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Abstract. Interpretability is an emerging area of research in trustwor-
thy machine learning. Safe deployment of machine learning system man-
dates that the prediction and its explanation be reliable and robust.
Recently, it has been shown that the explanations could be manipulated
easily by adding visually imperceptible perturbations to the input while
keeping the model’s prediction intact. In this work, we study the prob-
lem of attributional robustness (i.e. models having robust explanations)
by showing an upper bound for attributional vulnerability in terms of
spatial correlation between the input image and its explanation map. We
propose a training methodology that learns robust features by minimiz-
ing this upper bound using soft-margin triplet loss. Our methodology
of robust attribution training (ART ) achieves the new state-of-the-art
attributional robustness measure by a margin of ≈ 6-18 % on several
standard datasets, ie. SVHN, CIFAR-10 and GTSRB. We further show
the utility of the proposed robust training technique (ART ) in the down-
stream task of weakly supervised object localization by achieving the new
state-of-the-art performance on CUB-200 dataset.

Keywords: Attributional robustness; Adversarial robustness; Explain-
able deep learning

1 Introduction

Attribution methods [9, 45, 51, 48, 47, 54, 46] are an increasingly popular class of
explanation techniques that aim to highlight relevant input features responsible
for model’s prediction. These techniques are extensively used with deep learning
models in risk-sensitive and safety-critical applications such as healthcare [4, 32,
56, 24], where they provide a human user with visual validation of the features
used by the model for predictions. In computer-assisted diagnosis, [56] showed
that predictions with attribution maps increased accuracy of retina specialists
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Fig. 1: Illustration of targeted manipulation [12] of attribution maps on CUB-200 [61]
using the target attribution of (a). Here, (b) Integrated Gradients [54], (c) Grad-
CAM++ [9] and (d) GradSHAP [29] blocks show : Top (b), (c), (d) original image
and its attribution map; Bottom (b), (c), (d) perturbed image and its attribution map.

above that of unassisted reader or model alone. In [24], the authors improve the
analysis of skin lesions by leveraging explanation maps of prediction.

It has been recently demonstrated that one could construct targeted [12]
and un-targeted perturbations [16, 10] that can arbitrarily manipulate attribu-
tion maps without affecting the model’s prediction. This issue further weakens
the cause of safe application of machine learning algorithms. We show an illus-
trative example of attribution-based attacks for image classifiers over different
attribution methods in Fig. 1. This vulnerability leads to newer challenges for
attribution methods, as well as robust training techniques. The intuition of at-
tributional robustness is that if the inputs are visually indistinguishable with the
same model prediction, then interpretation maps should also remain the same.

As one of the first efforts, [10] recently proposed a training methodology that
aims to obtain models having robust integrated gradient [54] attributions. In
addition to being an early effort, the instability of this training methodology, as
discussed in [10], limits its usability in the broader context of robust training in
computer vision. In this paper, we build upon this work by obtaining an upper
bound for attributional vulnerability as a function of spatial correlation between
the input image and its explanation map. Furthermore, we also introduce a
training technique that minimizes this upper bound to provide attributional
robustness. In particular, we introduce a training methodology for attributional
robustness that uses soft-margin triplet loss to increase the spatial correlation
of input with its attribution map. The triplet loss considers input image as the
anchor, gradient of the correct class logit with respect to input as the positive and
gradient of the incorrect class with highest logit value with respect to input as the
negative. We show empirically how this choice results in learning of robust and
interpretable features that help in other downstream weakly supervised tasks.

Existing related efforts in deep learning research are largely focused on ro-
bustness to adversarial perturbations [17, 55], which are imperceptible pertur-
bations which, when added to input, drastically change the neural network’s
prediction. While adversarial robustness has been explored significantly in re-
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cent years, there has been limited progress made on the front of attributional
robustness, which we seek to highlight in this work. Our main contributions can
be summarized as:

– We tackle the problem of attribution vulnerability and provide an upper
bound for it as a function of spatial correlation between the input and its
attribution map [48]. We then propose ART, a new training method that
aims to minimize this bound to learn attributionally robust model.

