
Learning Discriminative Feature with CRF for
Unsupervised Video Object Segmentation

Mingmin Zhen1[0000−0002−8180−1023], Shiwei Li2, Lei Zhou1,
Jiaxiang Shang1, Haoan Feng1, Tian Fang2, and Long Quan1

1 Hong Kong University of Science and Technology
{mzhen,lzhouai,hfengac,jshang,quan}@cse.ust.hk

2 Everest Innovation Technology
{sli,fangtian}@altizure.com

Abstract. In this paper, we introduce a novel network, called discrim-
inative feature network (DFNet), to address the unsupervised video ob-
ject segmentation task. To capture the inherent correlation among video
frames, we learn discriminative features (D-features) from the input im-
ages that reveal feature distribution from a global perspective. The D-
features are then used to establish correspondence with all features of
test image under conditional random field (CRF) formulation, which is
leveraged to enforce consistency between pixels. The experiments verify
that DFNet outperforms state-of-the-art methods by a large margin with
a mean IoU score of 83.4% and ranks first on the DAVIS-2016 leader-
board while using much fewer parameters and achieving much more ef-
ficient performance in the inference phase. We further evaluate DFNet
on the FBMS dataset and the video saliency dataset ViSal, reaching a
new state-of-the-art. To further demonstrate the generalizability of our
framework, DFNet is also applied to the image object co-segmentation
task. We perform experiments on a challenging dataset PASCAL-VOC
and observe the superiority of DFNet. The thorough experiments ver-
ify that DFNet is able to capture and mine the underlying relations of
images and discover the common foreground objects.
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1 Introduction

The research on video object segmentation (VOS), which aims to separate pri-
mary foreground objects from their background in a given video, is often divided
into two categories, i.e., semi-supervised and unsupervised setting. The semi-
supervised VOS (SVOS) provides a mask of the first frame, which can be taken
as the prior knowledge about the target in subsequent frames. By comparison,
unsupervised VOS (UVOS) is in general more challenging, as it requires a fur-
ther step to distinguish the target object from a complex and diverse background
without prior information. In this paper, we focus on the latter challenging issue.

Recently, several works, such as COSNet [40], AGNN [61] and AnDiff [68],



2 M. Zhen, S. Li, L. Zhou, J. Shang, H. Feng, T. Fang and L. Quan

model the long-term correlations between frames to explore global information
inspired by the non-local operation introduced by Wang et al. [66]. However, the
limitations are obvious as the computation requirement is very high, especially
for AGNN [61]. Besides, the local consistency cues are overlooked, which is es-
sential for UVOS task.

Motivated by the above observations, we propose a discriminative feature
learning network, which is denoted as DFNet, to model the long-term correla-
tions between video frames. Specifically, DFNet takes several frames from the
same video as input and learns the discriminative features, which can denote
the whole feature distribution of the input frames. The feature map for each
frame is correlated with these discriminative features under CRF formulation,
which is used to boost the smoothness and consistency of similar pixels. The
proposed approach is advantageous to mine the discriminative representation
from a global perspective, while at the same time helps to capture the rich con-
textual information within video frames. DFNet is sufficiently flexible to process
variable numbers of input frames during inference, enabling it to consider more
input information and gain better performance.

To verify the proposed method, we extensively evaluate DFNet on two widely-
used video object segmentation datasets, namely DAVIS16 [45] and FBMS [43],
showing its superior performance over current state-of-the-art methods. More
specifically, DFNet ranks first on the DAVIS-2016 leaderboard with a mean IoU
score of 83.4%, which is 1.7% higher than state-of-the-art method [68]. DFNet
also achieves state-of-the-art results on FBMS [43] and the ViSal [62] video
saliency benchmark. To further demonstrate its advantages and generalizability,
we apply DFNet to image object co-segmentation task, which aims to extract the
common objects from a group of semantically related images. It also gains better
results on the representative dataset PASCAL VOC [7] over previous methods.

