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Abstract. Efficient search is a core issue in Neural Architecture Search
(NAS). It is difficult for conventional NAS algorithms to directly search
the architectures on large-scale tasks like ImageNet. In general, the cost
of GPU hours for NAS grows with regard to training dataset size and
candidate set size. One common way is searching on a smaller proxy
dataset (e.g., CIFAR-10) and then transferring to the target task (e.g.,
ImageNet). These architectures optimized on proxy data are not guaran-
teed to be optimal on the target task. Another common way is learning
with a smaller candidate set, which may require expert knowledge and
indeed betrays the essence of NAS. In this paper, we present DA-NAS
that can directly search the architecture for large-scale target tasks while
allowing a large candidate set in a more efficient manner. Our method
is based on an interesting observation that the learning speed for blocks
in deep neural networks is related to the difficulty of recognizing dis-
tinct categories. We carefully design a progressive data adapted pruning
strategy for efficient architecture search. It will quickly trim low per-
formed blocks on a subset of target dataset (e.g., easy classes), and then
gradually find the best blocks on the whole target dataset. At this time,
the original candidate set becomes as compact as possible, providing a
faster search in the target task. Experiments on ImageNet verify the ef-
fectiveness of our approach. It is 2× faster than previous methods while
the accuracy is currently state-of-the-art, at 76.2% under small FLOPs
constraint. It supports an argument search space (i.e., more candidate
blocks) to efficiently search the best-performing architecture.

Keywords: Data Adapted Pruning, Neural Architecture Search, Search
Cost

1 Introduction

Neural Architecture Search (NAS) has a great impact by automating neural
network architecture design. The architecture is optimized for accuracy and effi-
ciency (especially latency) under the constraints (e.g., FLOPs, latency, memory).
Recently, NAS has demonstrated the success in various deep learning tasks, such
as image classification [9, 20, 30], detection [6] and segmentation [18, 22].

Despite the remarkable results, conventional NAS algorithms [29, 19, 36] is
prohibitively computation-intensive, especially directly on a large-scale task (e.g.,
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ImageNet [8]), which makes it difficult for making paretical industry impact. As
a result, one common way is to utilize a smaller proxy data (e.g., CIFAR-10) for
searching, and then transfer to the large-scale target task (e.g., ImageNet) [20,
16, 19, 25]. Due to the domain gap (e.g., resolution, class number) between proxy
data and target task, these blocks optimized on proxy data are not guaranteed
to be optimal on the target task, especially when taking accuracy and resource
constraint into consideration. Thus, directly searching on the target dataset is
essential to NAS.

Another common way is searching with a smaller candidate set [9, 3, 30],
which highly relies on the expert knowledge and indeed betrays the essence of
NAS. In addition, too few candidate blocks are not beneficial to find a best-
performing architecture under search constraints (e.g., FLOPs, latency). Thus,
an argument search space with more candidate blocks is always encouraged to
boost the performance of NAS.

In this paper, we propose a simple and effective solution to the aforemen-
tioned limitations, called DA-NAS, which can directly search the architecture
for large-scale target tasks in a more efficient manner, while allowing a large
candidate set. The solution is based on our observation that the learning speed
of blocks in deep neural networks is varied in different classes (for classification
task). The blocks are learnt much faster in easy classes than in difficult classes.
Besides, our study indicates that the performance of blocks in easy classes con-
verges very quickly at the early training stage but needs more time in difficult
ones. The discovery motivates a new data adapted pruning for NAS, which starts
the search on a subset of target task (e.g., easy classes), and gradually trims low
performed blocks as the size of subset increases until we find the best blocks on
the whole target dataset. To build the strategy, we may be able to group classes
based on the easiness, and feed them progressively to reduce the computation
cost.

We formulate NAS as a block-level pruning process, which is different from
recent ProxylessNAS [3] that adopts a path-level pruning. Specifically, we di-
rectly train a supernet [32], an over-parameterized network that contains all
candidate paths. In the beginning of training, we train it on a subset of target
task (only containing easy classes). During training, we progressively prune low
performed blocks from our candidate set until we get a compact candidate set for
searching on the whole dataset of target task. We consider a loss function with
cost constraint which helps find an optimal architecture under search constraint
(e.g., FLOPs).