– Our method outperforms prior work and achieves state-of-the-art attribu-
tional robustness on Integrated Gradient [54] based attribution method.

– We show that the proposed methodology also induces immunity to adversar-
ial perturbations and common perturbations [20] on standard vision datasets
that is comparable to the state-of-the-art adversarial training technique [31].

– We show the utility of ART for other computer vision tasks such as weakly
supervised object localization (WSOL) and segmentation. Specifically, ART
achieves state-of-the-art performance in WSOL task on CUB-200 [61] dataset.

2 Related Work

Our work is associated with various recent development made in the field of ex-
planation methods, robustness to input distribution shifts and weakly supervised
object localization. We hence describe earlier efforts in these directions below.

Visual Explanation Methods: Various explanation methods have been pro-
posed that focus on producing posterior explanations for the model’s decisions.
A popular approach to do so is to attribute the predictions to the set of input fea-
tures [48, 52, 47, 54, 46, 6]. [69, 13] provide a survey of interpretation techniques.
Another class of explanation methods, commonly referred to as attribution tech-
niques, can be broadly divided into three categories - gradient/back-propagation,
propagation and perturbation based methods. Gradient-based methods attribute
an importance score for each pixel by using the derivative of a class score with
respect to input features [48, 47, 54]. Propagation-based techniques [6, 46, 67]
leverage layer-wise propagation of feature importance to calculate the attribution
maps. Perturbation-based interpretation methods generate attribution maps by
examining the change in prediction of the model when the input image is per-
turbed [65, 40, 41]. In this work, we primarily report results on the attribution
method of Integrated Gradients IG [54] that satisfies desirable axiomatic prop-
erties and was also used in the previous work [10].

Robustness of Attribution Maps: Recently, there have been a few efforts
[70, 16, 12, 10, 3] that have explored the robustness of attribution maps, which
we call attributional robustness in this work. The authors of [16, 12, 70] study
the robustness of a network’s attribution maps and show that the attribution
maps can be significantly manipulated via imperceptible input perturbations
while preserving the classifier’s prediction. Recently, Chen, J. et al.[10] proposed
a robust attribution training methodology, which is one of the first attempts at
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making an image classification model attributionally robust and is the current
state of the art. The method minimizes the norm of difference in Integrated
Gradients [54] of an original and perturbed image during training. In this work,
we approach the problem from a different perspective of maintaining spatial
alignment between an image and its saliency map.

Adversarial Perturbation and Robustness: Adversarial attacks can be
broadly categorized into two types: White-box [33, 31, 8, 62] and Black-box
attacks [22, 58, 2, 39]. Several proposed defense techniques have been shown
to be ineffective to adaptive adversarial attacks [5, 28, 8, 7]. Adversarial train-
ing [18, 31, 50], which is a defense technique that continuously augments the
data with adversarial examples while training, is largely considered the current
state-of-the-art to achieve adversarial robustness. [66] characterizes the trade-off
between accuracy and robustness for classification problems and propose a regu-
larized adversarial training method. Prior works have also attempted to improve
adversarial robustness using gradient regularization that minimizes the Frobe-
nius norm of the Hessian of the classification loss with respect to input[42, 34, 30]
or weights [23]. For a comprehensive review of the work done in the area of ad-
versarial examples, please refer [63, 1].

We show in our work that in addition to providing attributional robustness,
our proposed method helps in achieving performance gain on downstream task
of WSOL. We hence briefly discuss earlier efforts on this task below.

Weakly Supervised Object Localization (WSOL): The problem of WSOL
aims to identify the location of the object in a scene using only image-level labels,
and without any location annotations. Generally, rich labeled data is scarcely
available, and its collection is expensive and time-consuming. Learning from
weak supervision is hence promising as it requires less rich labels and has the
potential to scale. A common problem with most previous approaches is that the
model only identifies the most discriminative part of the object rather than the
complete object. For example, in the case of a bird, the model may rely on the
beak region for classification than the entire bird’s shape. In WSOL task, ADL
[11], the current state-of-the-art method, uses an attention-based dropout layer
while training the model that promotes the classification model to also focus on
less discriminative parts of the image. For getting the bounding box from the
model, ADL and similar other techniques in this domain first extract attribution
maps, generally CAM-based[71], for each image and then fit a bounding box as
described in [71]. We now present our methodology.

