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Abstract. In this work, we address the problem of action recognition
in a multi-view environment. Most of the existing approaches utilize
pose information for multi-view action recognition. We focus on RGB
modality instead and propose an unsupervised representation learning
framework, which encodes the scene dynamics in videos captured from
multiple viewpoints via predicting actions from unseen views. The frame-
work takes multiple short video clips from different viewpoints and time
as input and learns an holistic internal representation which is used to
predict a video clip from an unseen viewpoint and time. The ability
of the proposed network to render unseen video frames enables it to
learn a meaningful and robust representation of the scene dynamics.
We evaluate the effectiveness of the learned representation for multi-
view video action recognition in a supervised approach. We observe
a significant improvement in the performance with RGB modality on
NTU-RGB+D dataset, which is the largest dataset for multi-view ac-
tion recognition. The proposed framework also achieves state-of-the-art
results with depth modality, which validates the generalization capability
of the approach to other data modalities. The code is publicly available
at https://github.com/svyas23/cross-view-action.

1 Introduction

Historically, viewpoint in-variance has been a very active research area in com-
puter vision and is currently also important from the perspective of representa-
tion learning. The appearance and dynamics of action vary from one viewpoint to
another. Humans have the ability to effortlessly visualize how action might look
like from an unseen viewpoint. This ability highlights the view-invariant prop-
erty of the encoded representation in the human brain after observing the action
from certain views [13]. The encoded representation should have sufficient details
to predict the dynamics of the action from unseen views. Motivated by this, we
present an unsupervised representation learning framework which encodes the
scene dynamics in videos captured from multiple viewpoints via predicting ac-
tions from unseen views. An overview of the proposed framework is shown in
Figure 1. The prediction of videos from unseen viewpoint and time enforces the
network to learn a more informative view and time-dependent representation,
which makes it effective for multi-view environment.

https://github.com/svyas23/cross-view-action
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Fig. 1. An overview of the proposed representation learning framework. An action
is captured from different viewpoints (v1, v2, v3, ..., vn) providing observations (o1,
o2, o3, ..., on). Video clips from two viewpoints (v1 and v2) at arbitrary times (t1
and t2) are used to learn a representation (r) for this action, employing the proposed
representation learning network (RL-NET). The learned representation (r) is then used
to render a video from an arbitrary query viewpoint (v3) and time (t3) using proposed
video rendering network (VR-NET). The representation thus learned is used for action
recognition using classification network (CL-NET)

Cross-view prediction is a challenging problem as the visual appearance and
dynamics of an action vary from one viewpoint to another. There have been
some efforts in this direction for novel-view image prediction, which includes
3D reconstruction from images [14] and cross-view image rendering [36,8,48].
However, most of the existing research in video prediction mainly focus on single
view videos. Video prediction in itself is a challenging problem [5], and the
variation in actions observed from different viewpoints makes it more challenging.
In this work, we explore the idea of cross-view video prediction to learn a good
representation for action recognition in a multi-view environment.

There has been a lot work in view-invariant action recognition in recent years.
However, most of the existing works make use of skeleton data to learn the view-
invariant features [51]. Learning a view-invariant representation is much more
challenging with RGB videos as compared to skeleton sequences, and therefore,
the methods using RGB modality do not perform as well as the skeleton-based
methods [27,52]. Researchers have also explored the use of other modalities such
as depth and optical flow for view-invariant learning, but they are also not
very effective and do not generalize well to RGB modality [22]. We propose a
framework to learn a robust feature representation from RGB videos.

The proposed framework takes multiple short video clips from different view-
points and times as input and learns an internal representation using the pro-
posed representation learning network (RL-NET). The learned representation is
used to predict a video clip from an unseen viewpoint and time with the help of a
video rendering network (VR-NET) and also used for action recognition using a
classification network (CL-NET). The proposed framework is adaptive for num-
ber of input views which makes it suitable for multi-view as well as novel-view
action recognition. We demonstrate its effectiveness in both cross-subject as well
as cross-view action recognition. Moreover, it is also effective in integrating mul-
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tiple views to further improve the action recognition performance. We make the
following contributions in this work:

– We propose a framework for unsupervised multi-view representation learning
via cross-view video prediction which can be trained end-to-end from scratch.

