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Abstract. Effectively keeping boundary of the mask complete is im-
portant in instance segmentation. In this task, many works segment
instance based on a bounding box from the box head, which means the
quality of the detection also affects the completeness of the mask. To
circumvent this issue, we propose a fully convolutional box head and a
supervised edge attention module in mask head. The box head contains
one new IoU prediction branch. It learns association between object
features and detected bounding boxes to provide more accurate bounding
boxes for segmentation. The edge attention module utilizes attention
mechanism to highlight object and suppress background noise, and a
supervised branch is devised to guide the network to focus on the edge of
instances precisely. To evaluate the effectiveness, we conduct experiments
on COCO dataset. Without bells and whistles, our approach achieves
impressive and robust improvement compared to baseline models. Code
is at https://github.com//IPIU-detection/SEANet.

Keywords: Fully convolutional box head, supervised edge attention
module, IoU prediction branch, instance segmentation

1 Introduction

Instance segmentation is a hotspot task in computer vision, whose goal is to
segment and classify the pixels belonging to instance objects in an image. Despite
great advances have been achieved in recent years, how to keep the boundary
of the instance intact still remains challenging due to three problems: imprecise
bounding box, blurry boundary and cluttered overlap.

Instance segmentation methods mainly include detection-based and segmentation-
based methods. Detection-based methods [8,22,9] use the detector to find and
classify the possible bounding boxes of the instance firstly, and then perfor-
m the foreground and background segmentation on the pixels in these boxes.
Segmentation-based methods [1,2,21] segment the whole image firstly, and then
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Fig. 1. Baseline Mask R-CNN (top) vs. Ours (bottom) with ResNet-101-FPN. Our
approach is more adaptive for scales of objects and more sensitive on their boundaries
(best viewed in color)

distinguish the object instances from it. This paper mainly discusses the former
one, and analyzes problems in two phases of this kind of methods.

In the first phase, the quality of the bounding box is important as the base of
segmentation. The results of the Mask R-CNN [9] are visualized for illustration.
As shown in the first picture of Fig. 1, the tail of the train is not included in the
bounding box, resulting in its tail boundary not being segmented. The similar
situation also occurs in the second picture, and the mask at the top of the bird
is affected by the imperfect bounding box. In order to improve the performance
of bounding box regression, fully convolution network is proposed to break the
limitation of the fixed anchor sizes and scales [25,14,28]. The technique predicts
the classification and regression pixel by pixel. However, the classification score
obtained from the box head shows no important interaction to the quality of the
regression result.

Motivated by the considerations above, we propose a new branch named
“B-IoU” based on the fully convolutional box head. It predicts the Intersection-
over-Union (IoU) scores between the detected boxes and their ground-truth boxes.
By multiplying the classification scores with IoU scores, we get the final score for
each detected box. Through choosing the detected box with the highest score on
each proposal from Region Proposal Network (RPN) [23], we expect to get the
most accurate detected result for each proposal.

In the second phase, segmentation on the object boundary may fail for
two reasons: (1) the information of edges of the objects is easily disturbed
by background noise; (2) different instances are often close to each other or
overlapped, and their features of the edge regions will interact with each other
during convolution operation. In order to improve the discrimination ability,
recently attention mechanisms are increasingly used in segmentation networks
[6,27,16] to pay attention to the information of the objects. However, the available
methods only focus on the correlation of internal features of the object and do
not emphasize edge features. As shown in the last two pictures of Fig. 1, the
wing and tail surface of the airplane in the third one are spindly and the colors
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of them are similar with the ground and mountain. And in the last picture, the
top edge of the bus almost merges with the sky and the people are overlapped,
leading to the segmentation on the edge of them unsatisfactory.

To solve above-mentioned problems, we propose the edge attention modules
to suppress useless information and highlight boundary features. Especially, we
apply a supervision branch on the module to guide the network to learn the right
information on the boundaries of the instances.