2 Related work

Unsupervised Video Object Segmentation Recently, there are many works
for UVOS task, which focus on the fully convolutional neural network based
models. MPNet [52], a purely optical flow-based method, discards appearance
modeling and casts segmentation as foreground motion prediction, which poorly
deals with static foreground objects. To better address this problem, several
methods [53, 4, 48, 34] suggest adopting two-stream fully convolutional networks,
which fuse the motion and appearance information for object inference. In [53],
a convolutional gated recurrent unit is employed to extend the horizon spanned
by optical flow based features. Li et al. [34] attempt to address this issue by
employing a bilateral network for detecting the motion of background objects.
RNN based methods are also a popular choice. Song et al. [49] propose a novel
convolutional long short-term memory [11] architecture, in which two atrous
convolution [3] layers are stacked along the forward axis and propagate features
in opposite directions. COSNet [40] adopts a gated co-attention mechanism to
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Fig. 1. Overall pipeline of the proposed method. The features are first obtained from
the encoder module and goes through the discriminative feature module (DFM) to
extract discriminative features. The discriminative features are then used by attention
module (ATM) to recontruct a new feature map, which is used to correlate the input
frames.

model the correlation of input video images. In AGNN [61], a fully connected
graph is built to represent frames as nodes, and relations between arbitrary frame
pairs as edges. The underlying pair-wise relations are described by a differen-
tiable attention mechanism. To exploit the correlations of images, AnDiff [68]
proposes a considerably simpler method, which propagates the features of the
first frame (the “anchor”) to the current frame via an aggregation technique.
Image Object Co-Segmentation Different from UVOS, the image object co-
segmentation task is to extract the common object with the same semantics
from a group of semantic-related images. Recent researches [17, 69] use deep vi-
sual features to improve object co-segmentation, and they also try to learn more
robust synergetic properties among images in a data-driven manner. Hsu et al.
[17] proposes a DNN-based method which uses the similarity between images in
deep features and an additional object proposals algorithm [25] to segment the
common objects. Yuan et al. [69] introduce a DNN-based dense conditional ran-
dom field framework for object co-segmentation by cooperating co-occurrence
maps, which are generated using selective search [55]. The very recent works [2,
35] propose end-to-end deep learning methods for co-segmentation by integrat-
ing the process of feature learning and co-segmentation inferring as an organic
whole. By introducing the correlation layer [35] or a semantic attention learner
[2], they can utilize the relationship between the image pair and then segment
the co-object in a pairwise manner. In [30], a recurrent network architecture is
proposed to address group-wise object co-segmentation.
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Fig. 2. Illustration of DFM. The features from input images are first reshaped into
one-dimensional vectors. The K-group scoring module is adopted to score the features.
Based on the K-group scores, we can obtain final K-D features. The details are pre-
sented in Section 3.2.

3 The Proposed Method

In this section, we present the proposed DFNet in detail, which is illustrated in
Figure 1. We first give an overview of the whole architecture in section 3.1. Next,
the discriminative feature module (DFM), which captures the global feature
distribution of all input images, is elaborated in section 3.2. Then we introduce
the attention module (ATM) in section 3.3, which reconstructs a new feature
map modeling the long-term dependency.

3.1 Network Architecture

For the UVOS task, the target object in the given video images can be deformed
and occluded, which often deteriorates the performance of estimated binary seg-
mentation results. To recognize the target object, our method should be of two
essential properties: (i) the ability to extract foreground objects from the indi-
vidual frame; (ii) the ability to keep consistency among the video frames. To
achieve these two goals, we correlate the features of each input image with dis-
criminative features, which is extracted from input images selected from the
same video randomly.

As shown in Figure 1, we present the proposed network architecture in de-
tail. The proposed network takes several images as input. The shared feature
encoder, which adopts the fully convolutional DeepLabv3 [3], extracted the fea-
tures from the input images. The obtained feature maps are then fed into a 1×1
convolutional layer to reduce the feature map channel to 256, and the output
feature maps for all input images are taken as input for the discriminative fea-
ture module (DFM), which extract the discriminative features (D-features). The
input feature for each image and the D-features go through an attention module
(ATM) to reconstruct a new feature map and then one 3× 3 convolutional layer
followed by ReLU, batch normalization (BN) layer and one 1× 1 convolutional
layer followed by a sigmoid operation are used to obtain final binary output.

More formally, given a set of input frames I = {Ii ∈ RH×W×3}Ni=1, we want
to segment out the binary masks S = {Si ∈ {0, 1}H×W }Ni=1 for all frames. The
features extracted from DeepLabv3 are denoted as F = {Fi ∈ Rh×w×c}Ni , where
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h×w indicates the spatial resolution of feature map and c represents the feature
map channels. Since we follow the original deepLabv3, which employs dilated
convolution, the output feature map Fi is 1

8 smaller than the input image Ii.

