
A Recurrent Transformer Network for Novel
View Action Synthesis

Kara Marie Schatz1, Erik Quintanilla2, Shruti Vyas3, and Yogesh S Rawat3

1 Xavier University, Cincinnati, Ohio, USA
schatzk@xavier.edu

2 Illinois Institute of Technology, Chicago, Illinois, USA
equintanilla@hawk.iit.edu

3 Center for Research in Computer Vision, University of Central Florida, USA
{shruti,yogesh}@crcv.ucf.edu

Abstract. In this work, we address the problem of synthesizing human
actions from novel views. Given an input video of an actor performing
some action, we aim to synthesize a video with the same action per-
formed from a novel view with the help of an appearance prior. We
propose an end-to-end deep network to solve this problem. The pro-
posed network utilizes the change in viewpoint to transform the action
from the input view to the novel view in feature space. The transformed
action is integrated with the target appearance using the proposed re-
current transformer network, which provides a transformed appearance
for each time-step in the action sequence. The recurrent transformer net-
work utilize action key-points which are determined in an unsupervised
approach using the encoded action features. We also propose a hierarchi-
cal structure for the recurrent transformation which further improves the
performance. We demonstrate the effectiveness of the proposed method
through extensive experiments conducted on a large-scale multi-view ac-
tion recognition NTU-RGB+D dataset. In addition, we show that the
proposed method can transform the action to a novel viewpoint with
an entirely different scene or actor. The code is publicly available at
https://github.com/schatzkara/cross-view-video.

Keywords: Novel-view action synthesis, action transformation, video
synthesis

1 Introduction

In recent years, we have seen a great interest from the research community in
image and video synthesis [18,31,25]. It has a wide range of applications, such as
data augmentation, augmented reality, and action imitation. While the research
in image synthesis has seen great progress [18,7,25], synthesizing realistic videos
is still a challenging problem due to its complexity and high computational
requirements [31,24,8].

Some of the recent works in video synthesis have proposed the use of a prior
to reduce the complexity of the problem [30,24]. The use of priors, such as
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action class [8], pose information [40], and image conditioning [29], leads to
a better quality when compared with the videos generated without any prior
[30,24,32]. While much work is being done in this area, the existing research in
video synthesis is mainly focused on single views.

In this work, we focus on the problem of video synthesis from novel view-
points. The presence of novel views makes the video synthesis task more com-
plex as both the action and appearance vary significantly with the change in
viewpoint. There has been some work in cross-view image synthesis in which
the focus is on 3D reconstruction from images [14], multi-view aggregation [9],
and transforming ground and aerial images [23]. This requires transforming the
appearance of one view to other novel views. In the case of videos, both the
appearance as well as the action dynamics must be transformed to the target
novel view, which increases the complexity of the problem.

We propose an end-to-end deep framework to solve the problem of cross-view
video synthesis. The proposed framework takes a video from a source viewpoint
and synthesizes the same action from a novel viewpoint with the help of an ap-
pearance prior. The prior is utilized to determine the change in viewpoint, which
helps in transforming the source action to the novel viewpoint in latent represen-
tation space. The transformed action features need to be effectively integrated
with the target appearance to synthesize a realistic action video. To achieve this,
we propose a novel recurrent transformer network, which takes the transformed
latent action features and recurrently transforms the appearance to generate a
sequence of target action features in the latent space. The recurrent transformer
network make use of action key-points, which are determined in an unsupervised
approach, to focus on activity regions in the video. Moreover, we propose a hi-
erarchical structure, which enables the network to perform the transformation
at different feature scales while generating the video from a novel viewpoint.

2 Related work

Video synthesis: The research in deep generative modeling has led to significant
progress in the field of image synthesis [18,16,7,25]. This is mainly attributed to
the success of Generative Adversarial Networks (GANs) [10], where the realism
of the synthesized video is used for the adversarial learning [20,22,24]. However,
it remains very challenging to synthesize a realistic looking video due to the
complexity and resource requirements of the problem. There has been some pre-
liminary success in the task of video synthesis where the research is focused on
future video prediction [22,31,3,38,4], and conditioned video generation [30,24].
The recurrent structures are also found to be effective in spatio-temporal mod-
eling and video prediction [37,35,36]. These works utilize the memory module in
the recurrent structure for predicting plausible future video frames.