3 Attributional Robustness Training: Methodology

Given an input image x ∈ [0, 1]n with true label y ∈ {1...k}, we consider a neural
network model fθ : Rn → Rk with ReLU activation function that classifies x
into one of k classes as arg max f(x)i where i ∈ {1...k}. Here, f(x)i is the ith

logit of f(x). Attribution map A(x, f(x)i) : Rn → Rn with respect to a given
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class i assigns an importance score to each input pixel of x based on its relevance
to the model for predicting the class i.

3.1 Attribution Manipulation

It was shown recently [12, 16] that for standard models fθ, it is possible to
manipulate the attribution map A(x, f(x)y) (denoted as A(x) for simplicity in
the rest of the paper) with visually imperceptible perturbation δ in the input by
optimizing the following loss function.

arg max
δ∈Bε

D[A(x+ δ, f(x+ δ)y), A(x, f(x)y)]

subject to: arg max(f(x)) = arg max(f(x+ δ)) = y
(1)

where Bε is an lp ball of radius ε centered at x and D is a dissimilarity function
to measure the change between attribution maps. The manipulation was shown
for various perturbation-based and gradient-based attribution methods.

This vulnerability in neural network-based classification models suggests that
the model relies on features different from what humans perceive as important
for its prediction. The goal of attributional robustness is to mitigate this vulner-
ability and ensure that attribution maps of two visually indistinguishable images
are also nearly identical. In the next section, we propose a new training method-
ology for attributional robustness motivated from the observation that feature
importance in image space has a high spatial correlation with the input image
for robust models [57, 15].

3.2 Attributional Robustness Training (ART)

Given an input image x ∈ Rn with ground truth label y ∈ {1...k} and a clas-
sification model fθ, the gradient-based feature importance score is defined as
∇xf(x)i : i ∈ {1...k} and denoted as gi(x) in the rest of the paper. For achieving
attributional robustness, we need to minimize the attribution vulnerability to
attacks as defined in Equation 1. Attribution vulnerability can be formulated as
the maximum possible change in gy(x) in a ε-neighborhood of x if A is taken as
gradient attribution method [48] and D is a distance measure in some norm ||.||
i.e.

max
δ∈Bε
||gy(x+ δ)− gy(x)|| (2)

We show that Equation 2 is upper bounded by the maximum of the distance
between gy(x+ δ) and x+ δ for δ in ε neighbourhood of x.

||gy(x+ δ)− gy(x)|| = ||gy(x+ δ)− (x+ δ)− (gy(x)− x) + δ||
≤ ||gy(x+ δ)− (x+ δ)||+ ||gy(x)− x||+ ||δ||
≤ ||gy(x+ δ)− (x+ δ)||+ max

δ∈Bε
||gy(x+ δ)− (x+ δ)||+ ||δ||

(3)

Taking max on both sides:

max
δ∈Bε
||gy(x+ δ)− gy(x))|| ≤ 2 max

δ∈Bε
||gy(x+ δ)− (x+ δ)||+ ||ε|| (4)
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Fig. 2: Block diagram summarizing our training technique for ART. Dashed line rep-
resents backward gradient flow, and bold lines denotes forward pass of the neural
network.

Leveraging existing understanding [44, 21] that minimizing the distance be-
tween two quantities can benefit from a negative anchor, we use a triplet loss
formulation as defined in Equation 5 with image x as an anchor, gy(x) as positive
sample and gi

∗
(x) as negative sample. More details about the selection of the

optimization objective 5 and choice for the negative sample can be found in the
supplementary section 1.1. Hence to achieve attributional robustness, we pro-
pose a training technique ART that encourages high spatial correlation between
gy(x) and x by optimizing Lattr which is a triplet loss [21] with soft margin on
cosine distance between gi(x) and x i.e.