– We propose a viewpoint and time conditioned encoding of videos which are
integrated to get a holistic representation of the action from multiple views.
This allows the network to preserve the notion of viewpoint and time, which
facilitates query-based cross-view prediction.

– We evaluate the effectiveness of the proposed approach with multiple modal-
ities and on multiple datasets. We observe a significant improvement in the
performance of cross-view as well as cross-subject action recognition on the
largest multi-view dataset when compared with existing methods.

2 Related Work

Cross-view Action Recognition: We have recently seen a good progress in
action recognition with RGB videos [4,47]. However, these methods are mainly
focused on single view videos. In multi-view environment, the availability of dif-
ferent modalities such as, pose and depth, has motivated many research works
which address the issue of view in-variance. In this stream of research, most of
the works make use of multiple modalities (RGB+D) [39], depth [34,22], RGB
[27,22,52] or skeleton data [21,51,46] to learn view-invariant features. Among
these, skeleton data has shown very promising performance when compared with
RGB videos. The existing methods utilize RNN [7,25,24,2,51], CNN [24,15,26],
and GraphCNN [49,21] to learn view-invariant features from skeleton sequences.
However, these approaches requires the availability of 2D/3D pose information.
Apart from these, 3D motion is another modality which has shown good results
in cross-view action recognition [27,22]. However, getting 3D motion is computa-
tionally expensive and these methods do not generalize well with RGB modality.
In this work, we focus on RGB modality for multi-view action recognition.

Cross-View prediction: The research in image prediction using deep learn-
ing has recently seen a great progress [18], and it is mainly attributed to the
success of Generative Adversarial Networks (GAN). We have also seen some
preliminary success in the research on video prediction and proposed methods
are mainly focused on future frame prediction [30,3], future clip prediction [42],
or conditioned video generation [41,37]. Our work is different from these ap-
proaches as we have a notion of viewpoint, which has not been addressed earlier.
Cross-view prediction of data is an interesting problem, which can have multiple
applications including view-invariant representation learning. There are some
existing works focusing on this problem for cross-view image prediction [36,8]
and 3D reconstruction from images [14]. In [8], the authors proposed a scene rep-
resentation learning framework and worked with synthetic images. In a recent
effort [17], the authors propose a novel view video prediction approach which
requires a strong prior, depth/skeleton sequence, from the target view for video
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generation. Our work is different from this in two main aspects; our approach
predicts the target video based on a query viewpoint and does not require any
prior from the target view, and we are using cross-view prediction as an aux-
iliary task for unsupervised learning of action representation in a multi-view
environment.

Unsupervised Representation Learning: The research in unsupervised
video representation learning mainly focuses on encoder-decoder type of net-
works, where the decoder is used for reconstruction [10] or predicting future
frames [40]. There are some other approaches which utilize temporal ordering
of clips [9,31], temporal coherence [45], and sorting of shuffled frames [19] as
a way of unsupervised learning. Recently, there has been some effort to utilize
3D-motion prediction as a way of unsupervised learning [27,22], but this requires
computation of optical flow which is computationally costly. The existing works
are mostly focused on single views and they are not effective for multi-view
learning. We are focusing on unsupervised learning in multi-view environment.

3 Method

The proposed framework consists of two main components, a representation
learning network (RL-NET), f , and a video rendering network (VR-NET), g.
A detailed overview of the proposed framework is shown in Figure 2. The
input to the framework consists of multiple short video clips of an instance
captured from varying viewpoints and time which are termed as observations,
oi = {(xki , vki , ti)}k=1,2,...,K , where, xki represents kth video clip captured from
viewpoint vki and time ti for any instance i. The RL-NET take these observations
as input and learns a holistic representation r for the instance with the help of
an encoding network (ENC-NET), fe, and a blending network (BL-NET), f b,
preserving the notion of view and time.

The ENC-NET considers each observation independently and encode the
spatio-temporal features integrated with viewpoint and time, eki = fe(oki ). Here
eki is the view and time dependent encoding for observation oki from instance
i. BL-NET is a recurrent network which updates its internal representation
as it sees more observations before providing a holistic representation ri =
f b({eki }k=1,2,...,K) of the scene and its dynamics. The VR-NET, then, use this
representation, r, along with stochastic latent variable, z ∼ (0, 1), to render a
video clip from a query viewpoint, vki , and time, ti.

