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Abstract. Deep metric learning (DML) has received much attention in
deep learning due to its wide applications in computer vision. Previous
studies have focused on designing complicated losses and hard example
mining methods, which are mostly heuristic and lack of theoretical un-
derstanding. In this paper, we cast DML as a simple pairwise binary
classification problem that classifies a pair of examples as similar or dis-
similar. It identifies the most critical issue in this problem—imbalanced
data pairs. To tackle this issue, we propose a simple and effective frame-
work to sample pairs in a batch of data for updating the model. The key
to this framework is to define a robust loss for all pairs over a mini-batch
of data, which is formulated by distributionally robust optimization. The
flexibility in constructing the uncertainty decision set of the dual vari-
able allows us to recover state-of-the-art complicated losses and also to
induce novel variants. Empirical studies on several benchmark data sets
demonstrate that our simple and effective method outperforms the state-
of-the-art results.

Keywords: Deep Metric Learning, Distributed Robust Learning, Data
Imbalance

1 Introduction

Metric Learning aims to learn a metric to measure the distance between examples
that captures certain notion of human-defined similarity between examples. Deep
metric learning (DML) has emerged as an effective approach for learning a metric
by training a deep neural network. Simply speaking, a deep neural network can
induce new feature embedding of examples and it is trained in such a way that
the Euclidean distance between the induced feature embeddings of two similar
examples shall be small and that between the induced feature embeddings of
two dissimilar pairs shall be large. DML has been widely used in many tasks
such as face recognition [2], image retrieval [1], and classification [16,9].

However, unlike training a deep neural network by minimizing the classifi-
cation error, training a deep neural network for metric learning is notoriously
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more difficult [17,24]. Many studies have attempted to address this challenge
by focusing on several issues. The first issue is how to define a loss function
over pairs of examples. A variety of loss functions have been proposed such as
contrastive loss [4], binomial deviance loss [27], margin loss [26], lifted-structure
(LS) loss [14], N-pair loss [23], triplet loss [20], multi-similarity (MS) loss [25].

The major difference between these pair-based losses lies at how the pairs
interact with each other in a mini-batch. In simple pairwise loss such as binomial
deviance loss, contrastive loss, and margin loss, pairs are regarded as independent
of each other. In triplet loss, a positive pair only interacts with one negative pair.
In N-pair loss, a positive pair interacts with all negative pairs. In LS loss and MS
loss, a positive pair interacts with all positive pairs and all negative pairs. The
trend is that the loss functions become increasingly complicated but are difficult
to understand.

In parallel with the loss function, how to select informative pairs to con-
struct the loss function has also received great attention. Traditional approaches
that construct pairs or triplets over all examples before training suffer from pro-
hibitive O(N2) or O(N3) sample complexity, where N is the total number of
examples. To tackle this issue, constructing pairs within a mini-batch is widely
used in practice. Although it helps mitigate the computational and storage bur-
den, slow convergence and model degeneration with inferior performance still
commonly exist when using all pairs in a mini-batch to update the model. To
combat this issue, various pair mining methods have been proposed to comple-
ment the design of loss function, such as hard (semi-hard) mining for triplet
loss [20], distance weighted sampling (DWS) for margin loss [26], MS sampling
for MS loss [25]. These sampling methods usually keep all positive (similar)
pairs and select roughly the same order of negative (dissimilar) pairs according
to some criterion.

Regardless of these great efforts, existing studies either fail to explain the
most fundamental problem in DML or fail to propose most effective approach
towards addressing the fundamental challenge. It is evident that the loss func-
tions become more and more complicated. But it is still unclear why these com-
plicated losses are effective and how does the pair mining methods affect the
overall loss within a mini-batch. In this paper, we propose a novel effective so-
lution to DML and bring new insights from the perspective of learning theory
that can guide the discovery of new methods. Our philosophy is simple: casting
the problem of DML into a simple pairwise classification problem and focusing
on addressing the most critical issue, i.e., the sheer imbalance between positive
pairs and negative pairs. To this end, we employ simple pairwise loss functions
(e.g., margin loss, binomial deviance loss) and propose a flexible distributionally
robust optimization (DRO) framework for defining a robust loss over pairs within
a mini-batch. The idea of DRO is to assign different weights to different pairs
that are optimized by maximizing the weighted loss over an uncertainty set for
the distributional variable. The model is updated by stochastic gradient descent
with stochastic gradients computed based on the sampled pairs according to the
founded optimal distributional variable.
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The DRO framework allows us to (i) connect to advanced learning theories
that already exhibit their power for imbalanced data, hence providing theoret-
ical explanation for the proposed framework; (ii) to unify pair sampling and
loss-based methods to provide a unified perspective for existing solutions; (iii)
to induce simple and effective methods for DML, leading to state-of-the-art per-
formance on several benchmark datasets. The contributions of our work are
summarized as follows:

– We propose a general solution framework for DML, i.e., by defining a robust
overall loss based on the DRO formulation and updating the model based on
pairs sampled according to the optimized sampling probabilities. We provide
theoretical justification of the proposed framework from the perspective of
advanced learning theories.

– We show that the general DRO framework can recover existing methods
based on complicated pair-based losses: LS loss and MS loss by specifying
different uncertainty sets for the distributional variable in DRO. It verifies
that our method is general and brings a unified perspective regarding pair
sampling and complicated loss over all pairs within a batch.

– We also propose simple solutions under the general DRO framework for
tackling DML. Experimental results show that our proposed variants of
DRO framework outperform state-of-the-art methods on several benchmark
datasets.

2 Related Work

Loss Design. The loss function is usually defined over the similarities or dis-
tances between the induced feature embeddings of pairs. There are simple pair-
wise losses that simply regard DML as binary classification problem using av-
eraged loss over pairs, e.g., contrastive loss, binomial loss, margin loss. It is
notable that the binomial loss proposed in [27] assigns asymmetric weights for
positive and negative pairs, which can mitigate the issue of imbalance to certain
degree. The principal of the newly designed complicated pair-based losses can
be summarized as heuristically discovering specific kinds of relevant information
between groups of pairs to boost the training. The key difference between these
complicated losses lies at how to group the pairs. N-pair loss put one positive
pair and all negative pairs together, Lifted-structure loss and MS-loss group all
positive pairs together and all negative pairs together for each example. In con-
trast, our DRO framework employs simple pairwise loss but induce complicated
overall loss in a systematic and interpretable way.
Pair Mining/Pair Weighting. [26] points out that pair mining plays an
important role in distance metric learning. Different pair mining methods have
been proposed, including semi-hard sampling for triplet loss, distance weighted
sampling (DWS) for margin loss, MS mining for MS losses. These pair mining
methods aim to select the hard positive and negative pairs for each anchor.
For instance, [20] selects the hard negative pairs whose distance is smaller than
that between the positive pairs in triplets, [22] selects the hardest positive pair
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whose distance is smaller than that of the nearest negative pair in a batch, and
MS mining [25] selects hard negative pairs whose distance is smaller than the
largest distance between positive pairs and hard positive pairs whose distance is
larger than the smallest distance between negative pairs at the same time. DWS
method keeps all positive pairs but samples negative pairs according to their dis-
tance distribution within a batch. The proposed DRO framework induce a pair
sampling method by using the optimal distributional variables that defines the
robust loss over pairs within a mini-batch. As a result, the sampling probabili-
ties induced by our DRO framework is automatically adaptive to the pair-based
losses. There are other works that study the problem from the perspective of
pair weighting instead of pair sampling. For example, [28] heuristically design
exponential weights for the different pairs in a triplet, which is a special case of
our DRO framework. Details are provided in the supplementary. However, since
the quality of anchors varies very much, it may not be reasonable to sample the
same number of pairs from all anchors.
Imbalance Data Classification. There are many studies in machine learn-
ing which have tackled the imbalanced issue. Commonly used tricks include
over-sampling, under-sampling and cost-sensitive learning. However, these ap-
proaches do not take the differences between examples into account. Other effec-
tive approaches grounded on advanced learning theories include minimizing max-
imal losses [21], minimizing top-k losses [2] and minimizing variance-regularized
losses [12]. However, these approaches are not efficient for deep learning with
big data, which is a severe issue in DML. In contrast, the proposed DRO for-
mulation is defined over a mini-batch of examples, which inherits the theoretical
explanation from the literature and is much more efficient for DML. In addition,
the induced loss by our DRO formulation include maximal loss, top-k loss and
variance-regularized loss as special cases by specifying different uncertainty sets
of the distributional variable.