The second row of Fig. 1 shows the results of the Mask R-CNN equipped
with our techniques. The results of the first two pictures show that regardless of
the shapes and scales of the objects, more accurate detection bounding boxes are
obtained, which has a direct effect on the performance of segmentation. Moreover,
for the challenging scenes in the last two pictures, the boundaries of the instances,
especially at the wing and tail surface of the airplane, the top of the bus and the
boundary between person and bus, are segmented more subtly and correctly.

In this paper, we propose one new branch named “B-IoU” and supervised
edge attention module for instance segmentation. Our main contributions are
summarized as follows:

1. We take into consideration the quality of the bounding box in instance
segmentation task. We apply fully convolutional box head and introduce a new
branch name “B-IoU” to learn the IoU scores between the detected bounding
boxes and their corresponding ground-truth boxes for down-weighting the
low-quality detected bounding boxes with poor regression performance.

2. As the boundaries of the instances are easily overwhelmed by the background
noise or other objects, we propose supervised edge attention module to
suppress the noise and highlight the foreground. Especially, we design a
supervised branch to guide the network to learn the boundaries of the
objects.

3. Without bells and whistles, our approach consistently improves the models of
Mask R-CNN series, and is no limited to these models. Since the idea of our
work is easily implemented and can improve both the accuracy of detection
and segmentation, it can be extended to other principles for instance-level
recognition tasks.

2 Related Work

2.1 Instance segmentation

Instance segmentation is the task of labeling different instance regions in the
pixel-level, which is divided into two categories: segmentation-based and detection-
based.

Segmentation-based methods are to first segment and then detect. BIS [1]
uses CRF [15] to find instances. SIS [2] introduces metric learning, and completes
segmentation with clustering. SOIS [21] uses semi-convolutional operation for
instance segmentation.
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Fig. 2. The model structure of SEANet. The Feature Pyramid Network (FPN) extract
the features of the input image. RoIAlign operation obtains feature map of each proposal
from RPN. For each proposal, (a) fully convolutional box head and (b) mask attention
head perform object detection and instance segmentation in parallel

The other idea for instance segmentation, called detection-based method,
is to first detect and then segment. These methods use bounding boxes as
the preliminary results, and then estimate region masks in the boxes. The
Facebook Research Institute proposes Deep Mask [22], which is based on the
object proposals generated by discriminative convolutional network. ISFCN [3]
uses FCN [20] to generate object proposals with the help of a sliding window.
He et al. proposes Mask R-CNN [9] consisting of a box head and a mask head
for detection and segmentation respectively, which achieves better results in
instance-level segmentation. Mask R-CNN inspires many other algorithms as a
benchmark framework. Based on it, Mask Scoring R-CNN (MS R-CNN) [11]
proposes a MaskIoU head to generate IoU scores to describe the qualities of
masks. It combines the features of instances in mask head with the corresponding
predicted masks. However, in addition to prioritizing when evaluating, the IoU
scores have no substantial impact on improving the quality of the mask itself.
Different from MS R-CNN, we design a B-IoU branch in box head to produce
IoU scores. The IoU scores are used to obtain more precise bounding boxes so as
to improve the performance of instance segmentation.

2.2 Object Detection

For the detection-based instance segmentation methods, the quality of object
detection is particularly important. Faster R-CNN [23] is the base framework of
Mask R-CNN, which is a widely used two-stage network. It first generates Regions
of Interest (RoIs) through the RPN, and then performs further classification
and regression operations on the proposals. Considering that the predicted
classification confidence cannot represent the quality of the location, IoU-Net
[12] proposes location confidences to predict the IoUs between detected bounding
boxes and corresponding ground-truth boxes. But the IoU head in IoU-Net is
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parallel with the box head, which makes no full use of the information from
the regression branch. Moreover, most two-stage detectors , including IoU-Net,
implement detection in the proposal level instead of the pixel level, which limits
the representation of the network. FCOS [25] perform pixel-by-pixel classification
and regression prediction on feature maps, and introduces a new branch called
“center-ness” to suppress the low-quality bounding box. In comparison, our fully
convolutional box head combines information of the high-level regression feature
and the low-level RoI feature to infer IoU score for each detected box. In this
way, it identifies the quality of bounding box more accurately so as to improve
the quality of mask.