Generating a video without any given prior is a difficult problem as the net-
work has to learn from the training distribution [8]. The use of priors in video
synthesis helps in reducing the complexity of the problem and makes the gen-
eration task more tractable. To this end, there has been research focus in video
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synthesis where we can use another video for content [2], segmentation prior
[34], target pose [33,40], or motion transfer [29,27,6] to aid the generation task.
The work in [29] uses a facial image to synthesize a talking video by transferring
motion from another video. Similarly, in [27,6] the authors propose to transfer
motion from a video prior to a target image. Our work is related to these works
in motion transfer as we are also using appearance as a prior while synthesizing
the video. However, our problem is different from these in two key aspects. These
methods perform image synthesis and transfer the motion from source to target
image one frame at time. Whereas, we synthesize the full action video at once
which is much more efficient. Also, we are focusing on novel-view synthesis while
these works are based on single views.

Novel view synthesis: Cross-view synthesis of data is a challenging problem with
multiple applications including augmented reality, data augmentation and view-
invariant learning. The existing works in novel-view synthesis mainly focus on
cross-view image synthesis [23,9] and 3D reconstruction from images [14]. In
[23], the authors propose a generative adversarial network which can transform
the ground-view images to aerial-view images and vice-versa. The authors in [9]
utilize multiple views to render a image from unseen views with the help of a
generative query network. Different from this, the authors in [14] learn a 3D
representation from single image which can be used to render the image from
multiple other views. All of these works perform cross-view synthesis in image
domain, however we are focusing on synthesizing videos.

Cross-view video synthesis adds in more complexity to the problem by in-
troducing action dynamics. The seminal work in cross-view video synthesis [32]
proposed to learn a global scene representation which was used to synthesize
a video from unseen viewpoint. However, this work was mainly focused on ac-
tion classification. In [19], the authors propose to render optical flow from novel
views for learning a good view-invariant action representation. This is different
since they only have to predict the optical flow. In a more recent work [17], the
authors propose a recurrent LSTM based network which predicts videos from
novel views. Their approach utilizes a strong prior from the target view as they
require a sequence of depth and skeleton maps for video synthesis. The depth
and skeleton modalities are well known for activity classification and therefore
have sufficient action information. Therefore, this approach does not require the
transformation of the action from the source video. Our approach on the other
hand only uses a single frame from the target view as a prior, and the action
from the source video must be transformed to the target view.

3 Proposed Method

Given an input source action video V i from view i and an appearance prior P j

from target view j, the proposed framework F synthesize the action video V̂ j

as seen from view j. We can formalize the problem as,

V̂ j = F (V i, P j). (1)
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Fig. 1. Overview of the proposed framework. Given a source video V i and target prior
P i, the proposed framework transforms the source action features mi to target view
action features m̂j and use them to transform the target prior aj for synthesizing
target view action video V̂ j . The network also utilize action key-points KP j , which
are predicted via unsupervised approach, to focus on activity regions in the video

Here V j ∈ RT×H×W×3 and V̂ i ∈ RT×W×H×3 with T frames, height H, and
width W , and P j ∈ RW×H×3 with height H, and width W . An overview of the
architecture for the proposed framework is shown in Figure 1. The framework
F consists of an action transformer network tM which takes the change in view-
point θij and action encoding mi to transform the action features from source
view i to the target view j.

m̂j = tM (mi, θij). (2)

Here m̂j is the transformed action features.
The transformed action features m̂j are passed to an appearance transformer

network tA which transforms the prior features aj to generate appearance fea-
tures âj for synthesizing the video V̂ j from the target view j. In addition to this,
the framework also consists of a key-point predictor network kG which predicts
action key-points KP j to focus on activity regions in the video. Finally, a gen-
erator network fG takes the transformed appearance features âj along with the
predicted action key-points KP j to synthesize the target video V̂ j .

V̂ j = fG(âj ,KP j). (3)

We will cover the details of the components in the next subsections.