3.2 Discriminative Feature Module

We learn the discriminative features from the features of all input images. Specif-
ically, all feature maps F from the input images are first concatenated to form a
large feature map with size N × h×w× c and then reshaped as F a ∈ RNhw×c.
As shown in Figure 2, we then use a K-group scoring module to obtain K-group
scores, which is used to distinguish the discriminative features from the noisy
features. For each scoring group, a weight matrix Wk ∈ Rc×1 and F a is multi-
plied to get a initial score result with size Nhw×1. We apply a softmax function
to calculate the final scores:

ski =
exp(F a

i .Wk)∑Nhw
i exp(F a

i .Wk)
(1)

where ski is the score for ith feature of F a and measures the discriminability of
the feature. The final discriminative feature for kth scoring group is computed as
F d
k =

∑
ski F

a
i . By this way, we can obtain K discriminative features F d ∈ RK×c.

The K D-features are used to describe the feature distribution from a global
perspective. The key of the D-features computation is the scoring weightWk. In
our training step, we initialize the Wk by using Kaiming’s initialization method
[15]. For each updating iteration, we adopt the moving averaging mechanism,
which is used in batch normalization (BN) [18]. After obtaining the D-feature
F d
k (t) at training step t, we update the Wk as:

Wk(t) = λWk(t− 1) + (1− λ)F d
k (t) (2)

where λ is the momentum. In our experiments, we set it to 0.5. As we train
our network on a multiple-GPU machine, we also adopt the synchronized weight
updating strategy motivated by synchronized BN [47]. Specifically, the images
from the same video sequence are fed into the network on one GPU. Thus, we
will get different D-features F d

k (t) at step t for different GPUs. For the synchro-
nized processing, we sum up these D-features F d

k (t) across GPUs and compute

the average feature F
d

k(t), which will be used in Equation 2. The updated Wk

is synchronized on all GPUs. The whole computation is differentiable and train-
able. In the inference step, the weight Wk is kept fixed, which is similar to BN
operation.

3.3 Attention Module with CRF

To model the long-term dependency, we adopt the attention module to correlate
input image and the discriminative features. For the obtained K D-features
F d ∈ RK×c and the feature map Fi ∈ Rh×w×c of input image, we follow [40,
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Fig. 3. (a) Illustration of ATM. The input feature map and K D-features are correlated
to model long-term dependency; (b) Illustration of attention mechanism. The details
are presented in Section 3.3.

61] to compute the attention matrix P ∈ Rhw×K as shown in Figure 3 (a).
Specifically, we obtain P from F d and Fi as follows:

P = reshape(Fi)Watttranspose(F
d) (3)

where Watt ∈ Rc×c is a learnable weight matrix. The D-feature matrix F d are
tranposed with size c×K and feature map Fi is reshaped with size hw× c. For
the obtained attetnion matrix P , each element indicates the similarity of the
corresponding feature of Fi and feature of F d. As shown in Figure 3 (b), the
lines with different colors represent the similarity between input features and
K D-features. In previous attention methods [40, 61, 68], a new feature map is
reconstructed based on the attention matrix by assigning K D-features to input
feature map as follows:

Fnew = reshape(softmax(P )F d) (4)

where the new feature map Fnew is of size h× w × c.
The attention map computation can also be considered as multi-label clas-

sification problem and the assignment of D-features corresponds to a different
label. Our intuition is that neighboring pixels in the same local region tend to
have similar labels (K D-features), and pixels near borders or edges may have
significantly different labels. We regard the reshaped attention map with size
h×w×K as fully connected pairwise conditional random fields conditioned on
the corresponding image I, in which each pixel is to be assigned with a D-feature
for reconstructing the new feature map.

Let x = {x1, x2, ..., xM} be the label vector of M pixels in the reshaped atten-
tion map. Component xi belongs to {1, 2, ...,K} where K is the number of labels
(D-features). The probability of the label assignment is defined in the form of
Gibbs distribution as P (x|I) = 1

Z exp(−E(x|I)), where E(x) is the energy func-
tion which describes the cost of label assigning and Z is a normalization factor.
For convenience we drop the notation of condition I in the followings. Following
the formulation of [24], the energy function is defined as

E(x) =

M∑
i=1

ψu(xi) +
∑
i<j

ψp(xi, xj) (5)
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where the unary energy components ψu(xi) measure the cost of the pixel i tak-
ing the label xi, and pairwise energy components ψ(xi, xj) measure the cost of
assigning labels xi, xj to pixels i, j simultaneously. In our formulation, unary
energies are set to be reshaped attention map P , which predicts labels for pixels
without considering the smoothness and the consistency of the label assignments.
The pairwise energies provide an image data-dependent smoothing term that en-
courages assigning similar labels to pixels with similar properties.

