
A Closer Look at Generalisation in RAVEN:
Appendices

Steven Spratley, Kris Ehinger, and Tim Miller

School of Computing and Information Systems
The University of Melbourne, Victoria, Australia

A. Context-blind Performance

We list the results of context-blind variants of our solvers in Table 1. Note that
these solvers have the stack function removed; sequence encoders are simply
given all answer frames/embeddings instead. Rel-Base displays near-perfect per-
formance in several configurations; this, as mentioned in our main paper, points
to the importance of independent processing in comparing answer frames over
RAVEN, if it is to be used to fairly assess the reasoning ability of these networks.

Table 1. Accuracy (%) of ResNet and Rel-Base, trained context-blind on RAVEN.

Acc Centre 2x2 3x3 L-R U-D O-IC O-IG

ResNet 83.11 84.23 65.34 68.70 95.14 95.82 92.02 80.53
Rel-Base 92.46 98.49 78.66 80.52 99.22 99.66 98.63 92.04

B. Model Parameters

In Table 2, we provide all hyperparameters essential to reproducing the models
in our main paper. This is intended to complement our code, released online1. All
models were optimised with Adam, using de facto default parameters: β1 = 0.9,
β2 = 0.999, ε = 10−8, and a learning rate of 3e−4. We used split-batch training
to enable parallelisation across two GPUs, with a batch size of 32.

We wish to refer readers to the online repository of the Pyro library2 as the
hyperparameters set by this code were largely unchanged in our AIR module;
we used a learning rate of 0.1 for the data-dependent baselines, a z presence
prior of 0.01, and a decoder output bias of -2. Where we differed was in the
scale prior’s mean and standard deviation, µ and σ, which had to be fine-tuned
for specific problem configurations in RAVEN. For the most part, we found
µ = 2.0 and σ = 0.4 worked well. For the 3x3Grid set, pushing µ to 3.0 and
σ to 0.2 was necessary to predispose the module to using small, regularly-sized
attention windows – and therefore fill all 9 slots, instead of perceiving larger
compound objects. As mentioned in the paper, AIR didn’t correctly decompose
Out-InGrid; instead, it produced 2 slots corresponding to the outer and grouped
inner shapes.
1 https://github.com/SvenShade/Rel-AIR
2 https://github.com/pyro-ppl/pyro/tree/dev/examples/air



2 Spratley et al.

Table 2. Details of the modules built for ResNet, Rel-Base, and Rel-AIR, along with
their components listed in architectural order. Note that ‘in/hidden/out’ refers to the
number of channels, and N refers to the number of object slots.

Module Component Parameters

Convolutional block

Convolutional layer Kernel size: 7
(1D or 2D) Padding: 3

Stride: 1 if 1D layer
2 if 2D layer

ELU nonlinearity
Batch normalisation

Spatial dropout Probability: 0.1

Residual block
Convolutional block
Convolutional block
Skip connection + max. pool if strided blocks

Frame encoder (Rel-Base) &
Object encoder (Rel-AIR)

2D Residual block In/hidden/out: 1, 64, 64
2D Residual block In/hidden/out: 64, 64, 16

Frame encoder
(Rel-AIR)

1D Residual block In/hidden/out: N, 128, 128
1D Residual block In/hidden/out: 128, 128, 1

Frame conditioning
(Rel-AIR)

Bilinear layer In-1/In-2/out: 400, 3, 403
ELU nonlinearity

Sequence encoder
(Rel-Base & Rel-AIR)

1D Residual block In/hidden/out: 9, 64, 128
Max. pool Downsample: 4x

1D Residual block In/hidden/out: 128, 128, 64
Adaptive avg. pool Size: 16

Sequence encoder
(ResNet)

2D Residual block In/hidden/out: 9, 64, 64
2D Residual block In/hidden/out: 64, 64, 64

MLP
(All models)

Linear layer In: 1600 (ResNet)
1024 (Rel-Base &

Rel-AIR)
Out: 512

ELU nonlinearity
Batch normalisation

Dropout Probability: 0.5
Linear layer In/out: 512, 1