3.1 Action transformation

The action transformation is performed in the latent representation of the action.
The input video V i is first encoded using a video encoder fE to get the latent
action representation mi ∈ RTr×Hr×Wr×Cr . Here Tr, Hr,Wr, and Cr represents
the temporal extent, height, width and, number channels in the latent represen-
tation respectively. We utilize 3D convolution based network [5] to encode the
input video V i which is effective in extracting spatio-temporal features.
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The transformation of action from one view-point i to another view-point j
requires the relative change in view-point θij . We propose a view-point change
prediction network h which utilize the encoded features mi and prior information
P j from the target view-point to predict the change in the view-point. The
appearance prior P j is first encoded using a visual encoder gE which extracts
the latent representation aj ∈ RHr×Wr×Cr for the target view j. We use a 2D
convolution based network [28] for encoding the appearance prior.

Viewpoint change predictor: The viewpoint change prediction network h esti-
mates the relative change in view-point θ̂ij between the source and target views,

θ̂ij = h(mi, aj). (4)

This change in view-point θ̂ij ∈ (−π/2, π/2) is used to perform action transfor-
mation from view i to view j. We are only considering a maximum change of
π/2 (which is there in the used datasets) in our experiments, but a maximum
change of π can also be used by predicting cosine and sin values. The prediction
of change in view-point within the framework avoids the need of providing this
externally while generating an action video from target novel view.

The temporal extent of the action representation mi is not important for in-
ferring the viewpoint. Therefore, average pooling is performed on mi along the
temporal extent to reduce the representation to single frame. The compressed
features mi from the source view is then combined with the features aj from
the target view using a concatenation operation along the channel axis. These
concatenated features are passed through two blocks that consist of a 2D convo-
lutional layer followed by ReLU activation and average pooling. A 3x3 kernel is
used for the convolutional layers, and a 2x2 kernel is used for the average pooling
layer with a stride of 2. Finally, the features are flattened and passed through a
single fully connected layer that predicts the angular viewpoint change, θ̂ij .

The change in view-point prediction loss Lvp is computed as the mean squared

error between the ground truth θij and the predicted θ̂ij viewpoint change.

Lvp =
1

N

N∑
k=1

(θ̂kij − θkij)2 (5)

Here, N represents the number of samples.

Action transformer network: The action transformer network tM computes ac-
tion features m̂j for the target view by transforming the action representation
mi of the given input view based on the angular viewpoint change θij . The an-
gular change is first expanded to RTr×Hr×Wr×1 by repeating it for each spatio-
temporal location in the latent action representation. Then, it is passed through
two layers of 3D convolutions before concatenating with mi along the chan-
nel dimension. These concatenated features are then passed through three 3D
convolutional layers each followed by ReLU activation. A 3x3 kernel is used
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for each of the convolutional layers preserving the spatial and temporal di-
mension of the representation using padding. The transformed action features
m̂j ∈ RTr×Hr×Wr×Cr are then used to transform the appearance features aj for
generating the target video.

Note that the ground truth value of angular view-point change θij is used
for the transformation during the training phase for a stable network training.
However, the predicted view-point change θ̂ij is used during network inference.

3.2 Action key-point detection

We are interested in the key-point regions which are important from action
point of view. These action key-points will be used in an attention mechanism
during transforming the prior as well as during synthesizing the target action
video. We take an unsupervised approach to detect these action key-points [13].
The key-point detector kG takes the transformed action features m̂j and first
generate Nk action heatmaps Zk ∈ RTk×Hk×Wk×Nk corresponding to Nk action
key-points. We use a 3D convolutional based network with ReLU activation
to predict these heatmaps. The action key-point detector network kG consists
of four convolution layers. The convolution layers are used in conjunction with
upsampling via trilinear interpolation to increase the temporal and spatial extent
of the predicted heatmaps.

The action keypoints KP j are extracted from Zk as Gaussian heatmaps.
The reason is that they can be effectively used as attention in the convolution
based prior transformation network tA as well as video synthesis network fG.
The first step in generating the Gaussian heatmaps is to determine the most
active position in these heatmaps. The xm and ym coordinates for the keypoints
are deteremined separately by first computing the mean along all the rows Zx

k

or columns Zy
k and applying a softmax along the remaining spatial dimension.

