentation network architecture is similar to UPerNet [51] where the
encoder backbone is ResNet-101 [16], and decoders consist of 2 convolutional
layers. We employ the ResNet-101 backbone to ensure fair comparison with the
three most recent SOTA works, SDI [23], Li et al. [28], and BCM [46] as well
as 4 other recent methods [27,47,48,49] in Table 1. We have three decoders, one
each for the y, α, and β branches. The final results are spatially down-sampled
by a factor of 4, i.e. m = n/16. We start with ImageNet pretrained [12] weights
to initialize our encoder.

We train our network in two stages. First, we pre-train the feature represen-
tations using the affinity loss by randomly sampling 10% of pixel pairs using the
Grabcut outputs M. This is done by minimizing Eqn. 10 using Mi in place of yi.
Note that the pretraining phase is meant to only serve the task of weight initial-
ization for our discriminative feature learning. Our final feature representations
are robust to noise in the Grabcut outputs since they are trained eventually to
agree with our predictions using Eqn. 10. After the pretraining phase, we en-
able the decoder branch to also output y and α and train the entire network
end-to-end to optimize the loss function in Eqn. 11. After doing a grid search of
hyper-parameters on a held out validation set, λAW , λα and λA are set to 10, 1,
and 1 respectively. We use Stochastic Gradient Descent to train our models for
40 epochs with an initial learning rate = 1e− 4, momentum = 0.9, weight decay
= 5e−4 and a polynomially decaying learning rate as in [7]. Our implementation
uses PyTorch [38] and is trained on Nvidia’s TitanX GPUs. Note that at test
time we discard the decoders yielding α, β, therefore our method uses no ad-
ditional parameters compared to any of our baselines in the following sections.
Our implementation will be available at www.github.com/vivkul/Box2Seg.

4.2 Quantitative and Qualitative Evaluation

PASCAL VOC 2012 is one of the gold standard benchmarks for semantic segmen-
tation. Following [9,11,32], we use the augmented annotation set [14] consisting
of 10582 training and 1449 validation images. Performance is measured using
the mIoU metric on the validation set.

We compare the accuracy of our algorithm to the SOTA weakly supervised
segmentation methods on VOC validation set in Table 1. Our approach shows a
large improvement over previous methods ([37,11,23,46,28]), some of which have
also used VGG-16 backbones for feature representation. Li et al. [28] report
an mIoU of 74.3%, using bounding boxes as supervision and dense CRF post-
processing. Our method yields an mIoU of 74.9% without dense CRF, and 76.4%

www.github.com/vivkul/Box2Seg
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(a) Input Image (b) GroundTruth (c) Box Masks (d) GrabCut (e) BCM (f) Box2Seg (Ours)

Fig. 6: Comparison of our segmentation results with those of BCM [46].

mIoU after dense CRF post processing resulting in an improvement of 2.1%.
Box2Seg also outperforms recent weakly supervised methods that use image level
labels [27,52] or scribbles [29,47,48,49]. Per-category results comparing Box2Seg
against the SOTA methods are reported in Table 2.

Qualitative comparison of our results with BCM [46] is shown in Fig. 6.
Our method is able to produce higher-quality object segmentations compared to
BCM. It’s also robust to false segmentations in some cases, e.g. false detection
closer to the left edge of the BCM result on the last row are suppressed by our
method. Please refer to Fig. 1 for additional examples of segmentations using
our approach. We also show some failure cases of our approach in Fig. 8.

Accuracy of GrabCut (no training): We also evaluated the accuracy
of GrabCut algorithm itself, without any training, against the segmentation
ground-truth. Interestingly, GrabCut output on ground truth bounding boxes
(GrabCut-NoTrain-GT ) results in a strong weakly-supervised baseline with 71.6%
mIoU. However, since the ground truth bounding boxes are not available at in-
ference, a more practical baseline is to obtain bounding boxes on the validation
set using an object detector (we used SNIPER [45]) and then run GrabCut on
those. This baseline (GrabCut-NoTrain-Det) obtains 68.5% mIoU.

