
Supplementary Material:
Attributional Robustness Training using

Input-Gradient Spatial Alignment

Our supplementary material is organized as follows: In Section S1, we pro-
vide dataset and implementation details for training ART models. We also show
ablation studies related to attributional robustness which includes testing attri-
butional robustness of ART model on different values of ε. Section S2 describes
dataset and implementation details for weakly supervised object localization
task. Also, we provide qualitative results on this task. In Section S3, we perform
additional analysis of adversarial vulnerability for ART model.

The code for our proposed methodology (ART ) is available at:
https://github.com/nupurkmr9/Attributional-Robustness.

S1 Attributional Robustness: Additional Details and
Results

In this section, we provide details of the datasets as mentioned in the main paper
(Section 4.1), as well as some additional results on attributional robustness.

We qualitatively show in Figure S1 that attribution maps generated via ART
are robust to attribution manipulation unlike Natural model. We also report the
Top-1000 Intersection and Kendall’s Correlation between original and perturbed
saliency maps for ART and Natural models. We use target attribution attack as
mentioned in [4] to perturb the attributions while keeping the predictions same.
For images in Figure S1, the model predictions are correct and the attribution
maps are computed using Integrated Gradient [17]. We observe that attributions
of the Natural model are visually and quantitatively fragile as attributions are
easily manipulated to resemble target attribution map that is present in the
rightmost column of the figure. However, it can seen from the figure that ART
models show high robustness to attribution manipulations.

S1.1 Choice of optimization objective Lattr and its variants

Our choice for the loss function was based on the empirical analysis as reported
in table 1 on CIFAR-10. We empirically observed that instead of directly min-
imizing `2 distance between x and gy(x) in Equation 4 of main paper, cosine
distance led to better robustness. We believe this is because cosine avoids scale
mismatch issues in x and gy(x) magnitudes. The triplet loss is only introduced to
improve performance on attributional robustness objective. For negative sample
selection, we choose i∗ as second most likely class, which represents most un-
certainty, following standard principles of hard negative mining in triplet loss
[7,14]. For other choices of i∗ , we observed a performance drop.

https://github.com/nupurkmr9/Attributional-Robustness
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Fig. S1: Targeted attribution attack [4] using integrated gradient (IG) attribution map
on Natural and ART trained model. Top-1000 intersection and Kendall correlation
between IG attribution map of original and perturbed images is shown below each
image. The target attribution manipulation uses the attribution map as depicted in
the rightmost column of this figure.
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Table 1: Comparison of different loss functions used as the objective function for
increasing attributional robustness on CIFAR-10

Optimization Objective
Attributional Robustness

Test Accuracy
Adversarial
AccuracyIN K

Equation 2 74.78 71.40 91.34 15.15

Equation 4 : `2 distance 68.41 69.75 91.66 16.64

Equation 4 : Cosine distance 91.25 89.28 89.21 35.95

Equation 5 : ART
with i∗=argmin(logit)

90.75 83.32 89.94 37.93

Equation 5 : ART (ours) 92.90 91.76 89.84 37.50

S1.2 Cosine distance in Lattr loss

Following our discussion in Sec 3.2 of the main paper, we now elaborate on the
relation of cosine distance in a unit `2-norm surface of vectors with Euclidean
distance. We show below that squared Euclidean distance is proportional to
the cosine distance for unit `2 norm space of vectors. Euclidean distance is a
valid distance function and follows the triangle inequality which we use in Eqn
3 for obtaining the upper bound on attributional robustness as a function of the
distance between an image and its attribution map.
Given two vectors x and x̃, with unit `2 norm i.e. ||x||2 = 1 and ||x̃||2 = 1, cosine
distance between them is related to their Euclidean distance as follows:

(||x− x̃||2)2 = (x− x̃)>.(x− x̃)

= x>x+ x̃>x̃− 2.x>.x̃

= ||x||2 + ||x̃||2 − 2.x>.x̃ = 1 + 1− 2.x>.x̃

= 2(1− x>.x̃) = 2.CosineDistance(x, x̃)

(1)

S1.3 Dataset and Implementation Details

Below, we describe the datasets and hyper-parameters used for experiments,
which we could not include in the main paper owing to space constraints.

SVHN
Data and Model: SVHN dataset [12] consists of images of digits obtained from
house numbers in Google Street View images, with 73257 digits for training and
26032 digits for testing over 10 classes. We perform experiments on SVHN using
WideResNet-40-2 [19] architecture for training on reported approaches.

Hyperparameters for Training:
Natural: We use SGD optimizer with an initial learning rate of 0.1, momentum
of 0.9, l2 weight decay of 2e−4 and batch size of 256. We train it for 200 epochs
with a learning rate schedule decay of 0.1 at 50th, 80th and 0.5 at 150th epoch.
PGD-7: We use the training configuration as in [10] to perform 7-step adversarial
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training with ε = 8/255 and step size 2.5/255.
ART: We use the same training configuration as mentioned for Natural model,
β = 50 and λ = 0.5. We calculate x̃ using ε = 8/255, step size 1.5/255 and
number of steps a = 3.