Zx
k =

1

Hk

Hk∑
j=1

Zj
k, Zy

k =
1

Wk

Wk∑
j=1

Zj
k. (6)

Now the active position along each dimension can be determined by applying
the softmax normalization to these vectors,

xm =

∑Hk

j=1 je
Zx

k (j)∑Hk

j=1 e
Zx

k (j)
, ym =

∑Wk

j=1 je
Zy

k (j)∑Wk

j=1 e
Zy

k (j)
. (7)

These predicted active coordinates um = (xm, ym) are used as a mean for
the Gaussian which replace the heatmaps. The Gaussian with a small standard
deviation σ are centered at um to generate an action key-point,

KP j
i =

1

σ
√

2π
exp(−1

2
((u− um)/σ)2. (8)

Here, KP j
i is any instance i of an action key-point and u ∈ (Hk ×Wk).
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3.3 Appearance transformer network

The appearance prior P j has to be transformed according the action features
m̂j to generate the action video V̂ j . We propose a recurrent approach which uti-
lize the action features m̂j for the transformation at latent space. The detected
action key-points helps the appearance transformation in two ways. They will
be useful in the separation of foreground and background features, and help in
focusing on the action regions while transforming the foreground appearance.
The appearance transformer network tA has a recurrent structure based on con-
volutional Gated Recurrent Unit (Conv-GRU) [1] which takes the prior aj as
input along with transformed action features m̂j and action key-points KP j

and predict transformed appearance features âj . Formally,

âj = tA(aj , m̂j ,KP j), (9)

where âj ∈ RTr×Hr×Wr×Cr .
At each time step t, tA takes the appearance latent representation âjt−1 and

transform the appearance to âjt with the help of action latent features m̂j
t and

action key-points KP j
t . The first step is to determine the background bt and

foreground ft based on the appearance, action features, and action key-points.

bt = σ(Wb∗ < ât−1, m̂
j
t ,KP

j
t >)

ft = σ(Wf∗ < ât−1, m̂
j
t ,KP

j
t >)

(10)

Here, ∗ denotes convolution operation, <> denotes concatenation operation
along channels axis, and Wb and Wf are parameters for 2D kernels. The back-
ground features are selected from the appearance as,

bft = bt � ât−1, (11)

where � denotes element-wise multiplication. The foreground appearance fea-
tures are transformed with the help of action features and action key-points.

fft = tanh(W f
f ∗ < m̂j

t ,KP
j
t >, ft � ât−1 >). (12)

Finally, the transformed foreground features are combined with the background
features to get the integrated transformed appearance features,

âjt = bft + (1− bt)� fft . (13)

The transformed appearance features from different time-steps are combined
together to form âj which is used for synthesizing the action video.

Hierarchical transformation: We propose to perform the appearance transforma-
tion on the prior at different resolution of latent representations. The key idea
is to transform the appearance at both coarse as well as fine level which helps in
improving the performance of video synthesis. In case of prior, appearance fea-
tures aj are extracted from multiple higher level layers in gE . Similarly, action
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features mi are extracted from multiple layers of video encoder fE . The same
set of predicted action key-points KP j are used at different hierarchies after
performing either average pooling or upsampling depending upon the resolution
of action and appearance features.

The action features mi from different levels are first passed through the ac-
tion transformer network tM to generate the transformed action features m̂j .
Since tM is a fully convolutional network, it is shared for action transformation
at different levels of hierarchy. Similarly, the appearance transformer network
tA is also convolutional, therefore it is also shared by all the levels for perform-
ing appearance transformation. The sharing capability of tM and tA helps in
reducing the number of parameters in the network and it also makes the trans-
formation more robust. The transformed appearance features âj from multiple
levels are passed to the video synthesis network fG and integrated at different
layers with matching resolution.

3.4 Action synthesis

The final component of the proposed framework is the action generator network
fG which synthesize the target action video V̂ j ∈ RT×H×W×3 using the approx-
imated appearance features âj ∈ RTr×Hr×Wr×Cr and the predicted action key-
points KP j ∈ RTk×Hk×Wk×Ck . The action key-points KP j helps the generator
to focus on action regions in the video. They are predicted at a higher resolution
in comparison with âj . Therefore the key-points are first average pooled down to
the same temporal and spatial size as âj and then these are concatenated along
the channel dimension. The generator is based on 3D convolutions with ReLU
activation and upsampling. The convolutional layers all use 3x3 kernels with zero
padding and the upsampling layers use trilinear interpolation. The final layer is
followed by a sigmoid activation which generates the target action video V̂ j .