Lattr(x, y) = log
(

1 + exp
(
− (d(gi

∗
(x), x)− d(gy(x), x))

))
where d(gi(x), x) = 1− gi(x).x

||gi(x)||2.||x||2
; i∗ = arg max

i6=y
f(x)i

(5)

Hence, the classification training objective for ART methodology is:

minimize
θ

E
(x,y)

[
Lce(x+ δ, y) + λ Lattr(x+ δ, y)

]
where δ = arg max

||δ||∞<ε
Lattr(x+ δ, y)

(6)

Here Lce is the standard cross-entropy loss. The optimization of Lattr involves
computing gradient of f(x)i with respect to input x which suffers from the prob-
lem of vanishing second derivative in case of ReLU activation, i.e. ∂2fi/∂x

2 ≈ 0.
To alleviate this, following previous works [12, 10], we replace ReLU with softplus
non-linearities while optimizing Lattr as it has a well-defined second derivative.

The softplus approximates to ReLU as the value of β in softplusβ(x) = log(1+eβx)
β

increases. Note that optimization of Lce follows the usual ReLU activation path-
way. Thus, our training methodology consists of two steps: first, we calculate
a perturbed image x̃ = x + δ that maximizes Lattr through iterative projected
gradient descent; secondly, we use x̃ as the training point on which Lce and Lattr
is minimized with their relative weightage controlled by the hyper-parameter λ.

Note that the square root of cosine distance for unit l2 norm vectors as used in
our formulation of Lattr is a valid distance metric and is related to the Euclidean
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distance. Details about this can be found in the supplementary section 1.2.
Through experiments, we empirically show that minimizing the upper bound in
Equation 4 as our training objective increases the attributional robustness of the
model by a significant margin. The block diagram for our training methodology
is shown in Fig 2, and its pseudo-code is given in Algorithm 1.

3.3 Connection to Adversarial Robustness

For a given input image x, an adversarial example is a slightly perturbed image
x′ such that ||x − x′|| is small in some norm but the model fθ classifies x′

incorrectly. Adversarial examples are calculated by optimizing a loss function L
which is large when f(x) 6= y:

xadv = arg max
x′:||x′−x||p<ε

L(θ, x′, y) (7)

where L can be the cross-entropy loss, for example. For an axiomatic attribution
function A which satisfies the completeness axiom i.e.

∑n
j=1A(x)j = f(x)y, it

can be shown that |f(x)y − f(x′)y| < ||A(x)−A(x′)||1, as below:

|f(x)y − f(x′)y| =|
∑n
j=1A(x)j −

∑n
j=1A(x′)j |

≤
∑n
j=1 |A(x)j −A(x′)j |

=||A(x)−A(x′)||1

(8)

The above relationship connects adversarial robustness to attributional ro-
bustness as the maximum change in f(x)y is upper bounded by the maximum
change in attribution map of x in its ε neighborhood. Also, it was shown [57] re-
cently that for an adversarially robust model, gradient-based feature importance
map gy(x) has high spatial correlation with the image x and it highlights the
perceptually relevant features of the image. For classifiers with a locally affine
approximation like a DNN with ReLU activations, Etmann et al.[15] establish
theoretical connection between adversarial robustness, and the correlation of
gy(x) with image x. [15] shows that for a given image x, its distance to the
nearest distance boundary is upper-bounded by the dot product between x and
gy(x). The authors of [15] showed that increasing adversarial robustness increases
the correlation between gy(x) and x. Moreover, this correlation is related to the
increase in attributional robustness of model as we show in Section 3.2.

3.4 Downstream Task: Weakly supervised Object localization
(WSOL)

As an additional benefit of our approach, we show its improved performance
on a downstream task - Weakly supervised Object localization (WSOL), in this
case. The problem of WSOL deals with detecting objects where only class label
information of images is available, and the ground truth bounding box location
is inaccessible. Generally, the pipeline for obtaining bounding box locations in
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Algorithm 1: Attributional Robustness Training (ART )

1 Input: Classification model fθ, training data X = {(xi, yi)}, batch size b,
number of epochs E, number of attack steps a, step-size for iterative
perturbation α, softplus parameter β, weight of Lattr loss λ.