CIFAR-10
Data and Model: CIFAR-10 dataset [8] consists of 50000 training images for 10
classes with resolution of 32 × 32 × 3. We normalize the images with its mean
and standard deviation for training. We train a WideResNet28-10 [19] model for
all the experiments on this dataset.

Hyperparameters for Training:
Natural: We use SGD optimizer with an initial learning rate of 0.1, momentum
of 0.9, l2 weight decay of 2e−4 and batch size of 256. We train it for 100 epochs
with a learning rate schedule decay of 0.1 at 50th, 80th and 0.5 at 150th epoch.
PGD-10: We use the training configuration as mentioned in [10] to perform 10-
step adversarial training with ε = 8/255 and step size 2/255.
ART: We use the same training configuration as mentioned for Natural model
with β = 50 and λ = 0.5. We calculate x̃ using ε = 8/255, step size 1.5/255 and
number of steps a = 3.

GTSRB
Data and Model: German Traffic Signal Recognition Benchmark [16] consists of
43 classes of traffic signals with 34, 799 training images, 4, 410 validation images
and 12, 630 test images. We resize the images to 32 × 32 × 3 and normalize
the images with its mean and standard deviation for training. To balance the
number of images for each class, we use data augmentation techniques consisting
of rotation, translation, and projection transforms to extend the training set to
10, 000 images per class as in [2]. We train WideResNet28-10 [19] model for
carrying out experiments related to this dataset.

Hyperparameters for Training:
Natural: We use SGD optimizer with an initial learning rate of 0.1, momentum
of 0.9, l2 weight decay of 2e−4 and batch size of 128. We train it for 12 epochs
with a learning rate schedule decay of 0.1 at 4th, 6th and 0.5 at 10th epoch.
PGD-7: We use the training configuration same as [2] to perform 7-step adver-
sarial training with ε = 8/255 and step size 2/255.
IG Norm and IG-Sum Norm [2]: We report the accuracy as mentioned in the
paper [2].
ART: We use the same training configuration as mentioned for Natural model
with β = 50 and λ = 0.5. We calculate x̃ using ε = 8/255, step size 1.5/255 and
number of steps a = 3.

Flower
Data and Model: Flower dataset [13] has 17 categories with 80 images for each
class. We resize the images to 128× 128× 3 and normalize it with its mean and
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standard deviation for training. The training set consists of 1, 224 images with
72 images per class. The test set compromises of 136 images with 8 images per
class. We use standard data augmentation techniques of rotation, translation,
and projection transforms to extend the training data so that each class contains
1, 000 training examples as proposed in [2]. We use WideResNet28-10 [19] model
for the reported approaches.

Hyperparameters for Training:
Natural: We use SGD optimizer with an initial learning rate of 0.1, momentum
of 0.9, l2 weight decay of 2e−4 and batch size of 128. We train it for 68 epochs
with a learning rate schedule decay of 0.1 at 15th, 35th and 0.5 at 50th epoch.
PGD-7[9]: We use the training configuration as mentioned in [10] to perform
7-step adversarial training with ε = 8/255 and step size 2.5/255.
IG Norm and IG-Sum Norm [2] : We report the accuracy as mentioned in the
paper [2].
ART: We use the same training configuration as mentioned for Natural model
with λ = 0.5 and β = 50. We calculate x̃ using ε = 8/255, step size 1.5/255 and
number of steps a = 3.

Attack Methodology and Evaluation
For evaluation, we perform the Top-K variant of Iterative Feautre Importance
Attack (IFIA) proposed by [5]. Feature importance function is taken as Inte-
grated Gradients [17], and dissimilarity function is Kendall Correlation. The
hyperparameters used are the same as in [2] i.e. for CIFAR-10, SVHN and GT-
SRB datasets, k in top-k is 100, ε is 8/255, number of steps is 50 and step-size
is 1/255. For the Flowers dataset, k is 1000, ε is 8/255, number of steps is 100
and step-size is 1/255. We also show the comparison by varying ε on CIFAR-10
dataset in Section S1.4. Evaluation is also similar to [2] using Top-k intersection
and Kendall correlation measure and we report both numbers as percentage val-
ues. For Top-k intersection, k is 100 for CIFAR-10, SVHN and GTSRB datasets,
and 1000 for Flowers dataset.

S1.4 Additional Analysis on CIFAR-10

Attributional Robustness: In Fig S2, we show the variance box plot of Kendall
Correlation and Top-k Intersection with ε = 8/255 for Natural, ART and PGD-
10 [9] models on CIFAR-10. ART has higher attributional robustness with the
least variance as compared to other approaches across 1000 samples randomly
selected from the test dataset. We also measure the attributional robustness of
models on varying ε to the standard values of 2/255, 4/255, 8/255 and 12/255 in
the attack methodology as explained in Section S1.3. Figure S3 shows the Top-k
Intersection and Kendall correlation measure for the same. We can see that ART
outperforms PGD-10 and Natural model over all choices of ε.
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Fig. S2: Variance box plot of Attributional Robustness measure for different models
on Kendall Correlation (left) and Top-k Intersection (right) for 1000 test samples of
CIFAR-10

Fig. S3: Attributional robustness on varying ε for ART, PGD-10 and Natural models
on CIFAR-10

S2 Weakly Supervised Localization: More Details and
Results

In this section, we provide more details of the dataset used for the results pre-
sented in the main paper on weakly supervised localization (Section 4.2), as well
as more qualitative examples for these experiments.