3 DML as A DRO-Based Binary Classification Problem

In this section, we will first present a general framework for DML based on DRO
with theoretical justification. We will then discuss three simple variants of the
proposed framework and also show how the proposed framework recover existing
complicated losses for DML.

Preliminaries. Let x ∈ RD denote an input data (e.g., image) and f(·; θ) :
RD → Rd denote the feature embedding function defined by a deep neural net-
work parameterized by θ. The central task in DML is to update the model pa-
rameter θ by leveraging pairs of similar and dissimilar examples. Following most
existing works, at each iteration we will sample a mini-batch of examples denoted
by {x1, ...,xB}. We can construct B2 pairs between these examples 4, and let yij
denote the label of pairs, i.e., yij = 1 if the pair is similar (positive), and yij = 0 if
the pair is dissimilar (negative). The label of pairs can be either defined by users

4 For simplicity, we consider all pairs including self-pair.
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or derived from the class label of individual examples. Existing works of DML
follow the same paradigm for learning the deep neural network i.e., a loss function
F (θ) is first defined over the pairs within a mini-batch and the model parameter
θ is updated by gradient-based methods. Various gradient-based methods can be
used, including stochastic gradient descent (SGD), stochastic momentum meth-
ods and adaptive gradient methods (e.g. Adam). Taking SGD as an example,
the model parameter θ can be updated by θ ← θ − η∇F (θ), where η denotes
the learning rate. The focus here is to how to define the loss function F (θ) over
all pairs within a mini-batch. As mentioned earlier, we will cast the problem
as simple binary classification problem, i.e., classifying a pair into positive or
negative. To this end, we use lij(θ) = l(f(xi; θ), f(xj ; θ), yij) denote the pair-
wise classification loss between xi and xj in the embedding space (e.g., margin
loss [26], binomial loss [27]). A naive approach for DML is to use the averaged

loss over all pairs, i.e., Favg(θ) = 1
B2

∑B
i=1

∑B
j=1 lij(θ). However, this approach

will suffer from the severe imbalanced issue, i.e., most pairs are negative pairs.
The gradient of Favg will be dominated by that of negative pairs.

3.1 General DRO-Based Framework

To address the imbalanced pair issue, we propose a general DRO formulation
to compute a robust loss. The formulation of our DRO-based loss over all pairs
within a mini-batch is given below:

F (θ) = max
p∈U
{g(θ,p) :=

B∑
i=1

B∑
j=1

pij lij(θ)}, (1)

where p ∈ RB2

+ is a non-negative vector with each element pij representing a

weight for an individual pair. U ⊆ RB2

denotes the decision set of p, which
encodes some prior knowledge about p. In the literature of DRO [12], p is in-
terpreted as a probability vector such that

∑
ij pij = 1 called the distributional

variable and U denotes the uncertainty set that specifies how p deviates from the
uniform probabilities (1/B2, . . . , 1/B2). In next subsection, we will propose sim-
ple variants of the above general framework by specifying different constraints
or regularizations for p. Below, we will provide some theoretical evidences to
justify the above framework.

To theoretically justify the above loss, we connect (1) to exiting works in
machine learning by considering three different uncertainty sets for p. First,
we can consider a simple constraint U = ∆ = {pij ≥ 0,

∑
ij pij = 1}. As a

result, F (θ) = maxij lij(θ) becomes the maximal loss over all pairs. [21] shows
that minimizing maximum loss is robust to imbalanced data distributions and
also derives better generalization error for imbalanced data with a rare class.
However, the maximal loss is more sensitive to outliers [29]. To address this
issue, top-K loss [2] and variance-regularized loss [12] are proposed, which can
be induced by the above DRO framework. If we set U = {

∑
ij pij = 1, 0 ≤ pij ≤

1/K}, F will become the top-K loss F (θ) = 1
K

∑K
i=1 l[i](θ), where l[i](θ) denotes
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the i-th largest loss over all pairs. If we set Uφ = {p ∈ ∆,Dφ(p‖1/B2) ≤ ρ
B2 },

where Dφ(p‖p′) =
∫
φ( dpdp′ )dp

′ is the φ-divergence between two distributions p

and p′ with φ(t) = 1
2 (t − 1)2, then the DRO-based loss becomes the variance-

regularized loss under certain condition about the variance of the random loss,
i.e., for a set of i.i.d random losses {`1, ..., `n}(n = B2) we could have

sup
p∈Uφ

n∑
i=1

pi`i =
1

n

n∑
i=1

`i +

√
2ρVarn(`)

n
,

where Varn(`) denotes the empirical variance of `1, ..., `n. We can see that the
second term in R.H.S of the above equation involves the variance, which can play
a role of regularization. The variance-regularized loss has been justified from
advanced learning theory by [12], and its promising performance for imbalanced
data has been observed as well.

Before ending this subsection, we will discuss how to update the model pa-
rameter θ based on the robust loss F (θ) defined by (1). A simple approach is
to find an optimal distributional variable p∗ to (1) and then update θ accord-
ing to the subgradient of weighted loss by ∂θg(θ,p∗) =

∑
ij p
∗
ij∇lij(θ), which is

justified by the following lemma.

Lemma 1 Assume that g is proper, lower-semicontinuous in θ and level-bounded
in p locally uniformly in θ. Then the subgradient ∂F (θ) ⊂

⋃
p∗∈P∗(θ) ∂θg(θ,p∗),

where P ∗(θ) denotes the optimal solution set of the maximization problem in
(1). Furthermore, when lij(θ) is smooth in θ and P ∗(θ) is a singleton, i.e.,
p∗ = arg maxp g(θ,p) is unique, we have ∂F (θ) = ∂θg(θ, p∗).

Remark 1. The above lemma can be proved by Theorem 10.13 in [18]. It shows
that even if we may not directly compute ∂F (θ), our framework can at least
obtain its superset ∂θg(θ,p∗). Particularly, if we have additional conditions, i.e.,
lij(θ) is smooth in θ and the optimal solution p∗ is unique (considering our
regularized formulation below), it theoretically guarantees that our framework
exactly computes ∂F (θ).