2.3 Attention mechanism

Attention mechanism has been widely used in the field of computer vision. SENet
[10] uses squeeze module and association module to obtain the importance of
each feature channel automatically. CBAM [26] uses feature-channel attention
similar to SENet with additional feature-space attention. GSoP-Net [7] proposes
2D-average-pooling, which applies channel attention in the form of covariance.
DANet [6] proposes position and channel attention modules, which focus on the
correlation of semantic features of each position and channel. In this paper, we
take advantage of the attention mechanism and propose two modules. Different
from the methods above, we focus on the object boundary and design a supervised
branch which utilizes explicit information to achieve it.

3 Our Approach

In this section, we first present the framework of our Supervised Edge Attention
Network for Accurate Image Instance Segmentation (SEANet), then introduce
the two techniques and the loss function. We take the Mask R-CNN as an
example. As shown in Fig. 2, the fully convolutional box head is employed in the
detection branch to obtain the appropriate bounding box for segmentation and
the supervised attention module is added to the original mask head.

3.1 Fully Convolutional Box Head

Different from many box heads of the anchor-based methods, which output the
class and offset result for each proposal using fully connection layers, our fully
convolutional box head focuses on information of each pixel on the proposal.
The structure is shown in Fig. 2 (a). For each location (x, y) on the feature
map of each candidate box after RoIAlign, an 80-D classification score C, a 4-D
bounding box regression B = (l, t, r, b) and a 1-D box IoU score I are given
by the fully convolutional box head. Here, l, t, r and b represent the distances
from the location (x, y) to the left, top, right and bottom sides of the detected
bounding box respectively.
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Given a proposal P = (x0, y0, x1, y1) from RPN module, the corresponding
location of (x, y) on the input image is expressed as (X,Y ):

X = x0 + x
Wp

l
+
Wp

2l
, Y = y0 + y

Hp

l
+
Hp

2l
(1)

Here, Wp and Hp are the width and height of the proposal. (x0, y0) and (x1, y1)
denote the left-top and right-bottom coordinates of the proposal respectively.
And l represents the size length of the feature map of the proposal after RoIAlign
(l = 7 in this paper). For classification, if (X,Y ) is inside any ground-truth
bounding box, then corresponding (x, y) will be labeled as a positive sample and
given a class label c∗ as same as its corresponding ground truth. Otherwise, it is
considered as a negative sample and its class label c∗ = 0 for background.

For regression, each positive sample (x, y) has a regression target as B∗ =
(l∗, t∗, r∗, b∗), which means the distances from its corresponding location (X,Y )
to the four sides of its corresponding ground-truth bounding box.

In the test phase, for each proposal from RPN module, output of our fully
convolutional box head is a set of detected bounding boxes and their corresponding
classification scores. However, only one final detection result is expected for each
proposal region. And as mentioned in the previous section, the misalignment
between classification scores and the regression qualities harm the performance
of the detection. Therefore, a powerful strategy should be adopted for choosing
the best regression result from detected bounding boxes produced by all the
locations on the proposal.

We introduce a meaningful branch called “B-IoU” head to predict the IoU
value between the predicted bounding box and its associated ground-truth
bounding box at each location on each proposal. The “B-IoU” branch combines
the information of the proposal feature and the high-level semantic feature from
the regression branch and output a more targeted and precise evaluation criteria
for each bounding box by aligning the regression quality with box IoU scores.
Here, the calculation of the targeted IoU scores for training is similar to GIoU [7],
which presents a more precise measure of the IoU between the detected bounding
box and the corresponding ground-truth box.