Formally, we can define the representation learning as, ri = fθ(oi), and the
video rendering network as,

gθ(x|vq, tq, r) =

∫
gθ(x, z|vq, tq, r)dz, (1)

where, gθ(x|vq, tq, r) is probability density of a video x observed from a query
viewpoint vq at time tq, for an instance oi with representation r and latent
variable z. The parameters θ for the two networks can be learned using op-
timization over the rendered video. We train the two networks, RL-NET and
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Fig. 2. Outline of the proposed unsupervised cross-view video rendering framework.
A : A collection of observations (o) for a given action from different viewpoints. B:
Training clips from the set of observations captured from different viewpoints and at
different times. C: Representation learning network (RL-NET), which takes video clips
from different viewpoint and time as input and learns a representation r. D: ENC-NET
is used to learn individual video encodings ek conditioned on its viewpoint vk and time
tk. E: The blending network (BL-NET) combines encodings learned from different
video clips into a unified representation r. F: The representation r is used to predict
a video from query viewpoint vq and time tq using VR-NET. G: The representation r
can also be used for action classification using CL-NET. 3D-U refers to 3D convolutions
combined with upsampling and U refers to upsampling.

VR-NET, jointly in an end-to-end fashion to maximize the likelihood of ren-
dering the ground-truth video, observed from the query viewpoint and time. In
the next subsections we will describe each of these components in detail (More
details are in the supplementary).

3.1 Representation Learning Network (RL-NET)

The representation learning network f takes multiple video clips of an instance
captured from different viewpoints and time to learn a representation r. It con-
sists of two components, encoding network (ENC-NET) fe and a blending net-
work (BL-NET) f b.

Encoding Network (ENC-NET): The ENC-NET fe learns spatio-temporal
features for each observations independently using 3D convolutions. Since each
observation comes from a different viewpoint and time, we want to integrate
these factors in the learned encodings. The ENC-NET first extracts viewpoint
and time independent features ehk from the input video clip xk; ehk = feh(xk).
Here feh is a 3D convolution network with two layers. This encoding is then
passed to a integration network fei along with viewpoint vk and time tk encod-
ings. The integration network gives us a viewpoint and time dependent encodings
ek = fei(ehk, vk, tk). It takes the viewpoint and time encodings and upsample
them to match with the shape of the features extracted by feh. Then they are
concatenated together along the channels axis before passing to a 3D convolution
network which consists of five more layers. The ENC-NET can be represented as
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ek = fe(ok) = fei(feh(xk), vk, tk), and it is shared among all the observations
of an instance during training.

Viewpoint and Time Integration: A viewpoint of an observation is defined
using two different parameters: camera position and its orientation. The camera
position is defined by its location which includes height hv, distance dv, and
angular position av with respect to the actor. The height and distance values
are normalized between (0, 1). The angular position is encoded depending upon
where the viewpoint is positioned and it lies in the range (-π, π). The orientation
is defined by horizontal-pan hpv and vertical-pan vpv in the camera while cap-
turing the observation. This is taken into account when we randomly crop each
input observation in the spatial dimension during training. The time encoding
te is derived using the position of the observation in the long action sequence.
It is normalized in the range (0, 1). The viewpoint and time encodings becomes
a six dimensional vector, where v = [hv, dv, av, hpv, vpv], and t = [te], which is
used to get a viewpoint and time integrated video features ek = fe(xk, vk, tk)
for a given observation ok.

Blending Network (BL-NET): The viewpoint and time conditioned en-
codings ek from each observation are passed to a blending network f b which
learns a representation r. We want to learn a representation which holistically
represents the scene and its dynamics as viewed from different viewpoints and
time. The recurrent networks, such as LSTM, have been widely used to learn
temporal dependencies in sequential data. However, they are also shown to be ef-
fective in processing non-sequential data, such as addition of a series of numbers
[12]. Motivated by this, we propose a recurrent network which learns a repre-
sentation for an instance, which is updated as it sees new observations (Figure
2E). More specifically, we utilize an LSTM architecture, where the memory cell,
c, acts as an accumulator of state information and is updated by the input (i),
output (o) and forget (f) gates, which are self-parameterized controlling gates.
We make use of convolutional LSTM to preserve the spatial information in the
embeddings and utilize bi-directional layers in the network for a more effective
learning. For a given video embedding, eki , after seeing all other observations in
a forward and a backward pass, we get an updated hidden representation hri .