2 for epoch ∈ {1, 2, ..., E} do
3 Get mini-batch x, y = {(x1, y1)...(xb, yb)}
4 x̃ = x+ Uniform[−ε,+ε]
5 for i=1,2, ... , a do
6 x̃ = x̃+ α ∗ sign(∇xLattr(x̃, y))
7 x̃ = Proj`∞(x̃)
8 end
9 i∗ = arg max

i6=y
f(x)i

10 Calculate gy(x̃) = ∇xf(x̃)y

11 Calculate gi
∗
(x̃) = ∇xf(x̃)i∗ ; // We calculate gy(x̃) and gi

∗
(x̃) using

softplusβ activation as described in Section 3.2

12 loss = Lce(x̃, y) + λ · Lattr(x̃, y)
13 Update θ using loss
14 end
15 return fθ.

WSOL relies on attribution maps. Also, the task of object detection is widely
used to validate the quality of attribution maps empirically. Since our proposed
training methodology ART promotes attribution map to be invariant to small
perturbations in input, it leads to better attribution maps identifying the com-
plete object instead of focusing on only the most discriminative part of the
object. We validate this empirically by using attribution maps obtained from
our model for bounding-box detection on the CUB dataset and obtaining new
state-of-the-art localization results.

4 Experiments and Results

In this section, we first describe the implementation details of ART and evalua-
tion setting for measuring the attributional and adversarial robustness. We then
show the performance of ART on the downstream WSOL task.

4.1 Attributional and Adversarial Robustness

Baselines: We compare our training methodology with the following approaches:

– Natural : Standard training with cross entropy classification loss.

– PGD-n: Adversarially trained model with n-step PGD attack as in [31],
which is typically used by work in this area [10].

– IG Norm and IG-SUM Norm [10]: Current state-of-the-art robust attribu-
tion training technique.
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Table 1: Attributional and adversarial robustness of different approaches on various
datasets. Hyper-parameters for attributional attack are same as [10]. Similarity mea-
sures used are IN:Top-k intersection, K:kendall’s tau rank order correlation. The values
denote similarity between attribution maps of original and perturbed examples [16]
based on Intergrated Gradient method.

Dataset Approach
Attributional Robustness Accuracy

IN K Natural PGD-40 Attack

CIFAR-10
Natural 40.25 49.17 95.26 0.

PGD-10 [31] 69.00 72.27 87.32 44.07
ART 92.90 91.76 89.84 37.58

SVHN
Natural 60.43 56.50 95.66 0.

PGD-7 [31] 39.67 55.56 92.84 50.12
ART 61.37 72.60 95.47 43.56

GTSRB
Natural 68.74 76.48 99.43 19.9

IG Norm [10] 74.81 75.55 97.02 75.24
IG-SUM Norm [10] 74.04 76.84 95.68 77.12

PGD-7 [31] 86.13 88.42 98.36 87.49
ART 91.96 89.34 98.47 84.66

Flower
Natural 38.22 56.43 93.91 0.

IG Norm [10] 64.68 75.91 85.29 24.26
IG-SUM Norm [10] 66.33 79.74 82.35 47.06

PGD-7 [31] 80.84 84.14 92.64 69.85
ART 79.84 84.87 93.21 33.08

Datasets and Implementation Details: To study the efficacy of our method-
ology, we benchmark on the following standard vision datasets: CIFAR-10 [27],
SVHN [35], GTSRB [53] and Flower [36]. For CIFAR-10, GTSRB and Flower
datasets, we use Wideresnet-28-10 [64] model architecture for Natural, PGD-10
and ART. For SVHN, we use WideResNet-40-2 [64] architecture. We use the
perturbation ε = 8/255 in `∞-norm for ART and PGD-n as in [31, 10]. We use
λ = 0.5, a = 3 and β = 50 for all experiments in the paper. For training, we
use SGD optimizer with step-wise learning rate schedule. More details about
training hyper-parameters can be found in the supplementary section 1.3.