During inference, the IoU scores obtained from the B-IoU branch are multiplied
with the classification scores from the classification branch to get the final scores
which describe the qualities of the bounding boxes precisely in both the aspects
of the classification and regression. And for each proposal, only the detected
bounding box with the highest final score will be chosen as the detection result
of this proposal and all the detection results of all the proposals will be ranked
by the final scores so that the low-quality bounding boxes will be suppressed
by Non-Maximum Suppression (NMS). Moreover, more accurate scores of the
detection results will benefit to the COCO evaluation process and improve the
performance of instance segmentation.
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Fig. 3. Illustration of the attention modules. (a) The structure of the channel attention
module. (b) The structure of the edge attention module. The part in the gridline is the
position attention module in DANet

3.2 Supervised Attention Module

In order to weaken the non-object information and prevent the boundaries of the
objects being blurred, we apply two attention modules to solve the problems in
different aspects, as shown in the mask attention head of Fig. 2 (b).

As shown in Fig. 3 (a), we use a variant of Squeeze-and-Excitation (SE)
block [10] as the channel attention module. And different from the rough Global
Average Pooling (GAP) operation in SENet, we add two convolution layers with
large convolution kernel (in this paper, the kernel size is 5) before GAP to get a
bigger receptive field, which helps the network to achieve better discrimination
for information of the foreground and background. The following procedure is
similar to SE block and the value of reduction ratio is 16. The feature outputted
by the channel attention module is then concatenated with the high-level feature
of the mask head. In this way, the network fuses the low-level feature full of
detailed information and the high-level feature full of semantic information.

As mentioned above, the pixels on the boundaries of the instances are hard
to segment correctly because the features on these regions are easily blurred by
the noise or other instances. In order to effectively learn the boundary features
of the instances, we introduce a supervised edge attention module based on the
position attention module in DANet [6]. As shown in Fig. 3 (b), we add four
convolution layers after the position attention module to get the edge attention
feature on the nearly same depth as the feature that it will sum with on the
mask head, which puts the two feature in an approximately equal data space and
make the two feature more adaptive in the following element-wisely sum process.
Then we add the up-sampled feature maps from the edge attention module and
mask head together in the element-wise way to enhance features on the targeted
positions, especially on the boundary of the instance.
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Moreover, to guide the edge attention module to pay attention to the informa-
tion of the boundary, we use a supervision mechanism by adding two convolution
layers to generate the edge prediction map, and use the cross-entropy loss function
with weight to calculate the loss of the edge prediction and targeted edge label.
The edge label is easily obtained from the ground-truth mask label. If a pixel
falls on the boundary of the object, it is considered as a positive sample and its
edge label is 1 and vice versa. Since the quantities of the positive and negative
samples are unbalanced, we increase the loss weights wb of the position samples
as:

wb = 1/ln (1.2 + n/N) (2)

Here, n denotes the number of the position samples and N denotes the total
number of all the samples, including positive and negative samples.

3.3 Loss Function

We define the multi-task loss on each proposal as the sum of the losses from box
head and mask head:

L = Lbox + Lseg (3)

where Lbox includes three parts, that is:

Lbox (c,B, I) = λ1Lcls(c, c
∗) + λ2Lreg(B,B∗) + λ3LIoU (I, I∗) (4)

Here, Lcls is the focal loss for classification as in [18]. Lreg is the variant of GIoU
loss in [24]. In origin GIoU loss, LGIOU = 1 − GIOU and presents anti-linear
characteristic with GIoU values. In order to strengthen the hard sample learning,
we use the logarithmic function to increase the losses for the samples whose GIoU
values are very small.

Lreg = − ln(
GIoU + 1

2
) (5)

The predicted GIoU range from -1 to 1 so LIoU is the l2 loss for training.
The loss of mask head Lseg combines two terms:

Lseg = λ4Lmask + λ5Ledge (6)

Here, Lmaskis the loss of the mask prediction which follows the same definition as
[9]. The edge label is a binary map so we define Ledge as the Binary Cross-Entropy
(BCE) loss.