3.2 Proposed Three Variants of Our Framework

In order to contrast to other variants recovering existing complicated losses pre-
sented in next subsection, we introduce some notations and make some simpli-
fications. For each example xi that serves as an anchor data, let Pi = {j|yij =
1, j ∈ [B]} and Ni = {j|yij = 0, j ∈ [B]} denote the index sets of its positive

and negative pairs, respectively. Let P =
⋃B
i=1 Pi and N =

⋃B
i=1Ni. We denote

the cardinality of a set by P = |P|. For simplicity, we let Pi = |Pi|, Ni = |Ni|,
P = |P| and N = |N |. Since zero losses usually do not contribute to the compu-
tation of the subgradient for updating the model, we can simply eliminate those
examples for consideration.

The first variant is to simply select the top-K pairs with K-largest losses,
which is equivalent to the following DRO formulation:
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DRO-TopK:

max
p

B∑
i=1

∑
j∈Pi∪Ni

pij lij(θ)

s.t.

B∑
i=1

∑
j∈Pi∪Ni

pij = 1, 0 ≤ pij ≤ 1/K,

where K is a hyper-parameter. The gradient of the robust loss can be simply
computed by sorting the pairwise losses and computing the average of top-K
losses.

The second variant is a variant of the variance-regularized loss. Instead of
specifying the uncertainty set Uφ, we use a regularization term for the ease of
computation, which is defined by

DRO-KL

max
p∈RP+N

+

B∑
i=1

∑
j∈Pi∪Ni

pij lij(θ)− γDKL(p|| 1

P +N
)

s.t.

B∑
i=1

∑
j∈Pi∪Ni

pij = 1,

where γ > 0 is a hyper-parameter and DKL denotes the KL divergence between
two probabilities. The optimal solution to p can be easily computed follow-
ing [11]. It is notable that the optimal solution p∗ is not necessarily sparse.
Hence, computing

∑
ij p
∗
ij∇lij(θ) needs to compute the gradient of pairwise loss

for all pairs, which could be prohibitive in practice when the mini-batch size is
large. To alleviate this issue, we can simply sample a subset of pairs according
to probabilities in p∗ and the compute the averaged gradient of these sampled
pairs.

The third variant of our DRO framework is explicitly balancing the number
of positive pairs and negative pairs by choosing top K/2 pairs for each class,
which is denoted by DRO-TopK-PN:

DRO-TopK-PN:

max
p∈{0,1}P+N

B∑
i=1

∑
j∈Pi∪Ni

pij lij(θ)

s.t.

B∑
i=1

∑
j∈Pi

pij ≤
K

2
,
B∑
i=1

∑
j∈Ni

pij ≤
K

2
.

For implementation, we can simply select K/2 positive pairs with largest
losses and K/2 negative pairs with largest loss respectively, and compute aver-
aged gradient of the pairwise losses of the selected pairs for updating the model
parameter.

3.3 Recovering the Method based on SOTA Pair-Based Loss

Next we show that proposed framework can recover the method based on SOTA
complicated losses. With the induced feature vector f(x; θ) normalized to have
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unit norm, we define the similarity of two samples as Sij := 〈f(xi; θ), f(xj ; θ)〉,
where 〈·, ·〉 denotes dot product. Specifically, we consider two SOTA loss func-
tions, LS and MS loss, which are defined below:

LMS =
1

n

n∑
i=1

{ 1

α
log[1 +

∑
k∈Pi

e−α(Sik−λ)] +
1

β
log[1 +

∑
k∈Ni

eβ(Sik−λ)]} (2)

LLS =

n∑
i=1

[log
∑
k∈Pi

eλ−Sik + log
∑
k∈Ni

eSik−λ]+. (3)

where α, β, λ are hyper-parameters of these losses.
The key to our argument is that the gradient computed based on these losses

can be exactly computed according to our DRO framework by choosing appro-
priate constrained set U and setting the pairwise loss as the margin loss. To this
end, we first show the gradient based on the LS loss, which can be computed
by [25]:

∂L(S)

∂θ
=
∂L(S)

∂S
· ∂S
∂θ

=

B∑
i=1

B∑
j=1

∂L(S)

∂Sij
· ∂Sij
∂θ

(4)

which can be alternatively written as

∂L(S)

∂θ
=

B∑
i=1

( ∑
j∈Ni

w−ij
∂Sij
∂θ
−
∑
j∈Pi

w+
ij

Sij
∂θ

)
. (5)

It can be shown that for LS loss, derivations are provided in the supplemen-
tary, we have

w+
ij =

eλ−Sij

B∑
k∈Pi

eλ−Sik
=

1
B∑

k∈Pi
eSij−Sik

, w−ij =
eSij−λ

B∑
k∈Ni

eSik−λ
=

1
B∑

k∈Ni
eSik−Sij

.(6)

To recover the gradient of the LS loss under our DRO framework, we employ
the pairwise margin loss for lij(θ), i.e., lij(θ) = [m + yij(λ − Sij)]+, where m
and λ are two hyper-parameters and [a]+ = max{0, a}. Assume that the margin
parameter m is sufficiently large such that lij(θ) > 0 for all pairs. The key
to deriving the same gradient of the LS loss under our framework is to group
distributional variables in p for the positive and negative pairs according to the
anchor data. Let p+

i ∈ RPi and p−i ∈ RNi denote the corresponding vectors of
positive and negative pairs for the anchor xi, respectively. Let us consider the
following DRO formulation:

F (θ) = max
p∈RP+N

+

B∑
i=1

∑
j∈Pi∪Ni

pij lij(θ)−
B∑
i=1

(
γ+i DKL(p+

i ||
1

Pi
) + γ−i DKL(p−i ||

1

Ni
)
)

s.t.
∑
j∈Pi

pij = 1,
∑
k∈Ni

pik = 1, for i ∈ [B],

(7)
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where γ+i ≥ 0 and γ−i ≥ 0 for i ∈ [B] are hyper-parameters. we can easily
derive the closed-form solution for p∗, i.e., p+∗ij = 1∑

k∈Pi
e(Sij−Sik)/γ

+
i

, and p−∗ij =

1∑
k∈Ni

e(Sik−Sij)/γ
−
i

. Then computing the gradient of the robust loss with respect

to θ by using the above optimal p∗, we have:

∂F (θ) =

B∑
i=1

( ∑
j∈Ni

p−∗ij
∂Sij
∂θ
−
∑
j∈Pi

p+∗ij
∂Sij
∂θ

)
which exactly recover the gradient in (6) by setting γ+i = γ−i = 1.

Finally, we can recover the gradient based on the MS loss in a very similar
way. The difference is to add a pseudo positive pair and pseudo negative pair
with 0 loss for each anchor xi, and augment each p+

i and p−i by one additional
dimension. Further our DRO framework can also cover the heuristically designed
exponential weights sampling strategy HAP2S E in [28]. This verifies that our
DRO framework is able to provide hindsight for heuristic methods from advanced
learning theories perspective. The detailed derivations of above equivalence are
provided in the supplementary.