Comprehensive experiments and comparisons to existing methods demon-
strate that DA-NAS can find an optimal architecture 2× faster and is also ca-
pable of finding a current best small FLOPs architecture at 76.2% on ImageNet
within a highly complex search space (involving inverted residual block, shuffle
block, squeeze-and-excitation block and more).

Our contributions can be summarized as follows:

– DA-NAS is the first NAS algorithm that shows a close connection between
block pruning and dataset scheduling. To our best knowledge, it is the first
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work to study the relationship between network learning and training data
for NAS.

– We propose a progressive block-level pruning perspective for NAS, according
to data adaption. It can search architecture on the large-scale target task
much faster, and effectively enlarge the search space to achieve state-of-the-
art performance.

– The DA-NAS is convenient to use for various needs. It enables cost constraint
in search, which is beneficial to practical industry impact. The inherent idea
is also generalized to other tasks, like key-point localization.

2 Related Work

Efficient Network. Since the need of delopying deep neural networks into real
application systems is increasing, efficient network has drawn a lot of attention
from both academia and industry. Existing research about efficient network is
often done from two broad aspects: efficient network structure design [14, 26, 21,
34], or pruning/quantizing one given network structure [12, 35, 10]. In this paper,
we focus on the former problem. For efficient network architecture design, many
interesting approaches have been proposed. For example, Xception [7] proposes
to decompose one normal convolution layer into one depth-wise and one point-
wise convolutional layer, which is able to significantly reduce the computation
FLOPs. Based on this design scheme, a lot of efficient networks have been further
designed, such as MobileNet [14, 26, 13], ShuffleNet [34, 21]. Despite their success,
designing such an efficient network is not that easy and can only be done by
experts.

Neural Architecture Search. Recently, NAS has drawn surging interests that
study how to automatically design a better and efficient network structure with
machine learning algorithms. Based on the searching strategy, existing NAS
methods can also be roughly divided into two categories, i.e., searching an ef-
ficient operator block [20, 16, 24, 33, 29, 25] from scratch, or finding an optimal
operator combination from a pre-defined efficient operator search space [9, 30,
3, 2]. Compared to the former category, the latter category of approaches lever-
age a lot of design priors from human experts, so it is relatively easier to find
an optimal network architecture. Our method belongs to the latter category.
By contrast to existing methods which often regard data scheduling and archi-
tecture search as two independent parts, our method is the first that shows a
close connection between both. By leveraging a new and efficient data scheduling
mechanism, a progressive block-level search space pruning algorithm is further
proposed. Our method is demonstrated to be more efficient and can search a
better architecture given the same searching time.

3 Understanding Network Training Process

In this section, we analyze the relationship between the performance of deep
neural networks and the training data. These interesting observations will in-
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spire our data adapted pruning for efficient neural architecture search.

Observation 1. There exists some classes that are easy to learn (easy classes)
while some classes are harder to learn (hard classes).

We start our analysis from exploring a typical network training process, i.e.,
ResNet-34 trained on ImageNet. A matrix shown in Figure 1 (a) visualizes the
accuracy of distinct classes varies with more training iterations. Each row is
a certain class and each column is training time (epoch = 10, 20, ..., 180). The
value at each grid denotes the accuracy for each class. For a better visualization,
we sort the matrix rows by row-wise variance of a matrix, namely, the variance
of the accuracies of recognizing every class from each training epoch.

(a)

(b)

(c)

Training epochs

Classes

Min Max Easy classes

Hard classes

Accuracy

Fig. 1: Comparing between learning curves of different classes.

We find that the accuracy of some classes quickly converges and achieves its
maximum (Figure. 1 (b)); while some other classes gradually increase / fluctu-
ate in the training (Figure. 1 (c)). It indicates the learning speed for every class
is different. Thus, we can group classes based on their easiness and feed them
heuristically into training, following small-to-large data scheduling. Meanwhile,
search using fewer categories at the beginning is a considerably easier task than
the search using all categories in the end. This helps us progressively trim low
performed blocks in the search space to reduce the search cost.