hri = (ofi ◦ tanh(cfi ))_(obi ◦ tanh(cbi )). (2)

Here, ofi and obi are the output gates of the forward pass and backward pass

respectively, cfi and cbi are the corresponding memory cell states, ◦ denotes the
Hadamard product, and _ denotes a concatenation operation between learned
representations from the forward and backward pass. The updated intermediate
representation from each observation is then passed to a uni-directional conv-
LSTM layer, which integrate these to get a holistic representation r.

r = on ◦ tanh(cn). (3)

Here, on is the output gate, cn is the memory cell state of the network after
seeing all the n observations. The learned representation can be computed as
r = f b({fe(ok)}k=1,2...n).
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3.2 Video Rendering Network (VR-NET)

The representation, r, learned with the given observations, o, is used to ren-
der a video with a video rendering network (VR-NET). The VR-NET, shown
in Figure 2F, is also a convolution based network which takes as input the
learned representation, r, along with query viewpoint, vq, time tq, and latent
noise z. The viewpoint vq, time tq, and noise z are passed to the network as
conditioning, for which we use concatenation operation with the representation
features. The idea is to extract viewpoint and time dependent features from
the learned representation r. The VR-NET consists of 2D convolutions followed
by 3D convolutions to render the video clips. The convolution layers are used
in combination with upsampling of features to generate video clips with res-
olution same as the input observations. The video rendering is represented as
V p = g(r, vq, tq, z) = g(f(o), vq, tq, z).

The two networks, RL-NET and VR-NET, are trained jointly in an end-to-
end fashion minimizing the reconstruction loss Lr as the objective function. The
reconstruction loss Lr is computed as mean squared error between the predicted
video V p and the ground truth video clip V g.

Lr =
1

N

N∑
n

F∑
i

H∑
j

W∑
k

C∑
m

||V pijkm − V
g
ijkm||

2. (4)

Here, N is the number of samples, F is the number of frames in the clip, H,W is
height and width of the video frames, and C = 3 for three RGB color channels.

3.3 Action Recognition

The RL-NET and VR-NET can be trained jointly for unsupervised representa-
tion learning by cross-view prediction. To explore the effectiveness of the learned
representation, we use it for the task of cross-view action recognition using a su-
pervised approach. We use the same RL-NET and VR-NET framework and add
a classifier (CL-NET) on top of learned representation. CL-NET has 2 convo-
lution layers followed by fully connected layers and it predicts probabilities for
each action classes. We use categorical cross entropy to compute the loss Lc for
the action recognition.

Lc = − 1

N

N∑
n

C∑
c

1yi∈Cc
log(p̂[yi ∈ Cc]). (5)

Here, C is the number of action categories, and p̂[yi ∈ Cc] is the predicted
probability for this sample corresponding to category c.

The proposed framework can be trained in two different ways for action clas-
sification. In the first approach, we have a two step process where we first train
RL-NET and VR-NET in an unsupervised way to learn a representation. In the
next step, we train a CL-NET using this representation for action classification.
In the second approach, we train all the three networks, RL-NET, VR-NET, and
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CL-NET, in a joint training. In our preliminary experiments, we observe similar
action recognition performance with both the approaches. In all our reported
experiments, we follow the second approach as it is efficient in terms of time due
to a joint single step training.

The network is trained end-to-end with the two loss functions (Lr and Lc)
in a multi-task setting and the overall loss of the network is defined as,

L = λr × Lr + λc × Lc. (6)

In all our experiments, we use λr = λc = 1.0. The network is trained using
observations captured from certain known views and later tested on observations
from unseen views for cross-view action recognition.

3.4 Training and Implementation Details

We train the proposed network without any pre-trained weights using Adam
optimizer and a learning rate of 2e−5. A batch-size of 6 was used in all our
experiments. The input video clips to RL-NET consists of 6 frames with a skip
rate of 3 and a resolution of 112x112. The network takes 6 video clips at a time
and renders one video clip with 6 frames and a resolution of 112x112 during
training. We implemented our code in Keras with Tensorflow backend and use
Titan-X GPU for training our network.

4 Experiments

We perform our experiments on two different datasets: NTU-RGB+D [38] and
Northwestern-UCLA MultiviewAction3D (N-UCLA) [44]. We use NTU-RGB+D
dataset for all our ablation studies.