The CRF model can be implemented in neural networks as shown in [72, 51],
thus it can be naturally integrated in our network, and optimized in the end-to-
end training process. After the CRF module, we can obtain a refined attention
map which takes the smoothness and consistency into consideration. We follow
Equation 4 to reconstruct a new feature map.

We also adopt a self-weight method to weight the new feature map Fnew and
input feature map Fi. The self-weight is formulated as follows:

Fnew = Fnew ∗ conv(Fnew), Fi = Fi ∗ conv(Fi) (6)

where we use 1 × 1 convolutional layer to get the weight, which indicates the
importance of features in the feature map. At last, we concatenate the feature
map Fnew and Fi and feed the obtained feature map into the convolutional
layers to get binary segmentation results.

4 Experiments

We first report performance on the unsupervised video object segmentation task
in Section 4.1. Then, in Section 4.2, to further demonstrate the advantages of
the proposed model, we test it on image object co-segmentation task. At last,
we conduct an ablation study in Section 4.3 and model analysis in Section 4.4

4.1 Unsuperviesed Video Object Segmentation Task

Dataset and Evaluation Metric To evaluate UVOS task, a golden dataset
DAVIS16 is often used [40, 61, 65, 54, 49]. DAVIS16 is a recent dataset which
consists of 50 videos in total (30 videos for training and 20 for testing). Per-
frame pixel-wise annotations are offered. For quantitative evaluation, following
the standard evaluation protocol from [45], we adopt three metrics, namely re-
gion similarity J , which is the intersection-over-union of the prediction and
ground truth, boundary accuracy F , which is the F-measure defined on con-
tour points in the prediction and ground truth, and time stability T , which
measures the smoothness of evolution of objects across video sequences. FBMS
[43] is comprised of 59 video sequences. Different from the DAVIS16 dataset,
the ground-truth of FBMS is sparsely labeled (only 720 frames are annotated).
Following the common setting [49, 68, 48], we validate the proposed method on
the testing split, which consists of 30 sequences. On the FBMS dataset, the F-
measure is used as evaluation metric. We also follow [49, 68] to report saliency
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Table 1. Quantitative results on the test set of DAVIS16, using the region similarity
J , boundary accuracy F and time stability T . For FBMS dataset, we report the F-
measusre results. The best scores are marked in bold.

DAVIS FBMS
Method Year J Mean↑ F Mean↑ T Mean↓ F-measure

TRC [10] CVPR12 47.3 44.1 39.1 -
CVOS [50] CVPR15 48.2 44.7 25.0 -
KEY [29] ICCV11 49.8 42.7 26.9 -
MSG [42] ICCV11 53.3 50.8 30.2 -
NLC [8] BMVC14 55.1 52.3 42.5 -
CUT [22] ICCV15 55.2 55.2 27.7 -
FST [44] ICCV13 55.8 51.1 36.6 69.2
ELM [26] ECCV18 61.8 61.2 25.1 -
TIS [12] WACV19 62.6 59.6 33.6 -
SFL [4] ICCV17 67.4 66.7 28.2 -
LMP [52] CVPR17 70.0 65.9 57.2 77.5
FSEG [19] CVPR17 70.7 65.3 32.8 -
UOVOS [73] TIP19 73.9 68.0 39.0 -
LVO [53] ICCV17 75.9 72.1 26.5 77.8
ARP [23] CVPR17 76.2 70.6 39.3 -
PDB [49] ECCV18 77.2 74.5 29.1 81.5
LSMO [54] IJCV19 78.2 75.9 21.2 -
MotAdapt [48] ICRA19 77.2 77.4 27.9 79.0
EpO+ [6] WACV20 80.6 75.5 19.3 -
AGS [65] CVPR19 79.7 77.4 26.7 -
COSNet [40] CVPR19 80.5 79.5 18.4 -
AGNN [61] ICCV19 80.7 79.1 33.7 -
AnDiff [68] ICCV19 81.7 80.5 21.4 81.2