Observation 2. Neurons to recognize easier classes converge more quickly at
the early training stage and their performance remains stable in the remaining
training process. Neurons for hard classes need more time to be fully trained.
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Fig. 2: Comparing neuron responses for easy and hard classes at different timestamps
in the training.

We study why the learning speed of different classes are not equal (in Ob-
servation 1). One possible reason is that various learning speed of neurons (i.e.,
convolution kernels) makes learning speed of distinct classes different, since the
final prediction of network is determined by a combination of neuron responses.
To verify this reason, we visualize the relations between neurons and classes in
increasing training epochs on Figure 2 (b). The relation between a neuron and a
class, used to distinguish the class from other classes, is computed by the neuron
relevance measure proposed in [1]. Specifically, we only consider the neurons in
the final convolutional layer (before FC-layer) since it represents the maximum
semantics in neurons. We collect all the calculated relations into a matrix, where
each row is a class and each column is a neuron. To be consistent with Figure 1,
we use the same order of classes in rows, and further sort the matrix columns
by column-wise maximum value (corresponding to the class most likely to be
recognized by the neuron) of a matrix. Figure 2 (a) show the sorting result of
the matrix, where the top-left block corresponds to the easiest classes and the
neurons that are most likely used to recognize these classes, and the right-bottom
block corresponds to the hardest classes and corresponding neurons.

Figure 2 (a) shows such a visualization corresponding to the last epoch, where
classes of different easiness levels are learned by different neurons. More inter-
estingly, there is a “diagonal pattern” that neurons are distributed in balance
across all the classes, summarized in Observation 3. It indicates that all the
classes should be involved in the training for the best performance. In other
words, directly learning on a large-scale dataset should yield better accuracy
than on a smaller dataset.

To further investigate the evolutionary pattern in the neuron-class relations,
we visualize the matrix at three different training epochs (epoch=10, 90, 180)
and select three representative blocks (corresponding to easy, medium, and hard
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classes) at each epoch, shown in Figure 2 (b). In the first row, we observe that
the neurons to recognize easy classes quickly converge and their performance
keep stable in subsequent training. Compared with other two rows, the neurons
learn faster on easy classes (stable on epoch=10) than that on medium classes
(almost stable on epoch=90), and even much faster than hard classes (almost
on epoch=180). The phenomena is summarized in Observation 2.

Observation 3. Different architecture of networks agree on similar easy/hard
classes distribution

To further investigate whether above observation 1 and 2 are shared among
other networks or unique for ResNet, we train and evaluate a bunch of state-
of-the-art manually designed networks, including VGG [27], ResNet [11], Mo-
bileNet [14, 26], ShuffleNet [34, 34] and more. For each class, we calculate the
mean and variance of the running average on easiness histograms among mul-
tiple networks. Shown in Figure 3 (a), the easiness histograms are well aligned
with confusion matrix and can be used as an indicator for measuring how easy
a network can distinguish a class from other classes. Shown in Figure 3 (b),
it is true that different networks agree on the similar distribution of easiness
on classes. This phenomena enables us to effectively use data while increasing
searching space. Shown in Figure 3 (c), after sorted by easiness rank, the confu-
sion matrix disentangles the hierarchy within classes. The mathematics definition
for easiness is introduced in the following section.

Fig. 3: An illustration that our defined class easiness measurement is agreed and per-
sisted among multiple deep networks

These observations inspire us to design a search space pruning strategy based
on the easiness of classes and the learning status of neurons. At the beginning,
we only feed in a small subset with easy classes to train all candidate blocks.
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Then, we can explicitly exclude unfavorable blocks that still struggle to learn
or perform worse than others in easy classes. By sequentially feeding more hard
classes until all the classes finally (the whole dataset), we can progressively trim
low performed blocks step by step, as shown in Algorithm 1.