4 Experiments

Our methods was implemented by pytorch and using BN-Inception network [7]
pre-trained on ImageNet ILSVRC [19] to fairly compare with other works. The
same as [25], a FC layer on the top of the model structure following the global
pooling layer was added with randomly initialization for our task. Adam Opti-
mizer with 1e− 5 learning rate was used for all our experiments.

We verify our methods on the image retrieval task with three standard
datasets, Cub-200-2011, Cars-196 and In-Shop. These three datasets are split
according to the standard protocol. For Cub-200-2011, the first 100 classes
with 5864 images are used for training, and the the other 100 classes with
5924 images are saved for testing. Cars-196 consists of 196 car models with
16,185 images. We use the first 98 classes with 8054 images for training and
the remaining 98 classes with 8,131 images for testing. For In-Shop, 997 classes
with 25882 images are used for training. The test set is further partitioned to
a query set with 14218 images of 3985 classes, and a gallery set containing
3985 classes with 12612 images. Batches are constructed with the following rule:
we first sample a certain number of classes and then randomly sample M in-
stances for each class. The standard recall@k evaluation metric is used in all our
experiments, where k = {1, 2, 4, 8, 16, 32} on Cub-200-2011 and Car-196, and
k = {1, 10, 20, 30, 40, 50} on In-Shop

We apply margin loss and binomial loss as our base loss for DRO frame-
work. LM and LB denote margin loss and binomial loss ([27]) respectively. m
denotes the margin in LM . λ is the threshold for both LM and LB . α and β are
hyperparameters in LB .
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4.1 Quantitative Results

In this experiment, we compare our DRO framework with other SOTA baselines
on Cub-200-2011, Cars-196 and In-Shop, which includes [25,28,8,15,3,5,26,13].
Among them, mining-based methods are Clusetring, HDC, Margin, Smart Min-
ing and HDL. ABIER and ABE are ensemble methods. HAP2S E and MS are
sampling-based methods, which are highly related to our methods. For our DRO
framework, we test all three variants which are proposed in section 3.2. We ap-
ply two loss functions, margin loss and binomial loss, respectively. Since DRO
p-sampling works on all pairs in a batch, the binomial variant may not directly
apply to p-sampling. Thus, it makes totally five variants of our DRO frame-
work, denoted by DRO-TopKM , DRO-TopKB , DRO-TopK-PNM , DRO-TopK-
PNB and DRO-KLM , where the subscript M and B represent the variants of our
framework using margin loss and binomial loss, respectively. We set embedding
space dimension d = 1024. The batchsize is set B = 80 on Cub-200-2011 and
Cars-196, B = 640 on In-Shop. γ is tuned from the range = {0.1 : 0.2 : 0.9} on
all three datasets and K is tuned from {160, 200, 240, 280} on Cub-200-2011 and
Cars-196, and selected from {640, 960, 1280, 1600, 1920} on In-Shop.

Table 1: Recall@k on Cub-200-2011 and Cars-196
Cub-200-2011 Cars-196

Recall@k(%) 1 2 4 8 16 32 1 2 4 8 16 32

Clusetring([13]) 48.2 61.4 71.8 81.9 - - 58.1 70.6 80.3 87.8 - -
HDC([13]) 53.6 65.7 77.0 85.6 91.5 95.5 73.7 83.2 89.5 93.8 96.7 98.4

Margin([26]) 63.6 74.4 83.1 90.0 94.2 - 79.6 86.5 91.9 95.1 97.3 -
Smart Mining([5]) 49.8 62.3 74.1 83.3 - - 64.7 76.2 84.2 90.2 - -

HDL([3]) 57.1 68.8 78.7 86.5 92.5 95.5 81.4 88.0 92.7 95.7 97.4 99.0

ABIER([15]) 57.5 68.7 78.3 86.2 91.9 95.5 82.0 89.0 93.2 96.1 97.8 98.7
ABE([8]) 60.6 71.5 79.8 87.4 - - 85.2 90.5 94.0 96.1 - -

HAP2S E([28]) 56.1 68.3 79.2 86.9 - - 74.1 83.5 89.9 94.1 - -
MS([25]) 65.7 77.0 86.3 91.3 94.8 97.0 84.1 90.4 94.0 96.5 98.0 98.9

DRO-TopKM (Ours) 67.4 77.7 85.9 91.6 95.0 97.3 86.0 91.7 95.0 97.3 98.5 99.2
DRO-TopKB(Ours) 68.1 78.4 86.0 91.4 95.1 97.6 85.4 91.0 94.2 96.5 98.0 99.0

DRO-TopK-PNM (Ours) 67.3 77.6 85.7 91.2 95.0 97.7 86.1 91.7 95.1 97.1 98.4 99.1
DRO-TopK-PNB(Ours) 67.6 77.9 86.0 91.8 95.2 97.7 86.2 91.7 95.8 97.4 98.6 99.3

DRO-KLM (Ours) 67.7 78.0 86.1 91.8 95.6 97.8 86.4 91.9 95.4 97.5 98.7 99.3

Table 1 and 3 report the experiment results. We mark the best performer in
bold in the corresponding evaluation measure on each column. For our frame-
work, particularly, we mark those who outperform all other SOTA methods
in bold. We can see that our five variants outperform other SOTA methods on
recall@1 on all three datasets. Particularly on Cars-196, our five variants outper-
forms other SOTA methods on all recall@k measures. On Cub-200-2011, DRO-
TopKB achieves a higher recall@1 (improving 2.4% in recall@1) than the best
SOTA, MS. On Cars-196, DRO-KLM has the best performance, which improves
2.3% and 1.2% in recall@1 compared to the best non-ensemble SOTA, MS, and
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the best ensemble SOTA, ABE. On In-Shop, DRO-TopK-PNM improves 1.6%
in recall@1 compared to the best results among SOTA, MS. The above results
verify 1) the effectiveness of our DRO sampling methods and 2) the flexibility
of our DRO framework to adopt different losses.

4.2 Ablation Study

Comparison with LS loss and MS loss In Section 3.3, we theoretically show
that LS loss and MS loss can be viewed as special cases of our DRO framework.
In this experiment, we aim to empirically demonstrate that our framework is
general enough and recovers LS loss. Specifically, we would show 1) when γ =
1, our framework performs similarly to LS loss, as stated in Section 3.3, 2)
our framework can be seen as a generalized LS loss by treating γ as a hyper-
parameter, and 3) our generalized LS loss outperforms MS loss, even though the
performance of the ordinary LS loss is inferior to that of MS loss.

We adopt the set up of embedding dimension and batchsize in the ablation
study of [25], i.e., d = 64 and B = 80. Therefore, we report the existing results
of MS and LS loss presented in [25] on Cars-196. For Cub-200-2011 and In-
Shop, we implement MS and LS loss according to [25]. Following [25], we set
α = 2, β = 50 for MS loss. For our DRO framework, we apply grouping to p
by equation (7), and denote this variant of DRO framework as DRO-KL-G. We
set γ+i = γ−i = γ = {1, 0.1, 0.01, 0.001}, i ∈ [B] for DRO-KL-G , m = 0.2 for
the margin loss, and λ = 0.5 for all three losses (MS, LS and margin loss). As
the pairs with zero loss will not contribute to the updates of model but affect
the calculation of p in DRO framework, we remove the pairs with zero loss to
further promotes training.