Evaluation: For evaluating attributional robustness, we follow [10] and present
our results with Integrated Gradient (IG)-based attribution maps. We show
attributional robustness of ART on other attribution methods in Section 5. IG
satisfies several theoretical properties desirable for an attribution method, e.g.
sensitivity and completeness axioms and is defined as:

IG(x, f(x)i) = (x− x)�
∫ 1

t=0

∇xf(x+ t(x− x))idt (9)

where x is a suitable baseline at which the function prediction is neutral. For
computing perturbed image x̃ on which IG(x̃) changes drastically from IG(x),
we perform Iterative Feature Importance Attack (IFIA) proposed by Ghorbani
et al.[16] with `∞ bound of ε = 8/255 as used by previous work [10].
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Fig. 3: Examples of gradient attribution map [48] for different models on CIFAR-10.
Top to bottom: Image; attribution maps for Natural, PGD-10 and ART models

Fig. 4: Random samples (of resolution 32× 32) generated using a CIFAR-10 robustly
trained ART classifier

For assessing similarity between A(x) and perturbed image A(x̃), we use Top-
k intersection (IN) and Kendall’s tau coefficient (K) similar to [10]. Kendall’s
tau coefficient is a measure of similarity of ordering when ranked by values, and
therefore is a suitable metric for comparing attribution maps. Top-k intersection
measures the percentage of common indices in top-k values of attribution map
of x and x̃. We report average of IN and K metric over random 1000 samples of
test-set. More details about the attack methodology and evaluation parameters
can be found in supplementary section 1.3. For evaluating adversarial robustness,
we perform 40 step PGD attack [31] using cross-entropy loss with `∞ bound of
ε = 8/255 and report the model accuracy on adversarial examples. Table 1
compares attributional and adversarial robustness across different datasets and
training approaches. ART achieves state-of-the-art attributional robustness on
attribution attacks [16] when compared with baselines. We also observe that
ART consistently achieves higher test accuracy than [31] and has adversarial
robustness significantly greater than that of the Natural model.

Qualitative study of input-gradients for ART: Motivated by [57] which
claims that adversarially trained models exhibits human-aligned gradients (agree
with human saliency), we studied the same with (ART ), and the results are
shown in Fig 3. Qualitative study of input-gradients shows a high degree of
spatial alignment between the object and the gradient. We also show image
generation from random seeds in Fig 4 using robust ART model as done in [43].
The image generation process involves maximization of the class score of the
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Fig. 5: Comparison of heatmap and estimated bounding box by VGG model trained
via ART (top row) and ADL (bottom row) on CUB dataset; The red bounding box is
ground truth and green bounding box corresponds to the estimated box

Table 2: Weakly Supervised Localization on CUB dataset. Bold text refers to the best
GT-Known Loc and Top-1 Loc for each model. ∗ denotes directly reported from the
paper. # denotes our implementation from the official code released by ADL [11]2

Model Method Saliency Method Top-1 Acc
Grad CAM

GT-Known Loc Top-1 Loc GT-Known Loc Top-1 Loc
ResNet50-SE ADL [11] - - - 62.29∗ 80.34∗

ResNet50

ADL# 52.93 43.78 56.85 47.53 80.0
Natural 50.2 42.0 60.37 50.0 81.12

PGD-7[31] 66.73 47.48 55.24 39.45 70.3
ART 82.65 65.22 58.87 46.02 77.51

VGG-GAP

ADL# 63.18 43.59 69.36 50.88 70.31
Natural 72.54 53.81 48.75 35.03 72.94

ART 76.50 57.74 52.88 40.75 74.51

desired class starting from a random seed which is sampled from some class-
conditional seed distribution as defined in [43].

4.2 Weakly Supervised Image Localization

This task relies on the attribution map obtained from the classification model
to estimate a bounding box for objects. We compare our approach with ADL
[11]3 on the CUB dataset, which has ground truth bounding box of 5794 bird
images. We adopt similar processing steps as ADL for predicting bounding boxes
except that we use gradient attribution map ∇xf(x)y instead of CAM [71]. As
a post-processing step, we convert the attribution map to grayscale, normalize
it and then apply a mean filtering of 3× 3 kernel over it. Then a bounding box
is fit over this heatmap to localize the object.