Ours ECCV20 83.4 81.8 15.9 82.3

evaluations of our method on DAVIS, FBMS and a video salient object detec-
tion dataset ViSal [62] for demonstrating the robustness and wide applicability
of our method. The ViSal [62] dataset is a video salient object detection bench-
mark. The length of videos in ViSal ranges from 30 to 100 frames, and totally
193 frames are manually annotated. The whole ViSal dataset is used for evalua-
tion. We report the mean absolute error (MAE) and the F-measure on the three
datasets.
Implementation Details In the training step, following [40, 61, 49], we use
both static data from image salient object segmentation datasets, MSRA10K
[5], DUT [67], and video data from the training set of DAVIS16 to train our
model. The training process is divided into two steps. First, we use the static
training data to train our backbone encoder (DeepLabV3) to extract more dis-
criminative foreground features. The learning rate is set to 0.01 and the batch
size is 12. Then we use the DAVIS16 training data to train the whole model with
learning rate of 0.001. The batch size is set to 8. For each video sequence, we
follow [68] to select the first frame as an anchor and randomly sample one image
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Table 2. Quantitative comparison results against saliency methods using MAE and
maximum F-measure on DAVIS16 [45], FBMS [43] and ViSal [62]. The best scores are
marked in bold. * means non-deep learning model.

DAVIS16 FBMS ViSal
Methods Year MAE↓ F↑ MAE↓ F↑ MAE↓ F↑

Image

Amulet [70] ICCV17 0.082 69.9 0.110 72.5 0.032 89.4
SRM [59] ICCV17 0.039 77.9 0.071 77.6 0.028 89.0
UCF [71] ICCV17 0.107 71.6 0.147 67.9 0.068 87.0
DSS [16] CVPR17 0.062 71.7 0.083 76.4 0.028 90.6
MSR [31] CVPR17 0.057 74.6 0.064 78.7 0.031 90.1
NLDF [41] CVPR17 0.056 72.3 0.092 73.6 0.023 91.6
DCL [33] CVPR16 0.070 63.1 0.089 72.6 0.035 86.9
DHS [37] CVPR16 0.039 75.8 0.083 74.3 0.025 91.1
ELD [28] CVPR16 0.070 68.8 0.103 71.9 0.038 89.0
KSR [60] ECCV16 0.077 60.1 0.101 64.9 0.063 82.6
RFCN [58] ECCV16 0.065 71.0 0.105 73.6 0.043 88.8

Video

FGRNE [32] CVPR18 0.043 78.6 0.083 77.9 0.040 85.0
FCNS [63] TIP18 0.053 72.9 0.100 73.5 0.041 87.7
SGSP* [38] TCSVT17 0.128 67.7 0.171 57.1 0.172 64.8
GAFL* [62] TIP15 0.091 57.8 0.150 55.1 0.099 72.6
SAGE* [64] CVPR15 0.105 47.9 0142 58.1 0.096 73.4
STUW* [9] TIP14 0.098 69.2 0.143 52.8 0.132 67.1
SP* [39] TCSVT14 0.130 60.1 0.161 53.8 0.126 73.1
PDB [49] ECCV18 0.030 84.9 0.069 81.5 0.022 91.7
AnDiff [68] ICCV19 0.044 80.8 0.064 81.2 0.030 90.4

Ours ECCV20 0.018 89.9 0.054 83.3 0.017 92.7

as the training example. The model is trained with binary cross-entropy loss.
Network parameters are optimized via stochastic gradient descent with weight
decay 0.0001. We adopt the “poly” learning rate policy where the initial learning
rate is multiplied by (1− iter

max iter )power with power = 0.9. Raw predictions are
upsampled via bilinear interpolation to the size of the ground-truth masks. In
the inference step, multiscale and mirrored inputs are employed to enhance
the final performance. The final heatmap is the mean of all output heatmaps.
Thresholding at 0.5 produces the final binary labels. We also follow [68] to adopt
instance pruning as a post-processing method.
Experimental Results In Table 1, we evaluate DFNet against state-of-the-

art unsupervised VOS methods on the DAVIS16 public leaderboard. DFNet at-
tains the highest performance among all unsupervised methods on the DAVIS16
validation set, while also achieving a new state-of-the-art on the FBMS test
set. In particular, on DAVIS16 we outperform the second-best method (AnDiff
[68]) by an absolute margin of 21.7% in the region similarity J and 1.3% in
the boundary accuracy F . For the temporal stability T , our method shows a
more stable result over the video sequences by a large margin of 2.5 than the
second-best method COSNet [40]. We also outperform state-of-the-art method
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Fig. 4. Quantitative comparison against other methods using PR curve on DAVIS16
[45], FBMS [43] and ViSal [62] datasets.