4 Data Adapted NAS

Based on the analysis in Section. 3, the class easiness Ec for a class c is defined
as:

Pi = N̂(di) for di ∈ D (1)

Ec,i = −
∑

Pi log(Pi) if di ∈ c (2)

Ec = H
i

(Ec,i) (3)

where, D is the training dataset (e.g., ImageNet), N̂ is a network (e.g.,
ResNet-34) fine-tuned on the dataset, and Ec is represented as a histogram
H(·) of entropy values of all the samples belonging to class c. For each training
sample, since it is optimized towards a one-hot vector of the ground truth, the
entropy of the network’s output represents the effort of a network taking to dis-
tinguish the ground truth class from others. Then the histogram of these entropy
values of a class represents the trend of easiness of all samples that belong to
this class. As shown in Figure 3(a), the proposed measurement is well aligned
with the confusion matrix and can be used to explore the trend of easiness on
all classes and all training samples. Finally, for each class, we calculate the mean
of easiness histograms among multiple networks as our final data adaptation
strategy.

4.1 Expanding Search Space

In order to search any possible architecture in a search space, an over-parametered
super network needs to be built first. Previous methods first define a set of can-
didate operators (e.g., 3× 3 or 5× 5 depth-wise convolutions) O = {o1, . . . , ok}
and build the supernet layer by layer. Such approach largely limits all possi-
ble combinations of network architectures, and makes the micro-architecture
design critical to the final search result. Compared with previous method, we
allow search in a large and diverse set of candidate blocks (e.g., residual block,
inverted residual block, shuffle block) B = bi, . . . , bm applied over candidate op-
erators (e.g., depth-wise or normal 3 × 3, 5 × 5 convolutions) and effectively
change the super network to:

Nl =

m∑
j

k∑
i

bj(oi(x)) (4)

Nl+1 =

m∑
j

k∑
i

bj(oi(Nl)) (5)
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Fig. 4: Our proposed search space contains combinations of blocks and operators.

Figure 4 shows that our design can effectively combine multiple micro-architecture
build blocks and simulate popular networks.

4.2 Searching with Constrains

We followed the idea introduced by [32] to use Gumbel-Softmax to assist learning
of the architecture:

p ∼ GumbelSoftmax(a, τ) (6)

Nl =

m∑
j

k∑
i

pi,jbj(oi(x)) (7)

where a is the architecture weight that we want to learn and τ is a pre-defined
hyper-parameter to control the sharpness of Gumbel distribution. To incorporate
with search constrains (e.g., FLOPS or hardware latency), we also compute the
expected cost of a super network by:

Cl =

m∑
j

k∑
i

pi,jC(bj(oi(x))) (8)

where C(·) is a function measuring the cost of a block.
The super network is first optimized towards classification loss to find the

optimal weight:

w = arg minLcls(N(Dtrain, a)). (9)

Then it is optimized for architecture using the modified loss function with the
cost constraint:

a = arg minLcls(N(Dval, w)) · log(
C

β
)γ (10)

where β is a scaling factor designed as target cost and γ is a factor to control
the strength of incorporating cost constraints.
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4.3 Training Strategy

The training of a NAS algorithm can be tedious and non-trivial. In our train-
ing strategy, we intelligently couple data scheduling and search space pruning
together, as stated in previous sections. At beginning, we warm up the super
network by training on only ”easy” classes in order to convert each blocks into
a well-trained state as fast as possible. Then we progressively add more classes
from target dataset and, at same time, shrink the search space to speedup NAS
to avoid falling in local minimal. The final optimal architecture is then auto-
matically selected at the end of pruning. This strategy is further elaborated in
Algorithm 1.

We intelligently combine data adaptation with network pruning in two ways:

– We progressively introduce more categories in the architecture search. The
search using fewer (e.g., 100) categories at the beginning is a considerably
easier task than the search using all (e.g., 1000) categories in the end. This
helps us progressively trim low performed blocks in the search space to reduce
the search cost.

– We also identify the easiness of the categories by voting from popular man-
ually designed networks. We observe different network tends to learn similar
”easy” categories quickly at the beginning. We start with a few ”easy” cat-
egories at the beginning to speed up the convergence of supernet and hence
further reduce the training cost.

