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This document provides additional details supplementary to the main pa-
per. It covers network architecture details, experimental details, and additional
qualitative results.

1 DModel Details

The proposed approach consists of two main components: Representation Learn-
ing network (RL-NET) and Video Rendering Network (VR-NET) (shown in
main manuscript - Figure 1). RL-NET is used to learn a representation r given
some observations o;. It consists of a base network (ENC-NET), which is shared
among all the observations to encode individual observations, and a Blending
Network (BL-NET), which integrates encodings from all the observations to
learn a unified representation r. The representation r is then passed to the VR~
NET which renders a video from arbitrary view and time. The multi-tasking
architecture, which also performs action recognition, consists of another branch
called Classification Network (CL-NET). It takes the learned representation r
as input and predicts confidence scores for the activity classes. We will discuss
the architecture details for all these networks in the following subsections.

1.1 Representation Learning Network (RL-NET)

The overview of the RL-NET is shown in Figure 2.C (main manuscript). ENC-
NET is the encoding part of RL-NET which is shared among all the observations
and the corresponding encodings are passed to the BL-NET for representation
learning. A detailed architecture for this part of the network is shown in Figure 1.
The ENC-NET for this architecture utilizes 3D convolution in combination with
max-pooling to get video level encodings. Each observation is a set of multiple
video clips from different viewpoints. We also tested our representation learning
network for a single view dataset using a similar architecture. However, for single
view each observation was a set of multiple input clips from the same video/view-
point.

The encodings learned by the base network are passed on to the blending
network (BL-NET), which is a recurrent network with bi-directional convolu-
tional LSTM cells. The architecture of BL-NET is shown in Figure 2.E (main
manuscript). The number of recurrent steps in the network will be equal to the
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Fig. 1. Network architecture of ENC-NET used in RL-NET for representation learning
r for set of video observations o;. The diagram on the left side shows the change in
feature volumes, along with size, as the input to the network flows through the layers of
the network. The network takes two input, video clips and corresponding viewpoints,
and generates a video. The table on the right shows details of the layers in the network
including kernel sizes and layer types. Conv: 3D convolution in all the layers except
the last two layers where it will be 2D convolution as the temporal extent has been
compressed to a single channel, v: viewpoint, e: embeddings for observations.
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Fig. 2. Network architecture of VR-NET used for video rendering. VR-NET takes the
learned representation r along with query viewpoint v and latent noise z as input
and generates a video. The representation r, viewpoint v and latent noise z are first
integrated together followed by a convolution operation. A video is generated using 3D
convolution along with batch-normalization and upsampling. BN: batch normalization,
z: latent noise, i: generated video.

number of observations (o;) provided to the RL-NET. The first layer of BL-
NET comprises of 128 3x3 kernels in each direction with a total of 256 kernels
for the convolution operation. The final layer has 256 3x3 kernels which produce
a representation of size 28x28x256.
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Fig. 3. Network architecture of the classification branch (CL-NET) of the multi-task
approach. This network takes the learned representation r as input and predicts class
probabilities. FC: fully connected layer, c: predicted class probabilities.

1.2 Video Rendering Network (VR-NET)

The video rendering network takes the learned representation r along with query
viewpoint v and latent noise z to synthesize a video clip. A detailed architecture
of the proposed VR-NET is shown in Figure 2. It first integrates the representa-
tion r with viewpoint v and latent noise z followed by a convolution operation.
A video is generated using convolutions along with upsampling of features. Sim-
ilar network architecture is used for the experiments where clips are generated
using the learned representation from a single view. It uses 3D convolutions with
temporal information and latent noise i.e. no viewpoint information.

1.3 Classification Network (CL-NET)

We propose to use the learned representation for activity classification. The
network is trained for both video rendering as well as activity classification
simultaneously using multi-task learning. We added a classification branch (CL-
NET) on top of representation which predicts class probabilities for activities.
A detailed architecture for this branch is shown in Figure 3. It consists of 2D
convolutions followed by fully connected layers for class predictions.

2 Experimental Details

An outline of the proposed framework is shown in Figure 4 where we see two
training approaches discussed in the main manuscript (Section 3.3); a generalized
framework for the first approach for unsupervised representation learning by
rendering a query view is shown in Figure 4(a). This involved pretraining without
a classifier and classifier was added later on for training and the second approach
is shown in Figure 4(b) where we trained our network for action recognition task
along with video rendering. We observed similar performance in both approaches
and followed the second approach for training all our networks later on.
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Fig. 4. (a) Generalized network architecture for representation learning using cross-
view video rendering using RL-NET and VR-NET. (b) Multitasking network for clas-
sification along with video rendering.

