1 Supplementary

1.1 Target-to-source Translation

Inspired by image-to-image translation networks [24, 14], existing domain adap-
tation methods [1,17,13] translate images from the source domain to the target
domain (source-to-target) to reduce pixel-level domain discrepancy. This is
achieved by an unsupervised image translation model F~! such as CycleGAN
[24] to learn a mapping F~! : Xy — X;. However, such strategy introduces
inevitable bias to the translated images F~!(X;), stemming from that F—1(X;)
and A} cannot be guaranteed to follow the exactly identical distribution through
the adversarial learning [8]. This problem can get even worse in the source-to-
target translation, as |Xs| > |X;| in most of domain adaptation problems. For
example, GTA5 [19] (i.e., Xs) contains 24,966 images, while Cityscapes (i.e., X})
[7] has only 2,975 images. As a consequence, F~!(X) contains massive amounts
of translation bias which will further induces negative effects when adapting
domain knowledge between F~1(X;) and X;. To alleviate this problem, for the
first time, we translate images from the target domain to the source domain
through the mapping F : X; — X, (where F is the reverse function of F~1).
X, and F(X;) are then used for further domain knowledge transfer. Doing so
significantly reduces the translation bias in the translated images F(AX;) and
is much more computationally efficient than the source-to-target translation.
Another advantage is that the segmentation network can be trained using original
source images X5 and their corresponding labels.

1.2 Network Architecture

The three multi-scale discriminators (i.e., D1, Dy, and D3) used in our recon-
struction model follow the identical network architecture. Each of them is a
70 x 70 PatchGAN [10] containing five convolution layers with kernel number {64,
128, 256, 512, 1}. The kernel size for each layer is 4 x 4. The first three layers
use stride 2, while the last two layers with stride 1. A leaky ReLLU parameterized
by 0.2 is applied to the first four layers. We also apply BatchNorm to each layer,
except the first and last one.

1.3 Implementation Details

For multi-scale discriminators, Adam optimizer with initial learning rate 2 x 1074
and momentum { 0.5, 0.999} are used in our study. The learning rate is linearly
decayed to zero with step size 100.

1.4 mlIoU Gap

We investigate our model’s ability in narrowing the mloU gap between the
model (Oracle) that is trained in a fully-supervised matter. Compared to existing
state-of-the-art methods, we significantly recover the performance loss based



Table 1. A performance comparison of our method with other state-of-the-art models
on ”GTAb5 to Cityscapes”. The performance is measured by the mloU gap between each
model and the fully-supervised model (Oracle). Two base architectures, i.e., VGG16
(V) and ResNet101 (R) are used in our study.

GTAB5 — Cityscapes

| Base | mIoU Gap | Oracle

Source only R -28.5 65.1
SIBAN [15] R -22.5 65.1
CLAN [16] R -21.9 65.1
DISE [2] R -19.7 65.1
IntraDA [18] R -18.8 65.1
BDL [13] R -16.6 65.1
CrCDA [9] R -16.5 65.1
SIM [22] R -15.9 65.1
Kim et al. [11] R -14.9 65.1
FDA-MBT [23] R -14.65 65.1
Ours | R | -15.6 | 651
Source only v -46.7 64.6
SIBAN [15] \4 -26.1 60.3
ASN [20] v -25.2 61.8
CyCADA [1] v -24.9 60.3
CLAN [16] \4 -23.7 60.3
CrDoCo [5] v -22.2 60.3
CrCDA [9] v -22.7 61.8
BDL [13] v -19.0 60.3
FDA-MBT [23] Y -18.1 60.3
Kim et al. [11] v -18.0 60.3
SIM [22] v -17.9 60.3
Ours | v -16.8 | 60.3

on the ResNet101 backbone on GTA5 to Cityscapes. Although we are inferior
to [11, 23] which are published simultaneously with our work, we outperforms
these two methods on VGG16-based backbone by a large margin (Table 1).
Similar improvements can also be observed on the adaptation from SYNTHIA to
Cityscapes as shown in Table 2.

1.5 Qualitative Comparison

GTA5— Cityscapes As shown in Figure 1, we present the qualitative compar-
ison in Cityscapes based on the VGG16 model from GTA5—Cityscapes. Our
results reveal the effectiveness of target-to-source translation and joint distribution
alignment in adapting cross-domain knowledge.

SYNTHIA — Cityscapes The qualitative comparison for ResNet101 and VGG16
model from SYNTHIA— Cityscapes are showcased in Figure 2 and Figure 3,
respectively. Similarly, each component in our framework contributes to the
overall performance improvement.



Table 2. A performance comparison of our method with other state-of-the-art models
on "SYNTHIA to Cityscapes”. The performance is measured by the mIoU gap between
each model and the fully-supervised model (Oracle). Two base architectures, i.e., VGG16
(V) and ResNet101 (R) are used in our study.

SYNTHIA — Cityscapes

| Base | mIoU Gap | Oracle

Source only R — —
ASN [20] R -25.0 71.7
DISE [2] R -22.9 71.7
IntraDA [18] R -22.8 71.7
Kim et al. [11] R -22.4 71.7
DADA [21] R -21.9 71.7
CrCDA [9] R -21.7 71.7
BDL [13] R -20.3 71.7
SIM [22] R -19.6 71.7
FDA-MBT [23] R -19.2 717
Ours | R | -18.6 | 717
CrCDA [9] v -28.9 64.1
ROAD-Net [4] v -27.6 64.1
SPIGAN [12] v -22.7 59.5
GIO-Ada [3] v -26.8 64.1
TGCF-DA [6] v -25.6 64.1
BDL [13] \4 -20.5 59.5
FDA-MBT [23] v -19.0 59.5
Ours | v | -18.4 | 595

Image Ground Truth Source-to-Target +Target-to-Source +Reconstruction  Reconstructed Image

Fig.1. Qualitative examples of semantic segmentation results in Cityscapes
(GTA5—Cityscapes with VGG16). For each target-domain image (first column), its
ground truth and the corresponding segmentation output from the baseline model
(source-to-target) are given. The following are predictions of our method by incorpo-
rating target-to-source translation and reconstruction, together with the reconstructed
image.



Image Ground Truth Source-to-Target +Target-to-Source +Reconstruction  Reconstructed Image

Fig. 2. Qualitative examples of semantic segmentation results in Cityscapes
(SYNTHIA—Cityscapes with ResNet101). For each target-domain image (first col-
umn), its ground truth and the corresponding segmentation output from the baseline
model (source-to-target) are given. The following are predictions of our method by incor-
porating target-to-source translation and reconstruction, together with the reconstructed
image.

Image Ground Truth Source-to-Target +Target-to-Source +Reconstruction  Reconstructed Image

Fig.3. Qualitative examples of semantic segmentation results in Cityscapes
(SYNTHIA—Cityscapes with VGG16). For each target-domain image (first column),
its ground truth and the corresponding segmentation output from the baseline model
(source-to-target) are given. The following are predictions of our method by incorpo-
rating target-to-source translation and reconstruction, together with the reconstructed
image.
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