The benefit with our training strategy is three-fold:

– It largely reduces the number of epochs and GPU hours required in training.
– It eases the difficulty of tuning hyper-parameter, especially τ in Gumbel Soft-

max (Equation (7)). τ controls the sample distribution and is usually critical
to the final search result. Large τ turns to add randomness of sampling to
help super network explore more variant of branch combinations; while lower
τ trends to be more deterministic to branch selection and help super network
select architecture quicker. It is necessary to balance these two factors to find
optimal architecture after exploring large variants of combinations. Previous
method coupled τ with learning rate and used an exponentially decaying
schedule [30, 3]. Unlike previous methods, τ in our training strategy is set to
a fixed number, as the progressively pruning of search space works similar
to reducing τ .

– It picks the final architecture more confidently. Unlike previous methods that
need sampling from the final architecture distribution to find the best can-
didate, our final optimal architecture can be directly picked by maximizing
the architecture distribution, which further saves the computational cost.

5 Experiment

5.1 Setup

Datasets. We directly search architecture on the target dataset. For image classi-
fication task, we use the full ImageNet [8] dataset. We randomly select 50 images



10 X. Dai et al.

Algorithm 1: NAS with Data Adapted Pruning

Input: Training Data DTrain, Validating Data Dval, Search Space S, Search
space pruning ratio π, Classes used per step δ, Easiness of classes E;
R← Sort E
for epoch← 1 to #Epochwarmup do

train← DTrain from R[δ[0]];
Optimize Equation (9) use train;

end
for s← 1 to #Step do

train← DTrain from R[δ[s]];
val← DV al from R[δ[s]];
for epoch← 1 to #Epochs do

Optimize Equation (9) use train;
cost← Equation (8);
Optimize Equation (10) use val, cost;

end
S ← Reduce S by δ

end
return S

per class from the original training set to formulate a validation set. We then
use the original validation set as a test set to report final experiment results.
Besides, we also want to test our DA-NAS algorithm for key-point localization
task. We use full COCO [17] key-point 2017 dataset. The original training set
is divided into ”trainminusminival” and ”minival” for training and validation.
Then the original validation set is used to report results.

Search Spaces. We investigate two popular search spaces widely used in previous
work [13, 30, 3, 9] and their augments:

– “Mobile”: The search space is based on MobileNet [14, 26] micro-architectures.
In our implementation, it contains three inverted residual blocks with ex-
panded factor of 1, 3, 6 and two depth-wise convolution operators with 3× 3
and 5× 5 kernels.

– “Shuffle”: The search space is based on ShuffleNet [21, 34] micro-architectures.
In our implementation, it contains two shuffle blocks with different number
of convolution layers and three depth-wise convolution operators with 3× 3,
5× 5 and 7× 7 kernels.

– “Mobile+”: We expand ”Mobile” by adding normal convolutions with 3× 3
and 5×5 kernels into operators to increase the complexity and flops variation.

– “Shuffle+”: We expand ”Shuffle” by adding normal convolutions with 3× 3
and 5×5 kernels into operators to increase the complexity and flops variation.

– “Shuffle+Mobile”: We combine Shuffle spaces and Mobile spaces together.
It is the major search space we use to find state-of-the-art architectures.

Implementation Details. We implement our approach using Pytorch and run
all experiments on a compute node with 4 V100 GPUs. For training, the super
network is first warmed up with 10 epochs and followed by 3 steps of search with
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Method Search Space FLOPs Accuracy Search Cost

SinglePath [9] Shuffle 319 M 74.3
SinglePath (impl.) Shuffle 336 M 74.4 142

Ours Shuffle 325 M 74.4 87↓39%
Proxyless-G [3] Mobile – 74.2

Proxyless-G (impl.) Mobile 420 M 74.6 399
Ours Mobile 389 M 74.6 138↓65%

Table 1: Direct comparison to two popular methods with fast search speed

Method Search Space
Accuracy @ Time
0.5x 1x

SinglePath (impl.) Shuffle+ 72.4 73.2
Ours Shuffle+ 73.3 73.3

Proxyless-G (impl.) Mobile+ 71.8 73.3
Ours Mobile+ 73.2 73.3

Table 2: Restrict comparison to two popular methods on performance of searched
architecture (same fine-tune setup) under constrained search time.