Table 2 and 4 show experiment results on Cub-200-2011, Cars-196 and In-
Shop, respectively. As can be seen, the performance of MS loss is better than LS
loss on three datasets, particularly on Cars-196, which also verifies the results of
ablation study in [25]. When γ = 1, our method performs similarly to LS loss,
which verifies that our method recovers LS loss. Furthermore, when we treat
γ as a hyper-parameter (especially γ = 0.001) and regard our framework as
generalized LS loss, our method obtain improved performance compared to the
ordinary LS loss. Lastly, even if MS loss exploits pseudo positive and negative
pairs, our generalized LS loss outperforms MS loss.

Table 2: Recover of MS loss and LS loss on Cub-200-2011 and Cars-196
Cub-200-2011 Cars-196

Recall@K(%) 1 2 4 8 16 32 1 2 4 8 16 32

MS 55.6 67.7 77.4 86.3 92.1 95.8 73.2 81.5 87.6 92.6 - -
LS 56.8 67.9 77.5 85.6 91.2 95.2 69.7 79.3 86.2 91.1 - -

DRO-KL-G-γ = 1 56.4 68.3 78.9 86.3 91.7 95.8 70.5 79.8 86.6 91.6 94.9 97.1
DRO-KL-G-γ = 0.1 56.8 68.7 79.0 86.6 92.1 95.9 72.5 81.9 88.1 92.3 95.4 97.3
DRO-KL-G-γ = 0.01 57.0 69.4 79.9 87.0 92.3 95.9 73.1 82.2 88.8 93.4 96.2 98.0
DRO-KL-G-γ = 0.001 56.7 68.5 79.0 87.3 92.6 96.0 75.0 83.4 89.5 93.7 96.6 98.3
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Table 3: Recall@k on In-Shop
Recall@K 1 10 20 30 40 50

FashionNet([10]) 53.7 73.0 76.0 77.0 79.0 80.0
HDC([13]) 62.1 84.9 89.0 91.2 92.3 93.1
HDL([3]) 80.9 94.3 95.8 97.2 97.4 97.8

ABIER([15]) 83.1 95.1 96.9 97.5 97.8 98.0
ABE([28]) 87.3 96.7 97.9 98.2 98.5 98.7

MS([25]) 89.7 97.9 98.5 98.8 99.1 99.2

DRO-TopKM (Ours) 91.0 98.1 98.7 99.0 99.1 99.2
DRO-TopKB(Ours) 90.7 97.7 98.4 98.8 99.0 99.1

DRO-TopK-PNM (Ours) 91.3 98.0 98.7 98.9 99.1 99.2
DRO-TopK-PNB(Ours) 91.1 98.1 98.6 98.8 99.0 99.2

DRO-KLM (Ours) 90.8 98.0 98.6 99.0 99.1 99.2

Table 4: Recover of MS loss and LS loss on
In-Shop

Recall@K(%) 1 10 20 30 40 50

MS 79.8 94.9 96.8 97.6 97.9 98.3
LS 82.6 94.1 95.6 96.4 96.9 97.4

DRO-KL-G-γ = 1 84.8 95.9 97.3 97.9 98.2 98.5
DRO-KL-G-γ = 0.1 85.1 96.1 97.5 98.0 98.3 98.5
DRO-KL-G-γ = 0.01 85.8 96.2 97.9 97.8 98.2 98.4
DRO-KL-G-γ = 0.001 85.7 96.1 97.4 97.9 98.2 98.5

Capacity to Handle Pair Imbalance. To show the effectiveness of DRO
framework to handle pair imbalance, we conduct experiments under different
positive and negative pair ratios and different dimensions of embedding space.
By changing batchsize, the ratio of the numbers of positive and negative pairs
also changes. For example, a larger batchsize leads to a smaller positive-negative
(P-N) ratio.

In this experiment, we compare our DRO framework with two different
SOTA sampling methods, i.e., semihard (SH) and DWS, in terms of sensi-
tivity to P-N ratios under different embedding space dimensions. By setting
different batchsizes B ∈ {80, 160, 320, 480, 640}, we have different P-N ratios
|P| : |N | ∈ {0.053, 0.026, 0.012, 0.008, 0.006}. For all methods, we apply margin
loss and set M = 5 for each class. The embedding space dimensions are d = 1024
and d = 512, respectively. SH mining is originally designed for triplet loss. Since
there is no straightforward choice for the positive pair, we use λ as the upper
bound to simulate the similarity of the positive pair in triplet loss. For DWS, we
follow the parameter setting in the original paper [26]. We apply margin loss in
the proposed three variants of our DRO framework, which are denoted by DRO-
TopKM , DRO-TopK-PNM and DRO-KLM , respectively. We set K = 2 ∗ B for
both DRO-TopKM and DRO-TopK-PNM . We evaluate recall@1 of all methods,
experimental results are reported in Figure 1 and Figure 2.

Experimental results illustrate that all three variants of our DRO framework
has better or comparable performance than SH and DWS methods except for
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the largest P-N ratio 0.053 both on embedding space d = 512 and d = 1024.
Among them, DRO-TopK-PNM constantly outperforms all other methods un-
der embedding space dimension d = 1024 and achieve competitive results with
DRO-TopKM under embedding space dimension d = 512. On the other hand,
Figure 1 and 2 show that the DWS has similar performance when the P-N ratio
is relatively large, and encounters a sharp decrease in recall@1 when the P-N
ratio decreases on the embedding space dimension d = 1024. A smaller drop
also exists on the embedding space dimension d = 512. The reason why DWS
performs poorly when the P-N ratio is small may be that DWS aims to sample
pairs uniformly in terms of distance [26], while our DRO framework and SH
focus more on hard pairs.

Further, the fluctuations of recall@1 over three variants of our DRO frame-
work are subtle when the feature embedding changes betweenen 1024 and 512.
For example, the recall@1 only changes, from 0.9046 to 0.9058 for DRO-TopKM ,
from 0.9086 to 0.9073 for DRO-TopK-PNM , from 0.9018 to 0.9021 for DRO-
KLM , when PN-Ratio is 0.006. However, DWS has a sharp decrease in recall@1
on the embedding space increasing from d = 512 to d = 1024. This implies that
our DRO framework is not sensitive to embedding dimensions in comparison
with DWS.

To sum up, above observations together verify that our methods are not
sensitive to the embedding space dimensions in different batchsizes, and also
outperform other SOTA mining methods in different embedding space dimen-
sions.

Sensitivity of K in Top-K As we mentioned in section 1, selecting too many
pairs within a batch will leads to poor performance of the model. On the other
hand, when the number of selected pairs is too small, the model would be sen-
sitive to outliers. In this experiment, we study the sensitivity of K in our DRO
framework–how the performance of our DRO framework is affected by the value
of K. We set the batchsize B = 640 and M = 5, which makes the number of
positive pairs |P| = 1280 and the number of negative pairs |N | = 198080. We
set K from the range {640, 960, 1280, 1600, 1920, 2560} and evaluate recall@k for
models trained by different K. We choose the above range of K according to the
number of pairs selected by DWS and SH in Section 4.2 (both selects 2560 pairs
roughly).

Figure 3 illustrates how different values of K affect recall@k on In-Shop. We
can see that, DRO-TopKM performs best when K = 1280 and recall@k is stable
on the entire range of K. Our DRO framework is not sensitive to K when K is
in a reasonably large range.