4 Experiments

We perform experiments on the large-scale object detection and instance segmen-
tation benchmark COCO [19] and we train our models on the 115K images in
COCO 2017 train set and tested on the 5K images from the validation set for
ablation study. We also report our results on the 20K images in test-dev.
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Fig. 4. Visual results of our model in COCO test-dev

4.1 Evaluation Metrics

We use the standard evaluation metrics in COCO, i.e., AP , AP50, AP75 for
estimating the performance of our approach on detection and segmentation. Here,
AP presents average precision value over IoU thresholds from 0.5 to 0.95 with
an interval of 0.05. AP50, AP75 denote average precision at IoU thresholds of
0.5 and 0.75, respectively. Since our model deal with both object detection and
instance segmentation tasks, the box AP and mask AP are all reported. For mask
AP, we show the APm, APm

50 and APm
75 and for box, the AP b, AP b

50 and AP b
75

are given.

4.2 Training Details

For fair comparison, we re-implement the baseline methods Mask R-CNN and
MS R-CNN on PyTorch. The hyper-parameters in our model follows which in
Mask R-CNN. And we set 16 images in a training batch (2 images per GPU)
and train with Stochastic Gradient Descent (SGD) for 24 epochs with an initial
learning rate of 0.02 which is decreased by a factor of 10 at the epoch 16 and 22,
respectively. We train on 8 NVIDIA Tesla V100 GPUs and the weight decay and
momentum are 0.0001 and 0.9. The backbones in the model are initialized with
the pre-trained weights on ImageNet [5]. And we set the shorter edges of the
images to be 800 and the longer edges to be 1333. The coefficient in loss function
is set to λ1 = λ2 = λ4 = λ5 = 1, λ3 = 0.5. As a powerful component, FPN is
used in all the backbones.
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Table 1. Comparison among different methods on COCO 2017 test-dev dataset

Method Backbone APm APm
0.5 APm

0.75 AP b AP b
0.5 AP b

0.75

MNC [4] ResNet-101 24.6 44.3 24.8 - - -
FCIS [17] ResNet-101 29.2 49.5 - - - -

FCIS+++ [17] ResNet-101 33.6 54.5 - - - -

Mask R-CNN [9]
ResNet-101-FPN 36.6 58.7 39.2 40.4 61.9 44.2

ResNeXt-101-FPN 38.2 60.9 41.0 42.5 63.8 46.5

MS R-CNN [11]
ResNet-101-FPN 37.8 58.5 41.0 40.7 62.0 44.5

ResNeXt-101-FPN 39.5 60.3 42.9 42.6 63.9 46.8

Mask R-CNN + ours
ResNet-101-FPN 37.7 57.6 41.1 41.7 59.6 45.8

ResNeXt-101-FPN 39.7 60.4 43.4 44.3 62.5 48.7

MS R-CNN + ours
ResNet-101-FPN 38.6 57.8 42.4 41.7 60.4 45.4

ResNeXt-101-FPN 40.5 60.1 44.6 44.3 62.9 48.3

4.3 Main Results

We report the performance of our proposed SEANet on test-dev with different
backbones and frameworks in Table 1. In addition to the results of once the
champions of the COCO instance segmentation challenge MNC [4] and FCIS [17]
as well as its more complex version FCIS+++ [17], we also show the results of
our baseline methods Mask R-CNN and MS R-CNN with different backbones for
comparison. As Table 1 shows, our proposed method achieve a stably improvement
on different backbones and frameworks. Especially on ResNeXt-101, our SEANet
can improve the mask AP by 1.5 points for Mask R-CNN and 1 points for MS
R-CNN. As for the box AP, it achieves 1.8% and 1.7% gains for Mask R-CNN
and MS R-CNN respectively. Some visual results are shown in Fig. 4, which
indicate the great performance of our method on instance segmentation.

4.4 Ablation Study

We conduct lots of extensive experiments to explain our components and prove
the effectiveness of our approach.