We use a pixel-wise reconstruction loss Lr, which is computed using mean
squared error between the synthesized video V̂ j and the ground truth video V j .
We also use an adversarial loss [10] and a perceptual loss [15] to help in improv-
ing the performance of video synthesis. The adversarial loss Ladv is computed
using a 3D convolution based discriminator D [5] which critiques whether the
synthesized action video is realistic or not. We train F and D alternatively using
a standard GAN framework [10]. The adversarial loss is computed as,

Ladv = Ex∼S(i,j)[log(1−D(F (x)))], (14)

where Ladv represents the adversarial loss and S(i, j) is the distribution of video
and prior pair (V i, P j) from view i and j respectively. The discriminator loss is,

Ld = max
D

(
Ex∼Vgt [log(D(x))] + Ex∼S(i,j)[log(1−D(F (x)))]

)
, (15)

where Ld is the discriminator loss and Vgt is the set of real action videos. To
improve the visual quality of the synthesized video frames, we also use a percep-
tual loss Lp which computes the error at feature level. We utilize a pre-trained
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VGG-16 network [28] to compute the loss at frame level which is averaged over
all the frames in the synthesized video. The loss is computed as mean squared
error between the features from predicted video and ground truth video. The
overall loss to train the full network is defined as,

L = λvpLvp + λrLr + λadvLadv + λpLp. (16)

Here λvp, λr, λadv, and λp are loss weights which are determined experimentally.
We use λvp = 1, λr = 1, λadv = 0.1, and λp = 0.1 in all our experiments.

3.5 Implementation and training details

We use a modified VGG-16 network [28] as our appearance encoder gE where
we use the features after the first ten convolution layers to get aj . For the video
encoder, we use a 3D convolution based I3D network [5] and extract mi from
the ′Mixed 5c′ convolution layer. We use a resolution of 112x112 as input for
both source video as well as the prior with 16 frames in the video. The video
frames are sampled at 15 frames per second to include more motion int he videos.
We compute the ground truth angular viewpoint change based on configuration
parameters provided with the dataset.

The appearance features aj are encoded as 14 × 14 × 256 and the action
features are encoded as 4 × 14 × 14 × 256 with Tr = 4, Hr = 14,Wr = 14, and
Cr = 256. The action key-points are predicted at a resolution of 16×56×56×32
with Tk = 16, Hk = 56,Wk = 56, and Ck = 32. A standard deviation of 0.1
is used to compute the Gaussian maps for the action key-points. We use a 3D
convolution based I3D network [5] as the discriminator D to compute adversarial
loss Ladv, where the last prediction layer is modified for binary prediction. The
perceptual loss Lp is computed with the help of a pre-trained VGG-16 network
[28] where we take 512 dimension features from last layer of the network. We
use Adam optimizer, with a learning rate of 1e-4. We implemented the code in
Pytorch and perform our experiments on Titan-X GPU with a batch size of 14.

4 Experiments

In this section, we provide details of the experiments we performed to validate
the effectiveness of the proposed method. Apart from the qualitative evaluation,
we also provide frame level Structural Similarity Index Measure (SSIM) [39] and
Peak Signal to Noise Ratio (PSNR) [11] for quantitative evaluation.

4.1 Dataset

We conducted our experiments on the NTU-RGB+D Dataset [26], which is the
largest multi-view action dataset containing over 56,000 videos. It has more
than 4 million video frames depicting either one or two humans performing the
actions. There are a total of 60 different actions depicted in the dataset using
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Table 1. A comparison of SSIM scores of all the combinations of three views along
with the average score with existing approaches. The scores for VDG [12] and PG2 [21]
are shown as reported by the authors of VDNet [17]

Model
Pair-view SSIM Score

Average
v1 → v2 v1 → v3 v2 → v1 v2 → v3 v3 → v1 v3 → v2

VDG [12] .502± .058 .543± .068 .584± .060 .563± .062 .611± .077 .522± .063 .554± .075

PG2 [21] .499± .071 .561± .060 .600± .064 .557± .071 .598± .075 .543± .066 .560± .076
VRNet [32] - - - - - - 0.68
ResNet [17] .705± .115 .735± .095 .717± .130 .690± .122 .734± .127 .669± .150 .708± .127
VDNet [17] .789± .076 .791± .069 .800± .076 .765± .079 .797± .067 .756± .089 .783± .078
Proposed .974± .021 .975± .021 .975± .019 .971± .021 .974± .017 .971± .022 .973± .020