2.1 Action Recognition

We perform our action recognition experiments on two different datasets, NTU-
RGB+D and N-UCLA. Both datasets have action sequences captured from 3
different views. In the cross-subject training, we randomly choose two of the
views as input to learn the representation and render the left out view. In cross-
view experiments, there are only two views available for training and therefore
we randomly choose one for representation learning and the other for rendering.
The proposed network allows us to make inference using a different number of
clips and views irrespective of how it was trained. This is useful for cross-subject
evaluation when we train our network using two different input views and test
on a single view as is reported by other studies.

Hyperparameters We implement the proposed method on Keras with Tensorflow
backend. We train all our networks using Adam optimizer [5] with a learning
rate of 2e-5, $1=0.9, $2=0.999, and a decay of 1le-6. The networks were trained
until convergence of loss. The batch normalization layers use a momentum of
0.9 with e=1le-3 and no scaling. The CL-NET branch has dropouts after every
fully connected layer where we use a dropout rate of 0.5. We use a skip rate of
3 frames for all our action recognition experiments.

Viewpoint and Time The NTU-RGB+D dataset was captured from three camera
positions. The action videos were recorded in two conditions: (i) when the actor is
facing CAM2, and (ii) when the actor is facing CAM3. The viewpoint involved
5 parameters, including camera height, camera distance, camera orientation,
horizontal-pan, and, vertical-pan. Horizontal and vertical pan in our training
set was determined based on the cropping of the input frames which was done
randomly. We take a random 112x112 crop from the resized video frames before
feeding to the network. The camera orientation was encoded based on its location
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around the actor and we use angular position in a range (—7/2,7/2). The other
viewpoint parameters were normalized between 0-1. In N-UCLA dataset, the
range of camera orientation was between -27/3,27/3 and camera height and
distance was set as 1 and 1.7 for all the samples. The horizontal and vertical
pan were estimated based on the random frame crop similar to NTU-RGB+D
dataset. Time conditioning was encoded as a single dimensional feature based
on the frame position within the long action sequence. The position of the frame
was normalized between 0-1 using the total length of the action sequence.

3 Additional Results

Quantitative Comparison We compare the performance of our proposed method
with the recent works on view-invariant action recognition (Table 1).

Table 1. A comparison of cross-subject (CS) and cross-view (CV) action recognition
on NTU-RGB+D dataset.

Method [Modality[CS [CV
Shahroudy et al.[21] Skeleton {62.9 (70.3
Depth+Skeleton[17] Skeleton |75.2 [83.1
VA-LSTM [31] Skeleton |79.4 |87.6
GCA-LSTM [11] Skeleton |76.1 |84.0
IndRNN [10] Skeleton |81.8 [87.9
STA-LSTM [23] Skeleton |73.4 [81.2
Att-LSTM [33] Skeleton |80.7 |88.4
DPRL+GCNN [24] Skeleton |83.5 |89.8
ST-GCN [29] Skeleton |81.5 [88.3
VA-RNN [32] Skeleton |79.4 |87.6
CNN-BiLSTM [8] Flow 80.9 [83.4
STA-Hands [1] RGB-S  |73.5 |80.2
Pose Est. [13] RGB-S  |84.6 |-
DSSCA - SSLM[22] RGB-DS |74.9 |-
HOG [15] Depth  [32.2 [22.3
S-Norm Vector [30] Depth 31.8 [13.6
HON4D [16] Depth  |30.6 [7.3
Shuffle & learn [14] Depth 61.4 153.2
CNN-LSTM [12] Depth  [66.2 |53.2
CNN-BiLSTM [g] Depth  |68.1 |63.9
Proposed Depth 71.8|78.7
Proposed (all-views) Depth 79.4 |-
CNN-LSTM [12] RGB 56 |-
DA-NET|25] RGB - |73
Att-LSTM [33] RGB 63.3 [70.6
CNN-BiLSTM [8] RGB 55.5 |49.3
Proposed RGB 82.3|86.3
Proposed-(all-views) RGB 88.9 |-
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The table we show here in supplementary is more comprehensive than the
main manuscript and besides RGB shows comparison with different modalities.
Our model performs well in both CS and CV evaluation for RGB. We also ob-
serve good results when generalized to depth modality. We observe that the pro-
posed method provides significant improvement in CV evaluation for both RGB
(~ 11%) and depth (~ 15%) modality which demonstrates that the learned
representation is robust to viewpoint change. Even though we do not use skele-
ton data the performance of our method is comparable to the state-of-the-art
approaches employing 3D skeleton. It is important to note that 3D skeleton is
more robust to view-point changes as compare to RGB and depth. However,
additional sensors are required to capture this skeleton data and extracting 3D
pose from RGB is a challenging problem.