The performance of the proposed SEANet. Table 2 shows that our pro-
posed SEANet can improve both the accuracy of the instance segmentation
and object detection with the gains of 1.2 AP and 1.5 AP comparing to the
baseline Mask R-CNN. And from Table 2, we can see that the attention with
edge supervision ( the 5th row ) achieves an improvement of 1.1 AP for APm

0.75

compared with the one without edge supervision ( the 6th row ). It indicates
the introduction of the edge supervision in the attention module is effective for
the accuracy of the instance segmentation especially for the more precise criteria
APm

0.75. Table 2 also indicates that the improvement of the detection tasks can
promote the segmentation performance, which brings a great improvement of 1.8
AP for APm

0.75 under the joint effect of the two parties.
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Table 2. The detection and instance segmentation results on COCO 2017 validation set.
The first row is the baseline Mask R-CNN framework. The component with Xis added
to the baseline. The results show the stable improvement of the proposed approach

Method FCN box head + B-IoU Attention Ledge APm APm
0.5 APm

0.75 AP b AP b
0.5 AP b

0.75

36.5 58.1 39.0 40.3 61.5 44.1
X 36.7 57.6 39.6 41.5 60.2 44.9

Mask R-CNN X 36.9 57.8 39.5 40.4 61.5 44.3
(ResNet-101-FPN) X X 37.0 57.5 39.9 41.5 60.1 45.0

X X 37.5 58.8 40.6 40.8 61.7 44.8
X X X 37.7 57.8 40.8 41.7 60.0 45.6

Table 3. The detection and instance segmentation results on COCO 2017 validation
set. The results without Xis the baseline method and those with Xis our proposed
approach based to the baseline. The results show the stable improvement of the proposed
approach based on different backbones and different framework

Method Backbone SEANet APm APm
0.5 APm

0.75 AP b AP b
0.5 AP b

0.75

Mask R-CNN

ResNet-50-FPN
34.5 55.8 36.7 38.0 58.9 42.0

X 36.0 55.4 39.2 39.4 57.7 42.7

ResNet-101-FPN
36.5 58.1 39.0 40.3 61.5 44.1

X 37.7 57.8 40.8 41.7 60.0 45.6

ResNeXt-101-FPN
37.7 59.9 40.4 42.0 63.1 46.1

X 39.4 60.1 42.8 44.1 62.6 48.1

MS R-CNN

ResNet-50-FPN
36.0 55.8 38.8 38.6 59.2 42.5

X 36.9 55.5 40.3 39.6 58.2 42.8

ResNet-101-FPN
37.8 58.0 41.1 40.7 61.1 45.5

X 38.5 57.0 42.5 41.8 59.6 45.7

ResNeXt-101-FPN
38.8 59.5 41.7 42.1 63.1 46.0

X 39.8 59.3 43.7 43.7 62.3 47.6

In addition, we report the results of our proposed approach with different
frameworks and backbones in Table 3, which shows that our proposed approach
is universally effective and is no sensitive for the change of frameworks and
backbones. In the meantime, we can see that the improvement of our method
based on MS R-CNN is slightly less than the one based on Mask R-CNN. It
is reasonable that since the final scores of the detected objects align with the
accuracies of their classifications and regressions, which somewhat determines
the qualities of the detected masks, using these scores to rank the mask results is
viable. And MS R-CNN aims to find the more precise scores for the masks, in
which the room for improvement is small because our box scoring is also accuracy.
And the FCN box head brings more room for the edge attention module to make
an impact.

The design of mask attention head. We extend the original mask head in
Mask R-CNN by adding the attention modules. The results of different designs
are reported in Table 4. From Table 4, we can see that using the edge supervision
mechanism obtains robust performance gain compared with no applying edge
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Fig. 5. Performance of the fully convolutional box head for ResNet-101-FPN. (a) The
result of baseline Mask R-CNN. (b) The result of proposed SEANet when B-IoU branch
is not used. (c) The result of proposed SEANet using fully convolutional box head

Table 4. Results of different designs of the attention branches. The backbone is
ResNet-50-FPN