Runtime Comparison Next, we compare the running time of our proposed
three variants of our DRO framework with different pair mining methods, MS
and LS losses on In-shop. Our experiments conducted on eight GTX1080Ti GPU.
The embedding dimension d = 1024, and results are compared under different
batchsize B = {80, 160, 320, 480, 640}. The same as previous experiments, we
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set K = 2 ∗ B both for DRO-TopKM and DRO-TopK-PNM . γ = 0.1 for DRO-
KLM . SH is implemented according to the paper [20], [26]. DWS and MS are
implemented based on the code provided by the author. LS loss is implemented
following the code provided by [25].

Figure 4 reports the average running time of each iteration on 200 epochs. We
can see that all of three proposed variants of DRO framework run faster than
other anchor-based mining methods and losses. For all of our three variants,
pairs are selected directly from all the pairs, while additional cost is required
to select pairs anchor by anchor in other methods. LS loss is slower than MS
loss, because MS mining is applied to MS loss, which would reduce the number
of pairs for computing subgradients when updating the model. For DWS, the
distance distribution of negative pairs is only calculated once for each iteration.
It thus only needs to select pairs according to the pre-computed distribution for
each anchor. In contrast, SH requires to compare negative pairs with the lower
and upper bound of an interval at each iteration for each anchor, which increases
the computational burden. It can be the reason why SH is slower than DWS.

5 Conclusion

In this paper, we cast DML as a simple pairwise binary classification problem
and formulate it as a DRO framework. Compared to existing pairwise DML
methods that leverage all pairs in a batch or employ heuristic approaches to
sample pairs, our DRO framework constructs a robust loss to sample informative
pairs, which also comes with theoretical justification from the perspective of
learning theory. Our framework is general since it can include many novel designs
in its uncertainty decision set. Its flexibility allows us to recover the state-of-
the-art loss functions and exponential sample weighting strategy. Experiments
show that our framework outperforms the state-of-the-art DML methods on
benchmark datasets. We also empirically demonstrate that our framework is
efficient, general and flexible in ablation study.



A Simple and Effective Framework for Pairwise Deep Metric Learning 15

References

1. Chen, B., Deng, W.: Hybrid-attention based decoupled metric learning for zero-
shot image retrieval. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. pp. 2750–2759 (2019)

2. Fan, Y., Lyu, S., Ying, Y., Hu, B.: Learning with average top-k loss. In: Advances
in Neural Information Processing Systems. pp. 497–505 (2017)

3. Ge, W.: Deep metric learning with hierarchical triplet loss. In: Proceedings of the
European Conference on Computer Vision (ECCV). pp. 269–285 (2018)

4. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invari-
ant mapping. In: 2006 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’06). vol. 2, pp. 1735–1742. IEEE (2006)

5. Harwood, B., Kumar, B., Carneiro, G., Reid, I., Drummond, T., et al.: Smart min-
ing for deep metric learning. In: Proceedings of the IEEE International Conference
on Computer Vision. pp. 2821–2829 (2017)

6. Hermans, A., Beyer, L., Leibe, B.: In defense of the triplet loss for person re-
identification. arXiv preprint arXiv:1703.07737 (2017)

7. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

8. Kim, W., Goyal, B., Chawla, K., Lee, J., Kwon, K.: Attention-based ensemble for
deep metric learning. In: Proceedings of the European Conference on Computer
Vision (ECCV). pp. 736–751 (2018)

9. Li, X., Yu, L., Fu, C.W., Fang, M., Heng, P.A.: Revisiting metric learning for
few-shot image classification. arXiv preprint arXiv:1907.03123 (2019)

10. Liu, Z., Luo, P., Qiu, S., Wang, X., Tang, X.: Deepfashion: Powering robust clothes
recognition and retrieval with rich annotations. In: Proceedings of the IEEE con-
ference on computer vision and pattern recognition. pp. 1096–1104 (2016)

11. Namkoong, H., Duchi, J.C.: Stochastic gradient methods for distributionally robust
optimization with f-divergences. In: Advances in Neural Information Processing
Systems. pp. 2208–2216 (2016)

12. Namkoong, H., Duchi, J.C.: Variance-based regularization with convex objectives.
In: Advances in Neural Information Processing Systems (NIPS). pp. 2975–2984
(2017)

13. Oh Song, H., Jegelka, S., Rathod, V., Murphy, K.: Deep metric learning via facility
location. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 5382–5390 (2017)

14. Oh Song, H., Xiang, Y., Jegelka, S., Savarese, S.: Deep metric learning via lifted
structured feature embedding. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition. pp. 4004–4012 (2016)

15. Opitz, M., Waltner, G., Possegger, H., Bischof, H.: Deep metric learning with bier:
Boosting independent embeddings robustly. IEEE transactions on pattern analysis
and machine intelligence (2018)

16. Qian, Q., Jin, R., Zhu, S., Lin, Y.: Fine-grained visual categorization via multi-
stage metric learning. In: The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (June 2015)

17. Qian, Q., Tang, J., Li, H., Zhu, S., Jin, R.: Large-scale distance metric learning
with uncertainty. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. pp. 8542–8550 (2018)

18. Rockafellar, R.T., Wets, R.J.B.: Variational analysis, vol. 317. Springer Science &
Business Media (2009)



16 Q. Qi, Y. Yan, Z. Wu, X. Wang, and T. Yang

19. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recog-
nition challenge. International journal of computer vision 115(3), 211–252 (2015)

20. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: A unified embedding for face
recognition and clustering. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 815–823 (2015)

21. Shalev-Shwartz, S., Wexler, Y.: Minimizing the maximal loss: How and why. In:
ICML. pp. 793–801 (2016)

22. Shi, H., Yang, Y., Zhu, X., Liao, S., Lei, Z., Zheng, W., Li, S.Z.: Embedding deep
metric for person re-identification: A study against large variations. In: European
conference on computer vision. pp. 732–748. Springer (2016)

23. Sohn, K.: Improved deep metric learning with multi-class n-pair loss objective. In:
Advances in Neural Information Processing Systems. pp. 1857–1865 (2016)

24. Wang, J., Zhou, F., Wen, S., Liu, X., Lin, Y.: Deep metric learning with angular
loss. In: Proceedings of the IEEE International Conference on Computer Vision.
pp. 2593–2601 (2017)

25. Wang, X., Han, X., Huang, W., Dong, D., Scott, M.R.: Multi-similarity loss with
general pair weighting for deep metric learning. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition. pp. 5022–5030 (2019)

26. Wu, C.Y., Manmatha, R., Smola, A.J., Krahenbuhl, P.: Sampling matters in deep
embedding learning. In: Proceedings of the IEEE International Conference on Com-
puter Vision. pp. 2840–2848 (2017)

27. Yi, D., Lei, Z., Li, S.: Deep metric learning for practical person re-identification
(2014). ArXiv e-prints

28. Yu, R., Dou, Z., Bai, S., Zhang, Z., Xu, Y., Bai, X.: Hard-aware point-to-set deep
metric for person re-identification. In: Proceedings of the European Conference on
Computer Vision (ECCV). pp. 188–204 (2018)

29. Zhu, D., Li, Z., Wang, X., Gong, B., Yang, T.: A robust zero-sum game framework
for pool-based active learning. In: The 22nd International Conference on Artificial
Intelligence and Statistics. pp. 517–526 (2019)

6 Supplementary

6.1 Derivation of Recover SOTA LOSSES

In this section, we show how our DRO framework recovers SOTA loss functions,
LS loss and MS loss. Their definitions are as follows, respectively.