We perform experiments on Resnet-50 [19] and VGG [49] architectures. We
use `∞ bound of ε = 2/255 for ART and PGD-7 training on CUB dataset. For
evaluation, we used similar metrics as in [11] i.e. GT-Known Loc: Intersection
over Union (IoU) of estimated box and ground truth bounding box is atleast 0.5
and ground truth is known; Top-1 Loc: prediction is correct and IoU of bounding
box is atleast 0.5; Top-1 Acc: top-1 classification accuracy. More details about

3 https://github.com/junsukchoe/ADL/tree/master/Pytorch

https://github.com/junsukchoe/ADL/tree/master/Pytorch
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Table 3: Top-1 accuracy of different models on perturbed variants of test-set
(GN:Gaussian noise; SN: Shot noise; IN: Impulse noise; DB: Defocus blur; Gl-B: Glass
blur; MB: Motion blur; ZB: Zoom blur; S: Snow; F: Fog; B: Brightness; C: Contrast;
E: Elastic transform; P: Pixelation noise; J: JPEG compression; Sp-N: Speckle Noise)
Models GN SN IN DB Gl-B MB ZB S F B C E P J Sp-N
Natural 49.16 61.42 59.22 83.55 53.84 79.16 79.18 84.53 91.6 94.37 87.63 84.44 74.12 79.76 65.04
PGD-10 83.32 84.33 73.73 83.09 81.27 79.60 82.07 82.68 68.81 85.97 57.86 81.68 85.56 85.56 83.64

ART 85.44 86.41 77.07 86.07 81.70 83.14 85.54 84.99 71.04 89.42 56.69 84.72 87.64 87.89 86.02

Table 4: Attributional Robustness on
CIFAR-10 for other attribution methods

Model
Gradient[48] GradSHAP [29]

IN K IN K

Natural 13.72 9.5 4.5 16.52
PGD-10 [31] 54.8 54.06 45.05 59.80

ART 76.07 70.31 48.31 62.35

Fig. 6: Cosine(x,∇xf(x)y) for differ-
ent models over test-set of CIFAR-10

dataset and hyper-parameters can be found in the supplementary section 2.1.
Our approach results in higher GT-Known Loc and Top-1 Loc for both Resnet-
50 and VGG-GAP [11] model as shown in Table 2. We also show qualitative
comparison of the bounding box estimated by our approach with [11] in Fig 5.

5 Discussion and Ablation Studies

To understand the scope and impact of the proposed training approach ART,
we perform various experiments and report these findings in this section. These
studies were carried out on the CIFAR-10 dataset.
Robustness to targeted attribution attacks: In targeted attribution at-
tacks, the aim is to calculate perturbations that minimize dissimilarity between
the attribution map of a given image and a target image’s attribution map.
We evaluate the robustness of ART model using targeted attribution attack as
proposed in [12] using the IG attribution method on a batch of 1000 test exam-
ples. To obtain the target attribution maps, we randomly shuffle the examples
and then evaluate ART and PGD-10 trained model on these examples. The
kendall’s tau coefficient and top-k intersection similarity measure between orig-
inal and perturbed images on ART was 64.76 and 70.64 as compared to 36.29
and 31.81 on the PGD-10 adversarially trained model.
Attributional robustness for other attribution methods: We evaluate
ART against attribution attack [16] using gradient[48] and gradSHAP[29] attri-
bution methods in Table 4. We observe that ART achieves higher attributional
robustness than Natural and PGD-10 models on Top-k intersection (IN) and
Kendall’s tau coefficient (K) measure. We also compare the cosine similarity
between x and gy(x) for all models trained on CIFAR-10 dataset and show its
variance plot in Fig. 6. We can see that ART trained model achieves higher
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cosine similarity than Natural and PGD-10. This empirically validates that our
optimization is effective in increasing the spatial correlation between x and gy(x).

Robustness against gradient-free and stronger attacks: To show the ab-
sence of gradient masking and obfuscation [5, 7], we evaluate our model on a
gradient-free adversarial optimization algorithm [58] and a stronger PGD at-
tack with a larger number of steps. We observe similar adversarial robustness
when we increase the number of steps in PGD-attack. For 100 step and 500 step
PGD attacks, ART achieves 37.42 % and 37.18 % accuracy respectively. On the
gradient-free SPSA [58] attack, ART obtains 44.7 adversarial accuracy that was
evaluated over 1000 random test samples.