Design APm APm
0.5 APm

0.75

Mask R-CNN 34.5 55.8 36.7
(a) edge supervison (sum) 36.0 55.4 39.2
(b) edge supervison (concat) 35.6 55.0 38.8
(d) without edge supervison 35.1 54.6 38.4

supervision, which shows the effective of the proposed edge supervision mechanism.
In the detail, the manner that element-wisely adding the feature from the edge
attention module with the high-level feature on the mask head, represented by
“sum”, outperforms using concatenation operation which represented by “concat”.
It indicates that the sum operation between the feature with edge information
of the object and the high-level semantic feature on the mask head can fuse
the object boundary information and semantic information more directly, and
specifically strengthen features on the object boundary in the pixel level.

The performance of fully convolutional box head. In order to indicate the
precision with our proposed fully convolutional box head, especially the B-IoU
branch, we show the visual results compared with baseline Mask R-CNN in Fig. 5.
We can observe that in Mask R-CNN, in spite of giving the high classification
scores, the regressions of the bounding boxes are not accurate enough and fail
in locating the objects with large aspect ratios, like the skis in the Fig. 5 (a).
In our proposed SEANet, even if not using the IoU scores predicted by B-IoU
branch, the box regression results are evidently greater than the baseline and
reasonably improve the performance of the segmentation, as shown in Fig. 5
(b). With the B-IoU branch, we multiply the IoU scores from the B-IoU branch
with the classification scores to balance the precision in the aspect of regression
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Table 5. The boundary prediction evaluation of the baseline Mask R-CNN and our
approach. The backbone is ResNet-101-FPN

Band width 1 3 8

Mask R-CNN 7.01 29.16 41.47
Mask R-CNN + ours 10.99 42.48 57.21

Table 6. The comparison of runtime and parameter. The backbone is ResNet-101-FPN

Method runtime(ms) params(M)

Mask R-CNN 405 63.17
Cascade Mask R-CNN 507 99.09
ours (FCN box head + B-IoU) 450 58.04
ours (edge attention head) 428 71.32
ours (all) 464 64.89

and classification, which helps us to choose the most exact bounding box for
each proposal. As Fig. 5 (c) shows, the borders of the detected bounding boxes
press close to the boundary of each instance even if the large ratio or scale of the
instance, which presents the effectiveness of the proposed fully convolutional box
head.

The boundary prediction evaluation. We evaluate our proposed method
on the boundary prediction by adopting a trimap approach [13]. We compute
the classification accuracy within a band of varying width around boundaries
of the ground-truth mask. We set three different widths of the bands and show
the results of our proposed SEANet and baseline Mask R-CNN on COCO 2017
validation set in Table 5.

As Table 5 shows, our approach can significantly improve edge quality and
achieve an accuracy gain of 15.74 under the band width of 8, which shows the
effective of our propose method.

The comparison of runtime and parameter. Table 6 summarizes the run-
times and the model sizes of our model and other related neural network methods
(Mask R-CNN and Cascade Mask R-CNN). We record runtime with 1280∗800∗3
data in a batch size 8 using PyTorch 1.11.0 with a single NVIDIA Tesla V100
GPU. It can be observed that the runtime of our model is not much bigger than
that of Mask R-CNN, and is smaller than that of Cascade Mask R-CNN. In
terms of parameters, it is equivalent to Mask R-CNN and much smaller than
Cascade Mask R-CNN.

5 Conclusions

In this paper, we focus on keeping the boundary of the mask complete in instance
segmentation. We propose a fully convolutional box head with a new “B-IoU”
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branch which learns association between object features and detected bounding
boxes for estimating the quality of the bounding box. In the mask head, we utilize
two attention modules which prove useful for feature representation. Especially,
we design a novel supervised edge attention module, which use the additional
supervision information to refine the edge of the mask. Experimental results
show that our method consistently improves the baseline models on the COCO
benchmark dataset. Since the method is benefit to both the detection and instance
segmentation, we hope the method can be extended to other models dealing with
instance-level object identification tasks.
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