LLS =

B∑
i=1

[log
∑
k∈Pi

eλ−Sik + log
∑
k∈Ni

eSik−λ]+, (8)

where λ is the margin hyper-parameter.

LMS =
1

n

n∑
i=1

{ 1

α
log[1 +

∑
k∈Pi

e−α(Sik−λ)] +
1

β
log[1 +

∑
k∈Ni

eβ(Sik−λ)]} (9)

where λ is the margin hyper-parameter and α and β are coefficient hyper-
parameters.
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LS Loss under Our Framework Recall that the objective function is de-
composable in terms of pi = [p+

i ,p
−
i ] ∈ RPi+Ni . We denote the pij = p+ij when

j ∈ Pi, and pij = p−ij when j ∈ Ni for simplicity. The Lagrangian function of (7)
can be represented as:

L(p,v) =

B∑
i=1

L(pi, v
+
i , v

−
i ), (10)

where

L(pi, v
+
i , v

−
i ) = −

∑
j∈Pi∪Ni

pij lij(θ) + γ+i DKL(Pi||
1

|Pi|
) + γ−i DKL(p−i ||

1

|Ni|
)

+ v+i (
∑
j∈Pi

pij − 1) + v−i (
∑
j∈Ni

pij − 1).

(11)
According to KKT conditions, v+∗i and v−∗i are the optimal solutions of the dual
function, and p∗i is the optimal solution of the primal problem (7), if and only if

dL
dp∗i

= 0, (12)

v+∗i (
∑
j∈Pi

p+∗ij − 1) + v−∗i (
∑
j∈Ni

p−∗ij − 1) = 0. (13)

We first derive p∗i in terms of v+i , v
−
i using equation (12), i.e.:

dL
dp∗i

= −li(θ) + γ+i log(np+∗
i ) + γ−i log(np−∗i ) + γ+i 1+ + γ−i 1− + v+i 1+ + v−i 1− = 0

(14)
where li(θ) = {li1(θ), · · · , li|p+i ∪N+

i |
(θ)},1+ ∈ R|Pi|,1− ∈ R|Ni|. Then the

closed form of p∗i for positive pairs and negative pairs can be written as follows

p+∗ij =
1

|Pi|
e

lij(θ)−v
+∗
i

γ
+
i

−1
, p−∗ij =

1

|Ni|
e

lij(θ)−v
−∗
i

γ
−
i

−1
. (15)

Substitute p+∗ij , p
−∗
ij into equation (13), which means v+∗i and v−∗i need to

satisfy:

v+∗i (
∑
j∈Pi

1

|Pi|
e

lij(θ)−v
+∗
i

γ
+
i

−1
− 1) + v−∗i (

∑
j∈Ni

1

|Ni|
e

lij(θ)−v
−∗
i

γ
−
i

−1
− 1) = 0. (16)

Even though equal (16) also equals to 0 when v+∗i = 0 or v−∗i = 0, or v+∗i =
v−∗i = 0, but the corresponding optimal solution p∗i will not meet the equality
constraints, i.e.,

∑
j∈Pi p

+∗
ij = 1 and

∑
j∈Pi p

+∗
ij = 1, in the original formula-

tion (7). Therefore, we only have

∑
j∈Pi

1

|Pi|
e

lij(θ)−v
+∗
i

γ
+
i

−1
= 1,

∑
j∈Ni

1

|Ni|
e

lij(θ)−v
−∗
i

γ
−
i

−1
= 1. (17)
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Then from equation (17), we can get

v+∗i = γ+i log
( ∑
j∈Pi

1

|Pi|
e
lij(θ)

γ+
−1
)
, v−∗i = γ−i log

( ∑
j∈Ni

1

|N−i |
e
lij(θ)

γ−
−1
)
. (18)

Plugging them into (15) and apply margin loss as the base loss function
for each pair, lij(θ) = [m + yij(λ − Sij)]+, we successfully derive the weighting
representation of LS loss:

p+∗ij =
e
lij(θ)

γ+∑
k∈Pi

e
lik(θ)

γ+

yij=1
=

e
[m+(λ−Sij)]+

γ+∑
k∈Pi

e
[α+[λ−Sik)]+

γ+

=
1∑

k∈Pi
e
Sij−Sik
γ+

p−∗ij =
e
lij(θ)

γ−∑
k∈Ni

e
lik(θ)

γ−

yij=−1
=

e(
[m+(Sij−β)]+

γ− )∑
k∈Ni

e
[α+(Sik−β)]+

γ−

=
1∑

k∈Ni
e
Sik−Sij
γ−

(19)

Thus, when updating the model parameter θ, we are going to minimize the
following objective function:

g(θ,p∗) =

B∑
i=1

∑
j∈Pi∪Ni

p∗ij lij(θ)

=

B∑
i=1

( ∑
j∈Pi

p+∗ij lij(θ) +
∑
j∈Ni

p−∗ij lij(θ)
) (20)

Taking the gradients to equation (20) in terms of θ, we can get:

∂g(θ,p∗)

∂θ
=

B∑
i=1

( ∑
j∈Pi

−p+∗ij
∂Sij
∂θ

+

B∑
j∈Ni

p−∗ij
∂Sij
∂θ

)
(21)

Then substituting equation (19) into it, we have

∂LLS
∂θ

=
B∑
i=1

( ∑
j∈Pi

−1
B∑

k∈Pi
e
Sik−Sij
γ+

∂Sij
∂θ

+
B∑

j∈Ni

1
B∑

k∈Ni
e
Sik−Sij
γ−

∂Sij
∂θ

)
(22)

Similarly, we take gradients to the LLS loss function (8):

∂LLS
∂θ

=

B∑
i=1

( ∑
j∈Pi

−1
B∑

k∈Pi
eSij−Sik

∂Sij
∂θ

+

B∑
j∈Ni

1
B∑

k∈Ni
eSik−Sij

∂Sij
∂θ

)
(23)

we can see that equation (22) and (23) are equivalent with γ+ = γ− = 1.
This shows our DRO framework successfully recovers the LS loss by setting the
uncertainty decision set U in equation (7).
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MS Loss under Our Framework MS loss, a combination of binomial loss and
LS loss, can also be formulated into our DRO framework. LS loss only considers
the lifted structure between pairs, while binomial loss focusing on the intrinsic
property of an independent pair while encoding the pair class information. To
recover MS loss under our framework, we re-define p ∈ [0, 1]P

++N++2B by adding

one more element to Pi and p−i . Therefore, now we have p+
i ∈ [0, 1]P

+
i +1 and

p−i ∈ [0, 1]N
+
i +1, where the newly added element corresponds to a zero loss, and

thus does not contribute to the computation of overall loss. Then based on the
formulation of LS loss, the formulation of MS loss can be written as:

max
p∈[0,1]P++N++2B

B∑
i=1

( ∑
j∈Pi∪Ni

pij lij(θ)− γ+i DKL(Pi‖
1

|Pi|+ 1
)− γ−i DKL(p−i ‖

1

|Ni|+ 1
)
)

s.t.
∑

j∈Pi+1

pij = 1,
∑

k∈Ni+1

pik = 1, i ∈ [B].