NTU-RGB+D: This human action recognition dataset contains more than
56K videos and 4 millions frames with 60 different actions. There are a total of
40 different actors, who perform actions captured from 80 different viewpoints.
We perform both cross-subject (CS) and cross-view (CV) evaluation for action
recognition as suggested by [38] on RGB as well as depth modality. For cross-
view video prediction experiments, we use the subject split suggested by [38].

Northwestern-UCLA MultiviewAction3D (N-UCLA): This dataset
has 10 action categories and each action is performed by 10 actors. The actions
are captured from 3 viewpoints and there are a total of 1493 action sequences.
We perform both CS and CV evaluation as suggested by [44] and use videos
from the first two views for training and videos from the third view for testing.
This is a much smaller dataset in comparison with NTU-RGB+D and we use
this in our transfer learning experiments for action recognition.

4.1 Representation Learning via Rendering

The proposed method utilize video prediction for learning a representation. We
experimented with three different scenarios of rendering during training. These
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Fig. 3. Details of different training strategies (M-1, M-2, and M-3) which are used to
study the effect of video rendering on representation learning for action classification.
All the three variations use the same testing strategy

Table 1. A comparison of classification accuracy from different training configurations
to study the effect of rendering on cross-subject split of NTU-RGB+D dataset. These
evaluations are done on only 6 clips per video which is similar to the training setup

Training Approach
Accuracy

Testing View
Average

view 1 view 2 view 3

M-1 77.3 74.2 72.2 74.6
M-2 59.8 59.7 58.4 59.3
M-3 57.3 56.2 55.3 56.3

scenarios are based on what the network sees as input and what it tries to render.
In the first scenario (M-1), the network sees all the available views as input
except one, which is used for rendering. The input views are selected randomly,
therefore, eventually the network will see all the available views as input. In the
second scenario (M-2), one view is kept for rendering and the rest are used as
input throughout the training. In the third scenario (M-3), all the views are used
a input and one view and time is randomly selected for rendering. In this case,
the network will render a seen view however it may be from a different time.

In NTU-RGB+D dataset, there are three different viewpoints. Therefore, for
the first variation (M-1), we randomly select two input views and render a video
from third unseen view. In the second configuration (M-2), we fixed the input
views to 2 and 3, and view 1 is used for rendering. And, in the last configuration
(M-3), we use all the three views as input and randomly select one of them for
rendering at a random time-step. The details of these configurations are shown
in Figure 3.

We analyze the performance of these configurations for action recognition.
We use cross-subject split from NTU-RGB+D dataset [38] to perform evaluation
of these experiments. During testing, a single view (with multiple video clips)
is used to perform action recognition. The view-specific classification accuracy
scores along with the average is shown in Table 1. We observe that the action
recognition performance is relatively better for view 1 in comparison with view
2 and 3. The videos in view 1 are captured at +/- 45 degrees view of actor
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Table 2. A comparison of cross-subject (CS) and cross-view (CV) action recognition
performance on NTU-RGB+D dataset for RGB modality. RGB-S: using both RGB
and skeleton modalities, RGB-DS: using RGB, depth and skeleton modalities.

Method Modality
Accuracy
CS CV

STA-Hands [1] RGB-S 73.5 80.2
Pose Est. [28] RGB-S 84.6 -
DSSCA - SSLM[39] RGB-DS 74.9 -
CNN-LSTM [27] RGB 56 -
DA-NET[43] RGB - 75.3
Att-LSTM [52] RGB 63.3 70.6
CNN-BiLSTM [22] RGB 55.5 49.3
Proposed RGB 82.3 86.3

Table 3. A comparison of cross-subject (CS) and cross-view (CV) action recognition
performance on NTU-RGB+D dataset for depth modality.

Method
Accuracy
CS CV

HOG [32] 32.2 22.3
S-Norm Vector [50] 31.8 13.6
HON4D [33] 30.6 7.3
Shuffle & learn [31] 61.4 53.2
CNN-LSTM [27] 66.2 53.2
CNN-BiLSTM [22] 68.1 63.9
Proposed 71.8 78.7

and for view 2 and 3 it is either frontal or +/- 90 degrees. However, this is not
consistent for M-2 configuration as it never sees the video samples from view 1
during training.