Fig. 2. Comparison of the generated video frames using our method with existing
approaches. The video frames are from position 1, 4, and 8. Column 1: source, column
2: target, column 3: ResNet [17], column 4: VDNet [17], and column 5 proposed method

40 different actors. Three different cameras are used at various height settings
to capture videos from 80 different viewpoints. The cameras are always placed
45◦apart, so they are at -45◦, 0◦, and +45◦. Each actor or actor pair performs
each action twice: once facing the left camera and once facing the right camera.
This allows the videos to span viewpoints over a total of 90◦. For our experiments,
we use the subject split as described by the authors in [26].

4.2 Evaluation

We have shown the SSIM score for the synthesized videos of all the combinations
of the three views on the test set of NTU-RGB+D in Table 1. We observe that
the scores are low for pair v2 and v3 when compared with other pairs. These
two views are at +/- 90◦from each other and therefore the transformation is
more challenging than other pairs where the transformation is within +/- 45◦.
In figure 3, we have shown some sample video frames synthesized using the
proposed method along with the ground truth video frames. We can observe
that the network has no issue in rendering the background and the dynamics of
the action is also quite visible along the video frames. The motion can be seen
in the sequence of frames, but we can also observe that the motion is not well
defined with some blur in the activity region. This is interesting as we are not
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Fig. 3. Synthesized video frames using the proposed model. For each sample example,
the top row contains 8 frames of the ground truth video for the novel view and the
bottom row contains the same 8 frames of the generated video for the novel view. Our
model predicts 16 frames in a video and for each of these examples, frames 1, 3, 5, 7,
9, 11, 13, and 15 are shown. GT: ground-truth, Gen: generated frames

Fig. 4. A Comparison of the variation of SSIM score with varying number of generated
video frames with existing approaches

utilizing any action prior from the novel target view, like [17], which make use
of depth and skeleton sequences from the target view.

In Figure 5, we have shown some examples of predicted action key-points
for a video. We can observe that the predicted action key-points are near the
activity region in the frames and therefore they act as an attention mechanism
for the recurrent transformer network to focus on activity regions.

Comparison: We also compared our approach with existing methods in Ta-
ble 1. We observe that the proposed method outperforms all the other approaches
in terms of SSIM score. We also present a qualitative comparison with [17]. The
comparison is shown in Figure 2. We observe that the video frames generated by
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Fig. 5. Action key-points: The center of predicted action key-points shown on the
sequence of example video frames. We can observe that the predicted key-points are
located close to the performed action in the video frame

Fig. 6. Ablation on components of the proposed model: Synthesized video frames using
different model variations. Column 1: source video, column-2: target video, column-3:
basic model, column-4: w/ motion transformation, column-5 w/ hierarchical transfor-
mation, and column-6 appearance transformation

ResNet [17] has a lots of artifacts and the human body is not properly formed.
The VDNet variant improves the quality with no visible artifacts, but still the
human body is not well formed. Also, there is no visible motion as we move
from frame 1 to 8. The VDNet model use the sequence of depth/skeleton from
the target view and still the motion is not quite visible in the synthesized video
frames. In our approach, the background is of high quality, which is due to the
prior, and we can also observe noticeable motion along the generated frames of
the video. We also evaluate the variation in SSIM score with varying number
of predicted frames in the video. The evaluation is shown in Figure 4 and we
can observe that the video quality using proposed method is consistent with
increasing number of frames and it outperforms existing approaches.