S2.1 Dataset and Implementation Details

We begin by describing the dataset used in experiments for weakly supervised
localization, which we could not include in the main paper owing to space con-
straints.
Dataset and Model: CUB-200 [18] is an image dataset of 200 different bird
species (mostly North American) with 11, 788 images in total. The information
as a bounding box around each bird is also available. We finetune a ResNet-50
[6] model pre-trained on ImageNet for the reported approaches as in [3].
Hyper-parameters for training
Natural: We use SGD optimizer with an initial learning rate of 0.01, momentum
of 0.9 and l2 weight decay of 1e−4. We train the model for 200 epochs with
batch size 128 and learning rate decay of 0.1 at every 60 epochs.
PGD-7 [9]: We use same hyper-parameters as natural training with ε = 2/255.
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Fig. S4: Examples of estimated bounding box and heatmap by ResNet50 model trained
via our approach on randomly chosen images of CUB dataset; Red bounding box is
ground truth and green bounding box corresponds to the estimated box

Fig. S5: `∞ and `2 adversarial robustness on varying ε of ART, PGD-10 and Natural
model on CIFAR-10

and step size = 0.5/255. for calculating adversarial examples.
ART: We use SGD optimizer with an initial learning rate of 0.01, momentum
of 0.9 and l2 weight decay of 1e−4. We decay the learning rate by 0.1 at every
40 epoch till 200 epochs and train with a batch size of 90. While calculating
Lattr loss, we took mean over channels of images and gradients. Values of other
hyper-parameters are ε = 2/255, step size = 1.5/255, a = 3, λ = 0.5 and β = 50.

S2.2 Qualitative Analysis

Figure S4 shows the estimated bounding box and heatmap derived from gradient
based attribution [15] on randomly sampled images for ResNet50 model trained
via our approach. We observe that the estimated bounding box sometimes does
not capture the complete object in cases where birds have extended wings, or
the bird is in an occluded area with branches and twigs. Although, we observe
qualitatively that this issue also exists for other models [3].

S3 Adversarial Robustness: Ablation Studies

In this section, we provide additional ablation results on adversarial robustness
for the CIFAR-10 dataset.
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Table 2: Comparison of Adversarial accuracy of different baseline models using
transfer-based black-box attacks on CIFAR-10

Training Approach
Adversarial perturbation

created using
Clean Test
Accuracy

Natural PGD-10 ART

Natural 0.00 80.35 49.09 95.26
PGD-10 86.44 44.07 71.34 87.32

ART 88.45 72.72 37.58 89.84

Adversarial Robustness on `∞ and `2 PGD Perturbations with Vary-
ing ε To analyze the adversarial robustness of ART model, we report and com-
pare accuracy of the ART model and the PGD-10 adversarially trained model
over `∞ and `2 PGD perturbations for different values of ε on CIFAR-10. In Fig-
ure S5, we can observe that ART adversarial robustness for `∞ perturbations
is similar to PGD-10 for ε less than 4/255 and better for various values of `2
perturbations.

Transfer-based black-box attacks We analyse the adversarial robustness of
ART models on transfer-based black box attacks. Specifically, we compute the
adversarial perturbations on the test set of CIFAR-10 for different baseline mod-
els and evaluate its adversarial accuracy on ART. We see that the transfer of
adversarial perturbation from ART is much better than PGD-10 on Natural
model. ART also shows higher robustness than PGD-10 for transfer attack from
Natural model as reported in table 2.

Comparison with other training techniques for adversarial robustness:
We consider JARN [1] and CURE [11], which are recently proposed training tech-
niques for adversarial robustness that are different from adversarial training [9].
We compare the adversarial robustness of these techniques with ART on CIFAR-
10 dataset using a `∞ PGD-20 adversarial perturbation with ε = 8/255. JARN,
CURE and ART show adversarial accuracy of 15.5%, 41.4% and 37.73% respec-
tively and test accuracy of 93.9%, 83.1% and 89.84% respectively.

Using Lattr +Lce to Compute Perturbations x̃ With the motive to combine
the benefits from attributional and adversarial robust models, we augment the
loss function of our approach with adversarial loss [9]. We observe that the model
achieves test accuracy of 85.33 and adversarial accuracy of 52.31 on PGD-40 `∞
attack with ε = 8/255 as compared to the PGD-10 model which has 87.32 test
accuracy and 44.07 adversarial accuracy. The attributional robustness measure
of Top-k intersection and kendall correlation using Integrated Gradients is 74.24
and 77.86 which is less than the attributional robustness of ART model but is
∼ 5% better than PGD-10 model.
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