We also observe that when the rendering network is trained for unseen views
(M-1 and M-2), it perform better in comparison with seen view prediction (M-
3). Predicting unseen query views is relatively difficult for the rendering network
and therefore it forces the representation learning network to learn a good rep-
resentation. Also, the random selection of input views (M-1) allows the network
to see different variations in terms of input and query views. Therefore, this con-
figuration (M-1) performs better than M-2 where the input and output views
are fixed throughout the training.

4.2 Action Recognition

Based on the above analysis, we select configuration M-1 for rest of our ac-
tion recognition experiments. For cross-subject experiments, we use two random
views as input and render a video from third unseen view. In case of cross-view
setup, there are two views (view 2 and 3) available for training. We randomly pick
one view as input and the other for rendering. During test time, multiple clips
are sampled from the test video for action recognition covering the full length
of video. The details of these configurations are shown in Figure 4. The cross-
view and cross-subject classification scores on NTU-RGB+D dataset for RGB
modality are shown in Table 2. We also evaluate the performance of proposed
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Fig. 4. The details of the training and testing configuration (Strategy M-1) used for
cross-view and cross-subject experiments on NTU-RGB+D dataset

Table 4. A comparison of cross-subject (CS) and cross-view (CV) action recognition
on N-UCLA MultiviewAction3D dataset.

Method Modality
Accuracy
CS CV

NKTM [35] RGB-S - 75.8
MST-AOG [44] RGB-S 81.6 73.3
Hanklets [20] RGB 54.2 45.2
DV-Views[23] RGB 50.7 58.5
LRCN [6] RGB - 64.7
nCTE [11] RGB - 68.6
Proposed-scratch RGB 35.1 43.4
Proposed RGB 87.5 83.1

method on depth modality and the evaluation is shown in Table 3. We observe
that it performs well on both RGB and depth modality which demonstrates its
effectiveness to generalize well across different modalities.

Comparison with state-of-the-art We compare the performance of our pro-
posed method with the recent works on RGB based view-invariant action recog-
nition (Table 2 and Table 3). Our model performs well in both CS and CV eval-
uation for both RGB and depth modality. We observe that the proposed method
provides significant improvement in CV evaluation for both RGB (∼ 11%) and
depth (∼ 15%) modality which demonstrates that the learned representation is
robust to viewpoint change. Moreover, the performance of our method is com-
parable to the state-of-the-art approaches employing skeleton modalities.

Model parameters The proposed network use a simple 3D CNN with 7 con-
volution layers for video encoding. Also, the full network has only around 72M
parameters. This is relatively smaller network when compared with existing ap-
proaches, such as [22] (ResNet) and [43] (TSN), which utilize a deeper backbone
for video encoding.
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Table 5. Comparison of classification accuracy to study the effect of cross-view video
prediction on NTU-RGB+D dataset. For CS evaluation all the three available views
were used for testing whereas for CV evaluation only view 1 was used for testing

Method
Accuracy
CS CV

Baseline 51.4 54.6
Proposed (without prediction) 63.0 65.2
Proposed (seen-view prediction) 71.4 78.1
Proposed (cross-view prediction) 88.9 86.3

4.3 Transfer Learning for Action Recognition

We use the representation learned on NTU-RGB+D dataset for N-UCLA dataset
which has a different set of scenes and users. We perform both CV as well as CS
evaluation as suggested in [44] with two different variations. In the first variation,
we train the network from scratch and the other one uses transfer learning from
NTU-RGB+D dataset. The evaluation of the proposed method on N-UCLA
dataset is shown in Table 4. We observe that the network performs poorly when
trained from scratch which is due to the small size of this dataset. However,
using the learned representations from NTU-RGB+D significantly increases the
performance. Our method outperforms previous RGB based approaches [27,22].
This demonstrates the generalization capability of the learned representations
across domains.

4.4 Ablations and Discussion

In our previous experiments, we observe that predicting an unseen views helps
in learning a better representation for action recognition. We perform some more
ablations to study the effect of prediction and effectiveness of BL-NET.

Effect of Rendering: To study the effect of video prediction on the perfor-
mance of action recognition, we train a network which uses RL-NET for repre-
sentation learning along with classification without any video prediction. In an-
other variation, we train the proposed network with seen-view prediction. Here,
similar setting as before is used except that a random view from input is also
selected for prediction. We compare these two baselines to the proposed network
with cross-view prediction (M-1). We also use a baseline where the network was
trained using a single clip with classification loss. In this experiment, we use the
full video length during inference and all available views for CS evaluation. The
comparison is shown in Table 5 and we can observe that cross-view prediction
provides a significant improvement in the classification scores for both cross-view
and cross-subject evaluation.