20 epochs each. We use a search space pruning ratio 0.4 and 100, 300, 600, 1000
classes for each step respectively. For fine-tuning the searched architecture, we
follow the training setup introduced by [3], but pump up the initial learning rate
to 0.5.

5.2 Compared with State-of-the-art Methods

We first compared with two state-of-the-art methods, ProxylessNAS [3] and
SinglePath [9], which are claiming as fastest search methods on ImageNet. Since
they report the performance and the search cost based on different criteria and
hardware, in order to compare fairly, we re-implement these two methods based
on public available code released by authors. As shown in Table 1, we are able
to reproduce the reported performances. Then we run our methods with the
exact same search space. It is obvious to see that our method is capable of
finding competitive quality networks with much lower search cost. It significantly
reduces the search cost by 39% and 65% respectively.

Next, to further investigate the lower bond of time cost needed for searching
a proper architecture, we conduct an experiment with constrained search time
and a enlarged search space. We double the operators in shuffle and mobile
search spaces by introducing 3× 3 convolution and 5× 5 convolution. As shown
in Table 2, our method is able to find the architecture with comparable accuracy
to state-of-the-art methods by only half of the time needed in these methods.

Finally, we combine “Shuffle” and “Mobile” search spaces together to find the
state-of-the-art architecture. Table 3 shows the comparison between our method
with existing popular NAS approaches [20, 32, 19, 36, 30, 3, 9]. We report their
search costs directly from their public papers (although some of numbers we
cannot reproduce locally). Compared with methods [20, 32, 19, 36] only searched
on a proxy dataset (i.e., CIFAR), our method leads to a significant performance
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Method Seach Dataset FLOPs Accuracy Seach Cost

DARTS[20] CIFAR 595 M 73.1 96
SNAS[32] CIFAR 522 M 72.7 24
PNAS[19] CIFAR 588 M 74.2 3600

NASNET-A[36] CIFAR 564 M 74.0 10,000+

MnasNet[29] Imagenet 317 M 74.0 10,000+
FBNet[30] Imagenet 375 M 74.9 216

Proxyless-G LL[3] Imagenet – 74.2 200
SinglePath[9] Imagenet 319 M 74.3 312

Ours-A Imagenet 323 M 74.3 138
Ours-B Imagenet 372 M 74.8 138
Ours-C Imagenet 467 M 76.2 138

Table 3: Comparison to the state-of-the-art searched results on ImageNet validation
set.

gain. It is worth noticing that the networks searched on smaller datasets suffered
from sub-optimal performance when transferred to a large scale dataset. They
also have difficulties in reducing FLOPs due to the fact that searching conducted
on different resolutions of datasets causes different designs of architecture (such
as pooling scales and number of layers). Compared with methods [30, 3, 9, 29]
that search directly on ImageNet, our method requires the least search cost
(138 GPU hours) to find best-performing architecture with the state-of-the-art
accuracy (76.2%).

5.3 Ablation Study

We first demonstrate that our data adapted pruning is efficient. We evaluate the
effects of different data scheduling on pruning: from easy classes to all classes,
from hard classes to all classes, use a small subset of classes solely and use all
classes directly. As shown in Table 4, it is obvious that our ”small (easy) → all”
data adapted pruning is the most effective method, which is able to find the best
network architecture with only 28% of the time compared to searching directly
on all classes. This demonstrates that ”from small to all” is very important and
it yields 0.9 better at top-1 accuracy because of the difference of data amount.
Then, starting from easy is better than hard, it yields another 30% compared to
the improvement of using 10x more data, which is non-trivial.

Then, we show that our search space pruning is robust. We conduct experi-
ments on three different search spaces: ”Shuffle”, ”Shuffle+”, ”Shuffle+Mobile”,
which contain varieties of blocks and operators. As shown in Table 5, our method

Method FLOPs Accuracy Search Cost

Small 319 M 73.2 33
Small (Easy) → All 325 M 74.4 87
Small (Hard) → All 316 M 74.1 87

All 327 M 73.8 307

Table 4: Ablation study on the effect of different data scheduling strategy.
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Search Space FLOPs Accuracy Search Cost

Shuffle 325 M 74.4 87
Shuffle+ 353 M 74.3 194

Shuffle+Mobile 323 M 74.3 138

Table 5: Ablation study on the influence of different search space on the searched
architecture.