4.3 Ablation study

We perform some ablation experiments to study the impact of various compo-
nents in the proposed model. We experimented with four different variations. The
first variation, basic model, does not include action transformation, hierarchical
transformation, and appearance transformation. In the other three variation, we
add these three components incrementally. We observe that each of these com-
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Table 2. Ablation experiments to study the impact of various components of the
network on video synthesis. AC-Trans: action transformation, HI-Trans: hierarchical
transformation, and AP-Trans: appearance transformation

Model
Pair-view PSNR Score

Average
v1 → v2 v1 → v3 v2 → v1 v2 → v3 v3 → v1 v3 → v2

basic model 23.8± 1.5 23.8± 1.4 24.2± 1.4 23.7± 1.5 24.2± 1.5 23.7± 1.6 23.9± 1.5
w/ AC-Trans 24.7± 1.5 24.7± 1.4 25.1± 1.6 24.5± 1.6 25.0± 1.6 24.4± 1.7 24.7± 1.6
w/ HI-Trans 26.7± 2.6 26.8± 2.5 26.8± 2.7 26.5± 2.7 26.8± 2.6 26.4± 2.7 26.7± 2.6
w/ AP-Trans 27.6± 2.7 27.7± 2.8 27.7± 2.7 27.2± 2.8 27.6± 2.7 27.2± 2.8 27.5± 2.7

Pair-view SSIM Score
v1 → v2 v1 → v3 v2 → v1 v2 → v3 v3 → v1 v3 → v2

basic model .939± .033 .940± .026 .943± .026 .937± .033 .943± .026 .936± .040 .940± .031
w/ AC-Trans .950± .022 .951± .021 .954± .026 .948± .024 .953± .023 .947± .033 .951± .025
w/ HI-Trans .967± .028 .967± .023 .967± .023 .964± .027 .967± .023 .964± .030 .966± .026
w/ AP-Trans .974± .021 .975± .021 .975± .019 .971± .021 .974± .017 .971± .022 .973± .020

ponents help in improving the synthesized video quality in terms of both PSNR
and SSIM evaluation. A detailed analysis of these ablations is shown in Table 2.

In Figure 6, we show synthesized video frames using different variations in the
model. We can observe that without any action and appearance transformation,
the actor becomes blurry as the video progresses. The action transformation
helps in improving the motion quality in the synthesized video. The hierarchical
transformation improves the quality further and the appearance transformation
helps in improving the visual quality of the synthesized video.

4.4 Novel view with novel actor

The proposed network takes an appearance prior from the target view-point.
This allows us to potentially impose the action of the video from any source
view-point onto another person and another location from a novel view-point.
We have shown some examples of synthesized video frames in Figure 7 where the
prior from the novel view is from a different actor and location. We observe that
the proposed approach is able to synthesize the video with the correct appearance
from the prior frame and the correct action from the source video. Thus, we know
that each branch of our model (the motion branch and the appearance branch)
is learning what it is supposed to learn; each only contributes information about
motion or appearance appropriately.

4.5 Limitations and failure cases

The proposed approach is able to successfully transform the performed action
to a novel view at a coarse level. The main limitation of the current approach
is that the finer appearance details are missing in the synthesized video leading
to a motion blur. It is important to note that the training is performed at a
smaller resolution (112x112) to avoid a higher memory consumption and long
training duration due to resource constraints. At this resolution, it is challenging



14 K. Schatz et al.

Fig. 7. Novel view and novel actor: The synthesized video frames from a novel view
with a different actor and different background. For each sample the top row shows 8
frames of the source video and the bottom row shows a prior from another view followed
by synthesized video frames for the novel view and novel actor. We can observe that
the motion was successfully transformed to the novel actor (with different initial pose)
in the novel viewpoint. For each of these, frames 1, 3, 5, 7, 9, 11, 13, and 15 are shown

to preserve the fine appearance and motion details of the actor in the latent
representation space. Also, synthesizing motion from a novel view is much more
challenging. Even with the help of motion prior from the target viewpoint, the
authors in [17] were not very successful in synthesizing a high-quality action
from novel view-points. The availability of resources (multiple GPU’s or GPU’s
with higher memory) will definitely help in improving this quality, but, capturing
the fine appearance and motion details in memory constraint environment is a
challenging yet interesting problem, which can be explored in the future work.

5 Conclusion

In this work, we address the problem of novel view video synthesis by transform-
ing the source action to target novel view in latent space. We propose a recurrent
structure which utilize these action features and transform the prior from target
view for video synthesis. The model predicts action key-points in an unsuper-
vised way and enables the appearance transformer and video generator to focus
on action regions. We evaluated the effectiveness of the proposed method on
the largest multi-view action dataset. The experimental results demonstrate the
effectiveness of the proposed framework in cross-view action synthesis even with
varying actor and background scenes.
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