Robustness to common perturbations [20] and spatial adversarial per-
turbations [14]: We compare ART with PGD-10 adversarially trained model
on the common perturbations dataset [20] for CIFAR-10. The dataset consists
of perturbed images of 15 common-place visual perturbations at five levels of
severity, resulting in 75 distinct corruptions. We report the mean accuracy over
severity levels for all 15 types of perturbations and observe that ART performs
better than other models on a majority of these perturbations, as shown in Table
3. On PGD-40 `2 norm attack with ε = 1.0 and spatial attack [14] we observe
robustness of 39.65%, 11.13% for ART and 29.68%, 6.76% for PGD-10 trained
model, highlighting the improved robustness provided by our method. More re-
sults of varying ε in adversarial attacks and combining PGD adversarial training
[31] with ART can be found in the supplementary section 3.

Image Segmentation: Data collection for image segmentation task is time-
consuming and costly. Hence, recent efforts [26, 59, 60, 25, 38, 68, 37] have fo-
cused on weakly supervised segmentation models, where image labels are lever-
aged instead of segmentation masks. Since models trained via our approach
perform well on WSOL, we further evaluate it on weakly supervised image seg-
mentation task for Flowers dataset [36] where we have access to segmentation
masks of 849 images. Samples of weakly-supervised segmentation mask obtained
from attribution maps on various models are shown in Fig. 7. We observe that
attribution maps of ART can serve as a better prior for segmentation masks
as compared to other baselines. We evaluate our results using Top-1 Seg metric
which considers an answer as correct when the model prediction is correct and
the IoU betweeen ground-truth mask and estimated mask is atleast 0.5. We com-
pare ART against Natural and PGD-7 trained models using gradient[48] and IG
[54] attribution maps. Attribution maps are converted into gray-scale heatmaps
and a smoothing filter is applied as a post-processing step. We obtain a Top-1
Seg performance of 0.337, 0.422, and 0.604 via IG attribution maps and 0.244,
0.246, 0.317 via gradient maps for Natural, PGD-7 and ART respectively.

Effect of β, λ and a on performance: We perform experiments to study the
role of β, λ and a as used in Algorithm 1 on the model performance by varying
one parameter and fixing the others on their best-performing values, i.e. 50, 0.5
and 3 respectively. Fig. 8a shows the plots of attributional robustness. Fig. 8b
shows the plots of test accuracy and adversarial accuracy on `∞ PGD-40 pertur-
bations with ε = 8/255. We observe that adversarial and attributional robustness
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Fig. 7: Example images of weakly supervised segmentation masks obtained from dif-
ferent models via different attribution methods

(a) (b)

Fig. 8: (a): Top-k Intersection (IN) and Kendall correlation (K) measure of attribu-
tional robustness; (b): Test accuracy and adversarial accuracy (PGD-40 perturbations)
on varying β, λ and attack steps in our training methodology on CIFAR-10

initially increases with increasing β, but the trend reverses for higher values of
β. On varying λ, we find that the attributional and adversarial robustness of
the model increases with increasing λ and saturates after 0.75. For attack steps
parameter a, we find that the performance in terms of test accuracy, adversarial
accuracy and attributional robustness saturates after 3 attack steps as shown in
the right-most plot of Fig. 8a and 8b.

6 Conclusion

We propose a new method for the problem space of attributional robustness,
using the observation that increasing the alignment between the object in an
input and the attribution map generated from the network’s prediction leads to
improvement in attributional robustness. We empirically showed this for both
un-targeted and targeted attribution attacks over several benchmark datasets.
We showed that the attributional robustness also brings out other improvements
in the network, such as reduced vulnerability to adversarial attacks and common
perturbations. For other vision tasks such as weakly supervised object localiza-
tion, our attributionally robust model achieves a new state-of-the-art accuracy
even without being explicitly trained to achieve that objective. We hope that
our work can open a broader discussion around notions of robustness and the
application of robust features on other downstream tasks.
Acknowledgements. This work was partly supported by the Ministry of Hu-
man Resource Development and Department of Science and Technology, Govt
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