Fig. 5. The visual results generated by our approach on the DAVIS16 dataset. From
the first row to the last row, the corresponding video names are camel, car-roundabout
and dance-twirl respectively.

AnDiff [68] by 1.1% in F-measure on the FBMS dataset.
We also report the results on salient object detection for DAVIS16, FBMS and

ViSal datasets as shown in Table 2. It can be observed that the proposed method
improves state-of-the-art for all the three datasets for standard saliency scores,
showing consistency with Table 1. The largest improvements lie in DAVIS16,
where both MAE and F-measure significantly outperform previous records. Es-
pecially for the F-measure, we outperform the second-best result by a significant
margin of 9.1%. The precision-recall analysis of DFNet is presented in Figure
4, where we demonstrate that our approach generally outperforms also exist-
ing salient object detection methods. DFNet achieves superior performance in
all regions of the PR curve on the DAVIS validation set, maintaining signifi-
cantly higher precision at all recall thresholds. On the challenging FBMS test
set, DFNet shows inferior precision results than SP [39]at the recall threshold
from 0.93 to 0.97 and FGRNE [32] from 0.94 to 0.95. But overall speaking,
DFNet maintains a clear advantage compared with all other methods. On the
ViSal dataset, it is noteworthy that the precision is higher than the other meth-
ods at nearly all recall thresholds, except for the AnDiff [68] at the threshold
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Ours AnDiffGroundtruth COSNetAGNN

Ours AnDiffGroundtruth COSNetAGNN

Ours AnDiffGroundtruth COSNetAGNN

Fig. 6. Qualitative comparison with state-of-the-art methods (AnDiff [68], AGNN [61]
and COSNet [40]) on DAVIS16 dataset.
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Table 3. The performance of object co-segmentation on the PASCAL-VOC dataset
under Jaccard index and Precision. The numbers in red and green respectively indicate
the best and the second best results.

Method Faktor13 [7] Lee15 [27] Chang15 [1] Hati16 [14] Quan16 [46] Jerri.16 [21] Wang17 [57] Jerri.17 [20] Han18 [13] Hsu18 [17] Li19 [30] Ours

Avg. P 84.0 69.8 82.4 72.5 89.0 85.2 84.3 80.1 90.1 91.0 94.1 95.2
Avg. J 0.46 0.33 0.29 0.25 0.52 0.45 0.52 0.40 0.53 0.60 0.63 0.69

Fig. 7. The co-segment results generated by our approach on the PASCAL-VOC
dataset. From the first row to the last row, the classes are cat, train and person re-
spectively.

from 0.98 to 0.99. All in all, the superiority of the proposed method is verified
through the comparison of the PR curves.

As shown in Figure 5, we visualize some qualitative results of the DAVIS16
dataset. We can see that the proposed method can locate the primary region
or target tightly by leveraging DFM and ATM with CRF to model long-term
denpendency. The primary objects from the cluttered background are segmented
out correctly. We also present the visual comparison results between DFNet and
COSNet [40], AGNN [61] and AnDiff [68] in Figure 6. In can be observed that the
results of DFNet are more accurate and complete than the other three methods.

4.2 Image Object Co-segmentation Task

Dataset and Evaluation Metric The PASCAL-VOC [7] is a well-known
dataset often used in image object co-segmentation task, which contains to-
tal 1,037 images of 20 object classes from PASCAL-VOC 2010 dataset. The
PASCAL-VOC dataset is challenging and difficult due to extremely large intra-
class variations and subtle figure-ground discrimination. Following previous works
[7, 27, 1, 21, 30], two widely used measures, precision (P) and Jaccard index (J ),
are adapted to evaluate the performance of object co-segmentation.
Implementation Details We follow [56, 30] to train the proposed network with
generated training data from the existing MS COCO dataset [36]. The learning



DFNet for Unsupervised Video Object Segmentation 13

Table 4. Ablation study on DAVIS16 with different components used and different
numbers of D-features adopted. We also compare the performance for different numbers
of input images on DAVIS16 and PASCAL VOC.