View-invariant Representation: We compare the representation learned
by the proposed RL-NET with autoencoding density models such as Variational
Autoencoder (VAE) [16]. The VAE was implemented by replacing the RL-NET
model with a CNN network (similar to ENC-NET) and keeping the rest of the
network similar to ours. The network was then trained for reconstruction of the
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Fig. 5. A comparison of t-SNE visualization of representations learned with: a) Vari-
ational Autoencoder (VAE) and b) proposed RL-NET for a subset of 10 activities on
NTU-RGB+D dataset. The shown images are the first frame of the video clips. We ob-
serve that VAE is indifferent to view awareness of activities and mostly clusters videos
with similar visual content. On the other hand, the proposed method is able to cluster
activities from different views close to each other even if they have different viewpoints.
Effect of multi-view learning: t-SNE visualization of activity representations for a sub-
set of 10 activities on full NTU-RGB+D dataset using: c) one input view and d) all
three views. The learned representation improves with the availability of multiple views
using the same network

Table 6. Ablation experiments to study the effect of multiple views during evaluation
of CS split in NTU-RGB+D dataset for both RGB and depth modality

Approach
Accuracy

RGB Depth

Single view 82.3 71.8
All views 88.9 79.4

input video clip along with action classification. We study the 2D t-SNE [29]
analysis for the embedding from the last layer of the classifier for a comparison.
We observe that the proposed method was able to place the instances from
similar classes close to each other despite the change in the viewpoint. VAE on
the other hand failed to capture any structure in the representations with varying
viewpoints and activity classes. A t-SNE comparison plot of the representation
is shown in Figure 5 (a & b).

Effectiveness of BL-NET: The RL-NET performs representation learning
based on a set of input observations. These observations can be from different
viewpoints and time in a video. The visual appearance of any action changes
with viewpoint as well as time. This analogy between time and viewpoint for
variation in visual appearance of any action allows us to use the two concepts
interchangeably during representation learning. This idea makes the proposed
architecture even more powerful as a network trained with some number of views
and clips can be tested on different configuration.

Variation in number of input views: We perform an ablation study to validate
the robustness of BL-NET to varying number of views during inference. We
observe that the performance increases as more number of views are available
for representation learning. A comparison is shown in Table 6 for both RGB and
depth modality. This is intuitive as different views provide varying perspective
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which helps in recognizing the action better. We explored this further with t-SNE
visualization of the representations and observe that the action samples are well
separated when the representation is learned using multiple views. A comparison
is shown in Figure 5 (c & d). The embeddings for activity classes which are
confusing (e.g. brush teeth and brush hair) are slightly overlapping with single
views (Figure 5c) and are separated with multi-view embedding (Figure 5d).

Variation in number of input clips: The network can also use varying number
of input clips to learn a representation. Different action sequences may have
varying length and this ability allows the network to see the full action sequence
regardless of the video length. During testing we analyzed the effect of number
of input clips on the learned representation by introducing more clips than what
the network trained for and observed that increasing the input clips leads to
a better performance. The action recognition performance increased from 74.6
to 82.3 for CS evaluation on NTU-RGB+D when we increase the number of
clips from 6 to full video length. This also validates the robustness of BL-NET
for varying length action sequences. The proposed network can also generalize
well to testing with single view videos irrespective of how it was trained. For
example, the CS network for NTU-RGB+D is trained using 2 input views, but
it still performs well in action recognition using only single view clips.

5 Conclusion

In this work, we propose a novel unsupervised deep learning framework for ac-
tion recognition in a multi-view environment. The proposed framework can be
trained end-to-end without the need of any pre-trained weights. We demonstrate
the effectiveness of the proposed approach for the task of cross-view as well as
cross-subject action recognition on multiple datasets. The proposed approach is
effective with RGB videos and we also validate the generalization capability of
the proposed framework for depth modality. The framework is adaptive for num-
ber of input views which makes it suitable for multi-view as well as novel-view
action recognition. The generalization capability and its adaptive nature makes
it useful for other problem domains in a multi-view environment.
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