Table 2. A comparison of cross-subject (CS) and cross-view (CV) action recognition
on N-UCLA MultiviewAction3D dataset.

Method [Modality[CS [CV
Actionlet [26] Skeleton |- 69.9
HBRNN-L [3] Skeleton |- 83.5
DLVIF [6] Skeleton |81.1 |77.2
R-NKTM [20] Skeleton |- 78.1
Att-LSTM [33] Skeleton |- 90.7
VA-Fusion [32] Skeleton |- 88.7
MST-AOG [27] Depth - 53.6
HOPC [18] Depth - 71.9
CNN-LSTM [12] Depth - 50.7
CNN-BiLSTM (8] Depth |- [625
NKTM [19] RGB-S |- 75.8
MST-AOG [27] RGB-S  |81.6 |73.3
Hanklets [7] RGB 54.2 [45.2
DV-Views|9] RGB 50.7 [58.5
LRCN [2] RGB - 64.7
Proposed-scratch RGB 35.1143.4
Proposed RGB 87.5/83.1

Transfer Learning for Action Recognition We use the representation learned on
NTU-RGB+D dataset for N-UCLA dataset which has a different set of scenes
and users. We perform both CV as well as CS evaluation with two different
variations. The evaluation of the proposed method after transfer learning from
NTU-RGB+D dataset on N-UCLA dataset is shown in Table 2. Here we present
a more comprehensive comparison with state-of-the-art where besides RGB we
show comparison with other modalities as well. We observe that the network
performs poorly when train from scratch which is due to the small size of this
dataset. However, using the learned representations from NTU-RGB+D signifi-
cantly increases the performance. Our method outperforms previous RGB/depth
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based approaches [12, 8] and achieves performance comparable to most of the
skeleton-based methods.

Qualitative Results Here we are showing some qualitative results for video gen-
eration on NTU-RGB+D dataset. The ground truth and predicted video frames
from the three networks trained on NTU-RGB+D dataset are shown in Figure
5 and 6.

Fig. 5. Video frames generated for arbitrarily selected query time and view on NTU-
RGB+D dataset. The network is given video clips from three views at a randomly
selected time. This network was trained on input video clips from all the three views
and a video was generated from any one of these views at an arbitrary time. Row-1:
Stomachache/heart pain, Row-2: Eat meal/snack, Row-3: Wear on glasses, and Row-4:
Touch other person’s pocket.

To validate the effectiveness of cross-view prediction we compute the Peak
Signal to Noise Ratio (PSNR) [4] and the Structural Similarity Index Measure
(SSIM) [28] of the synthesized video frames. The evaluation is shown in Table 3
where we compute the scores for first and last predicted frames along with the
full video. We observe that the quality of the synthesized frames remains similar
from first to the last frame in the generated video. Also, when comparing the
three training scenarios the network shows better quality with three input views
(Figure 6).

The RL-NET performs representation learning based on a set of input ob-
servations. These observations can be from different viewpoints (varying views)
and different time in a video (Figure 7). The visual appearance of any activity
changes with viewpoint as well as time. This analogy between time and view-
point for variation in visual appearance of any activity allows us to use the two
concepts interchangeably during representation learning. This idea makes the
proposed architecture even more powerful as a network trained under some set-
tings can be tested on different set of parameters in terms of number of views
and number of clips. The proposed BL-NET supports this further due to its
recurrent structure which allows it to learn a representation for different varying
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Fig. 6. Generated (row 1, 3, and 5) and corresponding ground truth (row 2, 4, and
6) video frames (action class- 55, hugging other person from NTU-RGB+D dataset)
at different time-steps generated using models trained under different configurations.
Row-1-2: Given two random views generates third unseen view (M-1), Row-3-4: Given
view 2 and 3 generates unseen view 1 (M-2), and Row-5-6: Given all three views
generates one given view at an arbitrary query time (M-3).

Table 3. Quantitative evaluation of cross-view video prediction on NTU-RGB+D
cross-subject test split. FF: first frame, LF: last frame, and FV: full video.

FF LF FV
PSNR/[SSIM|PSNR|SSIM|PSNR[SSIM

M-1| 19.9 | 0.68 | 19.8 | 0.68 | 19.8 | 0.68
M-2| 19.9 | 0.69 | 19.9 | 0.69 | 19.8 | 0.68
M-3| 23.3 | 0.79 | 23.2 | 0.79 | 23.3 | 0.79
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Fig. 7. Interwoven time and view dimensions: time and view dimensions can be used
interchangeably while making predictions with our network.

observations. Hence, our proposed approach can be generalized to single view
datasets as well.
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