4.3 Ablation studies

Table 3 shows the efficacy of our loss functions in improving the performance of
our approach. The trivial Box baseline obtained by training the segmentation
network with bounding box supervision (Lbox loss only) results in a low mIoU
of 59.3%, as expected. Training the segmentation network with GrabCut masks
(LGC loss only) without affinity or attention losses resulted in 72.7% mIOU.
Introducing our feature embeddings to the pipeline (Affinity) improves the mIoU
to 73.9%. Our novel AWL terms (λAWLAW + λαLα) significantly improve the
mIoU to 74.6% with filling-rate regularization (AW-fr) (more about AWL in
Sect. 4.4). Finally, combining all losses (Eqn 11), Box2Seg obtains 74.9% mIoU.
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Method Annotations Backbone mIoU

GrabCut-NoTrain-GT box - 71.6
GrabCut-NoTrain-Det box - 68.5

SSNet [52] image-level DenseNet-169 63.3
F2FA [27] image-level ResNet-101 66.5

ScribbleSup (C) [29] scribble VGG-16 63.1
NormalCut [47] scribble ResNet-101 72.8
BPG [49] scribble ResNet-101 73.2
KernelCut [48] scribble ResNet-101 73.0

WSSL (C) [37] box VGG-16 60.6
BoxSup (C) [11] box VGG-16 62.0
SDI (C) [23] box ResNet-101 69.4
BCM (C) [46] box ResNet-101 70.2
Li et al. (C) [28] box ResNet-101 74.3

Box2Seg box ResNet-101 74.9
Box2Seg (C) box ResNet-101 76.4

Table 1: Comparison of Box2Seg to previous weakly supervised semantic segmen-
tation methods on PASCAL VOC validation set. C=dense-CRF post processing.

4.4 Attention Weighted Loss in the Fully-Supervised Setting

We demonstrate that AWL boosts segmentation accuracy in fully-supervised
case if we have disagreements between bounding-box and per-pixel annotations.

During our analysis, we found that roughly 10% of training images in PAS-
CAL VOC dataset [13,14] have disagreements between the bounding box and
pixel-level annotations. Fig. 7 shows few examples, where pixel-level annotation
for object categories are missing, but their corresponding bounding box labels
are correctly provided. Due to incorrect pixel-level annotations, fully supervised
training would back-propagate erroneous gradients on these pixels. Since our
novel AWL (LAW in Sect. 3.3) is effective in dealing with label noise for weakly
supervised networks, we analyze if it can further improve the performance of a
fully supervised network also. In cases where conflicting sources of ground truth
exist (as in Fig. 7), AWL can allow correct gradients to propagate back due to
correct bounding box annotations (see the predicted attention maps in Fig. 7),
thereby reducing the effect of incorrect pixel-level annotations.

Method bkg aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mIoU

BCM VGG (CRF) [46] 89.8 68.3 27.1 73.7 56.4 72.6 84.2 75.6 79.9 35.2 78.3 53.2 77.6 66.4 68.1 73.1 56.8 80.1 45.1 74.7 54.6 66.8
BCM ResNet (CRF) [46] − − − − − − − − − − − − − − − − − − − − − 70.2
Li et al. (CRF) [28] 93.3 85.0 35.9 88.6 70.3 77.9 91.9 83.6 90.5 39.2 84.5 59.4 86.5 82.4 81.5 84.3 57.0 85.9 55.8 85.8 70.4 75.7
Box2Seg 92.5 66.5 31.7 78.9 65.5 83.4 90.4 86.7 86.0 55.1 81.8 59.9 80.5 74.1 76.0 75.7 65.3 85.1 72.5 87.8 77.7 74.9
Box2Seg (CRF) 93.3 72.4 33.0 84.2 64.9 83.5 90.9 86.7 88.7 57.2 83.6 62.5 82.6 76.8 77.0 77.8 63.3 87.2 75.1 88.3 74.1 76.4

Table 2: Per-class results on PASCAL VOC 2012 Validation set. We compare our
Box2Seg (with and without denseCRF) with those of the previous state-of-the-
art methods. Please note that Li et al. (CRF) results require COCO annotations.
Per-class results from [46] for their ResNet-101 model are not available.
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(a) Bounding Box GT (b) Segmentation GT (c) Predicted Attention

Fig. 7: (Left) Input images with overlaid bounding box labels. (Middle) Missing
pixel-level annotations on foreground objects such as Aeroplane and Person.
Note that the bounding box annotations are correct. (Right) Predicted attention
map with boxes. Please refer to Sect. 4.4 for discussion on how our AWL can
help in cases with conflicting ground truth during fully-supervised training.