Scheduling Pruning FLOPs Accuracy Search Cost

X × 320 M 74.2 112
× X 317 M 74.2 188
× × 327 M 73.8 307
X X 325 M 74.4 87

Table 6: Ablation study on each component of proposed method.

is robust enough to find the optimal architectures with nearly consistent ac-
curacy and FLOPs using different search spaces. Besides, our search cost will
accordingly increase as the search space is enlarged.

Finally, we analyze the necessity of each component in our proposed data
adapted pruning method. We partially disable each key component to examine
the influence. As shown in Table 6, our method full loaded largely reduces the
search cost (from 307 GPU hours to 87 GPU hours) and yields the best searched
architecture. This further proves the effectiveness of our method.

5.4 Transferring to Key-point Localization Task

We further apply our method to the key-point localization task to demonstrate
the generalization ability. Following the setup in simple baseline [31], we search
a key-point localization architecture based on instance-level ground-truth. We
modify our search space by attaching 3 levels of de-convolution layers at the
end, consisting de-convolution operators with 4× 4 kernel and 2, 4, 8 groups re-
spectively. As shown in Table 7, our method is able to find a state-or-the-art
architecture with significantly lower flops compared to manually designed meth-
ods [5, 4, 28] with competing performance and significantly speedup previous best
NAS method [23].

5.5 Visualization

We visualize our searched architectures in Figure 5 with two interesting findings.
First, it is obvious to see that shuffle block is more cost efficient than inverted
residual block. As the FLOPs constrain looses, the network architecture tends
to have more inverted residual block to further boost the performance. Second,
inverted residual block with squeeze-and-excitation component (SE) [15] is more
likely to be placed at where number of channels increases or resolution of in-
put reduces. This indicates that it is more effective to model inter-dependencies
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Method Input size Search Cost Params FLOPs AP APM APL AR

SimpleBaseline-ResNet50[31] 256 × 192 Manual 34.0 M 8.90 G 70.4 67.1 77.2 76.2
HRNet-W32[28] 256 × 192 Manual 28.5 M 7.10 G 73.4 70.2 80.1 78.9
CPN-ResNet50[5] 256 × 192 Manual 27.0 M 6.20 G 69.4 – – –
DeepLab v3+[4] 256 × 192 Manual 5.8 M – 66.8 64.1 70.7 70.0
NAS-CSS[23] 256 × 192 192 2.9 M – 65.9 63.1 70.0 69.3

Ours 256 × 192 30 10.9 M 2.18 G 68.4 65.5 74.4 75.7

Table 7: Comparison to the state-of-the-art methods of key-point localization on COCO
2017 validation set.

Fig. 5: Visualization of best searched architectures. Network input flow is shown from
left to right. Colored boxes indicate different blocks and texts in box indicate different
operators. Blue dash lines after block indicate where the output resolutions reduce.

between different features channels. These findings are consistent with the state-
ments from [15, 21, 14]. Thanks to the advantage of combining complex search
spaces together, our method is capable of finding interesting properties of differ-
ent blocks.

6 Conclusion

In this paper, we present a novel data adapted pruning approach that largely
speeds up neural architecture search. Inspired on the findings that network tends
to learn easy categories first at early stage observed from network training, we
propose to progressively utilize more data based on the easiness of classes, while
pruning search space at the same time. Our strategy solves the conflicts between
the requirement of large-scale data for fine-grained architecture search and the
linearly increasing search cost, and makes the NAS practical in real-world task.
Experiments show that our method can find state-of-the-art architecture with
noticeable lower cost compared to popular methods. Our method is the first to
combine data scheduling and search space pruning. Although a full understand-
ing of the best setup of data and search space is not investigated in this paper,
it opens a very interesting direction on how to effectively search based on data.
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