Method Baseline +DFM&ATM +ATM&CRF +multiple scales +I.Prun.
J mean (%) 76.7 79.5 80.4 81.1 83.4

D-features

K 128 256 512 1024 2048
J mean (%) 78.3 79.0 79.4 79.7 80.4

Input images (DAVIS16)

N in 1 2 4 8 10
J mean (%) 79.4 80.1 80.4 80.4 80.4

Input images (PASCAL VOC)

N in 1 2 4 8 10
Avg.J (%) 61.4 63.5 65.0 65.4 65.4

rate is set to 0.01 and batch size is 12. For each group images, we randomly se-
lect three images as one training example. Other training setups are the same as
those in previous unsupervised VOS task. After training, we evaluate the perfor-
mance of our method on the PASCAL VOC dataset. When processing an image,
we leverage another 4 images belonging to the same group to form a subgroup
as inputs. We adopt a threshold 0.5 to generate final binary masks.
Experimental Results We compare our methods with state-of-the-art meth-
ods on the PASCAL VOC dataset. As shown in Table 3, although the objects
of the PASCAL VOC dataset undergo drastic variation in scale, position and
appearance, our method improves upon the second-best results [30] by mar-
gins 1.1% and 6% in terms of P and J respectively. We also present some co-
segmentation results of the proposed method in Figure 7. It can be seen that our
method can generate promising object segments under different types of intra-
class variations, such as colors, sharps, views, scales and background clutters.

4.3 Ablation Study

To verify the effectiveness of the proposed method, we conduct ablation experi-
ments on DAVIS16 and PASCAL VOC. As shown in Table 4, the detailed results
are reported for different experimental setup. We adopt the DeepLabv3 as the
baseline, which is trained on the static image dataset, and achieve 76.7% in
terms of J . After adding the proposed DFM and ATM into the network, the
performance increase to 79.5%, which validates the usefulness of modeling the
long-term dependency. We then adopt CRF to optimize the attention map by
considering the smoothness and consistency, which improves the performance
by 0.9%. Multiple-scale inference and instance pruning (I.Prun.) are also used
by following [68]. At last, we obtain the highest score of 83.4% in terms of the
region similarity J , which outperforms state-of-the-art methods. By adopting
different numbers of D-features, we can see that better results can be obtained
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Table 5. The number of model parameters and inference time comparison with state-
of-the-art methods.

Method COSNet [40] AGNN [61] AnDiff [68] Ours

# Parmeter (M) 81.2 82.3 79.3 64.7

Inf. Time (s/image) 0.45 0.53 0.35 0.28

with more discriminative features used. We also evaluate the impact of the num-
ber of input images during inference, and we report performance with different
values of N in on DAVIS16 and PASCAL VOC datasets. For DAVIS16, we can
see the performance increases by adding more input frames from 1 to 4 and then
keep stable. It can be observed that with more input images, especially from 1
to 8, the performance raises accordingly on PASCAL VOC. When more images
are considered, the performance does not change obviously.

4.4 Model Analysis

In Table 5, we report the comparison with state-of-the-art methods on the num-
ber of network parameters and inference time on DAVIS16. We can observe that
DFNet reduces the model complexity with fewer parameters compared with
COSNet [40], AGNN [61] and AnDiff [68]. For the inference comparison, we
run the public code of other methods and our code on the same machine with
NVIDIA GeForce GTX 1080 Ti. The inference time includes the image loading
and pre-processing time. In can be seen that our method shows a faster speed
than these methods.

5 Conclusion

To model the long-term dependency of video images, we propose a novel DFNet
to capture the relations among video frames and infer the common foreground
objects in this paper. It extracts the discriminative features from the input im-
ages, which can describe the feature distribution from a global view. An attention
module is then adopted to mine the correlations between the input images. The
smoothness and consistency of the attention map are also considered, in which
the attention mechanism is formulated as a classification problem and solved
by CRF. The extensive experiments validate the effectiveness of the proposed
method. In addition, we also apply the method to image object co-segmentation
task. The quantitative evaluation of the challenging dataset PASCAL VOC
demonstrates the advantage of DFNet.
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