Method Lbox LGC LAW Lα LA mIoU

Box X 59.3
GrabCut X 72.7

Affinity X X 73.9

AW-box X X Lbboxα 74.1

AW-fr X X Lfrα 74.6

Box2Seg X X Lfrα X 74.9

Table 3: Ablation study showing the effect of our loss functions in improving the
performance over baseline methods.

Table 4 shows the improvement obtained by adding AWL to the fully Su-
pervised baseline. Adding the AWL (+ LAW ) to the fully-Supervised baseline
improved the segmentation mIoU by 1.5%. Thus, AWL is effective at improving
segmentation accuracy, both in the weakly- and fully- supervised settings.

4.5 Semi-supervised Semantic Segmentation

Weakly supervised trained method can naturally serve as a starting point for
semi-supervised segmentation. To study this, we fine tuned our Box2Seg model
using different amount of pixel-level annotations. We observe significant improve-
ments in accuracy, even with small amount of supervision as shown in Table 5.
For comparison, we show the result of semi-supervised fine tuned BCM [46]
model trained with 1464 images (13.8% of the data) and another fully supervised
baseline (DeepLab) using ImageNet as the initialization. Our weakly supervised
baseline results improved from 74.9% mIoU to 83.1% with just 10% of super-

Method CE Loss + LAW ∆

Supervised baseline 73.6 75.1 +1.5

Table 4: Improvements in segmentation accuracy on the PASCAL VOC 2012
validation set in the fully supervised setting using AWL.
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vised data. Therefore, our Box2Seg model can serve as a good starting point and
provides better results compared to ImageNet based initialization.

Method mIoU

BCM [46] † (S=0%) (C) 70.2
BCM [46] † (S=13.8%) (C) 71.6
DeepLab † (S=100%) (C) 74.5

Box2Seg (S=0%) 74.9
Box2Seg (S=5%) 78.7
Box2Seg (S=10%) 83.1
Box2Seg (S=100%) 86.4

Table 5: Semi-supervised segmentation using Box2Seg model as initialization.
(S=τ%) implies τ% images with pixel annotations are used for semi-supervised
fine-tuning. C=dense-CRF post processing. †: ResNet-101 backbone (refer [46]).

(a) Label Assignment Issues (b) Label BleedingFig. 8: Failure Cases. (Left) Incorrect label assignment on box annotations B can
happen when the smaller bounding box is physically behind the larger bounding
box. (Right) Predicted segmentation bleeds into background.

5 Conclusions

In this work, we proposed a pipeline for training a weakly supervised semantic
segmentation method from bounding box annotations. We showed that bounding
box annotations can be treated as noisy labels for foreground objects and pro-
posed a novel attention weighted loss to reduce the effect of erroneuos gradients
due to incorrect labels. We also proposed pixel embeddings to capture global
context via long-range pairwise interactions. We showed qualitative improve-
ments over the previous SOTA on the PASCAL VOC semantic segmentation
benchmark and pushed the mIoU metric forward by 2.1%. Interestingly, fully
supervised methods can also benefit from attention weighted loss in the pres-
ence of exhaustive bounding box annotations but missing pixel-level annotations.
Future work would involve using an edge detector as a cue to learn class bound-
aries, and also extending our method to benefit from image-level supervision.
Acknowledgements: V. Kulharia worked as an intern at Amazon Lab126 and
continued this work at Oxford University. V Kulharia’s DPhil is funded by the
Toyota Research Institute grant.
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