(24)
Note that∑
j∈Pi∪Ni

pij lij(θ) + p+
i,P+

i

· 0 + p−
i,N+

i

· 0 =
∑

j∈Pi+1∪Ni+1

pij lij(θ),∀i ∈ [B]. (25)

As the analysis of LS loss, we can also obtain the representation of MS loss
under our DRO framework from formulation (24), i.e.,

p+∗ij =
e

lij(θ)

γ
+
i

e

li,|Pi|+1

γ
+
i +

∑
k∈Pi

e
lik

γ
+
i

yij=1
=

e

[m+(λ−Sij)]+
γ
+
i

1 +
∑
k∈Pi

e

[m+(λ−Sik)]+

γ
+
i

=
1

e

Sij−c+

γ
+
i +

∑
k∈Pi

e

Sij−Sik
γ
+
i

,

p−∗ij =
e

lij

γ
−
i

e

li,|Ni|+1

γ
−
i +

∑
k∈Ni

e
lik

γ
−
i

yij=−1
=

e

[m+(Sij−λ)]+
γ
−
i

1 +
∑
k∈Pi

e

[m+(Sik−λ)]+
γ
−
i

=
1

e

c−−Sij
γ
−
i +

∑
k∈Ni

e

Sik−Sij
γ
−
i

,

(26)
where c+, c−, γ+i , γ

−
i are hyperpatmeters. Similar to LS loss, waking the gradients

to ∂g(θ,p∗) in terms of θ, we can get:

∂g(θ,p∗)

∂θ
=

B∑
i=1

( ∑
j∈Pi

−p+∗ij
∂Sij
∂θ

+

B∑
j∈Ni

p−∗ij
∂Sij
∂θ

)
(27)

Similarly, we take gradients to the LMS loss function (9):

∂LLS
∂θ

=

B∑
i=1

( ∑
j∈Pi

−1

eα(Sij−λ) +
B∑

k∈Pi
eα(Sij−Sik)

∂Sij
∂θ

+
∑
j∈Ni

1

eβ(λ−Sij) +
B∑

k∈Ni
eβ(Sik−Sij)

∂Sij
∂θ

)
(28)

By substituting (26) into (27),and set c+ = λ + m, c− = λ −m, γ+i = 1
α , γ

−
i =

1
β , i ∈ [B], it is obvious to show equation (27) and (28) are the same. As a result,
our DRO framework also recovers the MS loss.
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Recovering of HAP2S E in [28] [28] provides an a hardaware point to set
(HAP2S) triplet loss with an adaptive hard mining scheme to address the sen-
sitive issue caused by mining the hardest positive pair and negative pair in [6].
The key of HAP2S loss is to assign different weights to the points in Pi and Ni
for each anchor xi. We show that our DRO framework is able to recover HAP2S
with exponential weighting scheme by exactly applying the DRO formulation
equation (7) for LS loss.

The triplet loss is defined as follows:

Ltrp =
1

Nt

∑
yj=yi,yk 6=yi

[Sik − Sij +m]+ (29)

where [x]+ = max{0, x}, Sij and Sik denote the similarity of positive pair
{xi,xj}, j ∈ Pi, negative pair {xi,xk}, k ∈ Ni for the same anchor xi, Nt is
the number of all possible triplets in the mini-batch. Without causing ambigu-
ity, S+

ij = Sij , when j ∈ Pi, S−ij = Sij , when j ∈ Ni. Similar to pair losses,
such as margin loss and binomial loss, there exists a huge amount of triplets in
a batch that have no contribution to the Ltrp. As a result, pair mining is critical
to improve the performance of the model.

[6] provide a variant of triplet loss by selecting the hardest positive pair and
the hardest negative pair for each anchor. The formulation can be written as:

LtrpBH =
1

B

B∑
i=1

[max
j∈Ni

Sij − min
j∈Pi

Sij +m]+ (30)

The state-of-the-art results on two large-scale datasets has been reported based
on this variant of triplet loss. However, equation (30) is sensitive to outliers which
usually serve as the hardest sample. To increase the robustness of the model,
HAP2S triplet loss has been proposed in [28]:

LHAP2S =
1

B

B∑
a=1

[S−ij − S
+
ij +m]+, (31)

where

S−ij =

∑
j∈Ni

q−ijSij∑
k∈Ni

q−ik
,S+ij =

∑
j∈Pi

q+ijSij∑
k∈Pi

q+ik
, (32)

where qij is the weights designed to each pair, for which they propose two variants
of weighting schemes for HAP2S, i.e., exponential weighting and polynomial
weighting. Here we show that our DRO formulation is able to recover the HAP2S
with exponential weighting scheme (denoted by HAP2S E), i.e. the weight qij of
each pair is an exponential function over its similarity:

q+ij = exp (
−Sij
γ

), j ∈ Pi, q−ij = exp (
Sij
γ

), j ∈ Ni. (33)
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Note that q+ij and q−ij are constant scalars that not involved in the gradient of
LHAP2S E w.r.t to θ.

Substitute equation (32) and (33) into (31):

LHAP2S E =
1

B

B∑
i=1

( ∑
j∈Pi

(
−1∑

k∈Pi
exp(

Sij−Sik
γ )

)Sij +
∑
j∈Ni

(
1∑

k∈Ni
exp(

Sik−Sij
γ )

)Sij

)
+D

(34)
where D absorbs all constants.

Since Sij − Sik, Sik − Sij in the exponential function is derived from q+ij and

q−ij , thus they are also a constant scalars when taking derivative to θ. By taking
derivative to LHAP2S E , we get:

∂LHAP2S E

∂θ
=

1

B

B∑
i=1

( ∑
j∈Pi

(
−1∑

k∈Pi
exp(

Sij−Sik
γ )

)
∂Sij
∂θ

+
∑
j∈Ni

(
1∑

k∈Ni
exp(

Sik−Sij
γ )

)
∂Sij
∂θ

)
,

(35)
We can see that the subgradients of LHAP2S E in (35) are the same as the

subgradients of LS loss in (22) with γ = γ+ = γ−. As a result, LHAP2S E is a
special case of our DRO framework.

6.2 Supplement Experiments

To investigate the effect of randomness of the stochastic algorithms and evaluate
the robustness of our DRO framework, we report the average mean and standard
variance of recall@k on Cub-200-2011 in Figure 5. We do not plot recall@4 and
recall@16 for better visualization. The experimental setting is the same as the
experiments of the SOTA quantitative results we reported in Table 1 (section 4.1)
but with five runs. The gray bars are the recall@k of best performer among SOTA
baselines, i.e., MS. It is clear to see that all our DRO variants outperform MS
in terms of the average recall@k over all different values of k. Specifically, the
average recall@1 of DRO-TopKB is 67.9%, which has a significant improvement
over the baselines, i.e., 65.7% of MS. In addition, the small standard deviation
error bars imply that our DRO framework is robust enough to have a better
performance than SOTA methods.
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Fig. 5: Mean and std of Recall@k
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