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Abstract. Learning associations across modalities is critical for robust
multimodal reasoning, especially when a modality may be missing dur-
ing inference. In this paper, we study this problem in the context of
audio-conditioned visual synthesis – a task that is important, for exam-
ple, in occlusion reasoning. Specifically, our goal is to generate future
video frames and their motion dynamics conditioned on audio and a
few past frames. To tackle this problem, we present Sound2Sight, a deep
variational encoder-decoder framework, that is trained to learn a per
frame stochastic prior conditioned on a joint embedding of audio and
past frames. This embedding is learned via a multi-head attention-based
audio-visual transformer encoder. The learned prior is then sampled to
further condition a video forecasting module to generate future frames.
The stochastic prior allows the model to sample multiple plausible fu-
tures that are consistent with the provided audio and the past context.
Moreover, to improve the quality and coherence of the generated frames,
we propose a multimodal discriminator that differentiates between a syn-
thesized and a real audio-visual clip. We empirically evaluate our ap-
proach, vis-á-vis closely-related prior methods, on two new datasets viz.
(i) Multimodal Stochastic Moving MNIST with a Surprise Obstacle, (ii)
Youtube Paintings; as well as on the existing Audio-Set Drums dataset.
Our extensive experiments demonstrate that Sound2Sight significantly
outperforms the state of the art in the generated video quality, while also
producing diverse video content.

1 Introduction

Evolution has equipped the intelligent species with the ability to create mental
representations of sensory inputs and make associations across them to generate
world models [9]. Perception is the outcome of an inference process over this
world model, when provided with new sensory inputs. Consider the following
situation. You see a kid going into a room which is occluded from your viewpoint,
however after sometime you hear the sound of a vessel falling down, and soon
enough, a heavy falling sound. In the blink of an eye, your mind simulates a large
number of potential possibilities that could have happened in that room; each
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Fig. 1: Video generation using our Sound2Sight against Denton and Fergus [10]
on AudioSet-Drums [14]. We also show the optical flow between consecutive
generated frames. The red square indicates the region of dominant motion.

simulation considered for its coherence with the sound heard, and its urgency
or risk. From these simulations, the most likely possibility is selected to be
acted upon. Such a framework that can synthesize modalities from other cues
is perhaps fundamental to any intelligent system. Efforts to understand such
mental associations between modalities dates back to the pioneering work of
Pavlov [43] (on his drooling dogs) who proposed the idea of conditioning on
sensory inputs.

In this paper, we explore this multimodal association problem in the context
of generating plausible visual imagery given the accompanying sound. Specifi-
cally, our goal is to build a world model that learns associations between audio
and video dynamics in such a way as to infer visual dynamics when only the
audio modality (and the visual context set by a few initial frames) is presented
to the system. As alluded to above, such a problem is fundamental to occlu-
sion reasoning. Apart from this, it could help develop assistive technologies for
the hearing-impaired, could enable a synergy between video and audio inpaint-
ing technologies [28,66], or could even compliment the current “seeing through
corners” methods [35,65] using the audio modality.

From a technical standpoint, the task of generating the pixel-wise video
stream from only the audio modality is severely ill-posed. For instance, a drum-
mer playing a drum to a certain beat would sound the same irrespective of the
color of his/her attire. To circumvent this challenge, we condition our video
generator using a few initial frames. This workaround not only permits the gen-
eration of videos that are pertinent to the situation, but also allows the model
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to focus on learning the dynamics and interactions of the visual cues assisted
by audio. There are several recent works in a similar vein [7,56,6] that explore
speech-to-video synthesis to generate talking heads, however they do not use the
past visual context or assume very restricted motion dynamics and audio priors.
On the other hand, methods that seek to predict future video frames [10,55,13]
given only the past frames, assume a continuity of the motion pattern and are
unable to adapt to drastic changes in motion that might arise in the future (e.g.,
the sudden movements of the drummer in Figure 1). We note that there also
exist several recent works in the audio-visual synthesis realm, such as generating
audio from video [27,63,64] that looks at a complementary problem and mul-
timodal generative adversarial networks (GAN) that generates a single image
rather than forecasting the video dynamics [8,18,58].

To tackle this novel task, we present a stochastic deep neural network: Sound2
Sight, which is trained end-to-end. Our main backbone is a conditional varia-
tional autoencoder (VAE) [30] that captures the distribution of the future video
frames in a latent space. This distribution is used as a prior to subsequently
condition a video generation framework. A key question that arises then, is how
to incorporate the audio stream and its correlations with the video content?
We propose to capture this synergy within the prior distribution - through a
joint embedding of the audio features and the video frames. The variance of
this prior distribution, permits diversity in the video generation model, thereby
synthesizing disparate plausible futures.

An important component in our setup is the audio-visual latent embedding
that controls the generation process. Inspired by the recent success of transformer
networks [53], we propose an adaptation of multi-head transformers to effectively
learn a multimodal latent space through self-attention. As is generally known,
pixel generations produced using variational models often lack sharpness, which
could be attributed to the Euclidean loss typically used [32]. To this end, in order
to improve the generated video quality, we further propose a novel multimodal
discriminator, that is trained to differentiate between real audio-visual samples
and generated video frames coupled with the input audio. This discriminator
incorporates explicit sub-modules to verify if the generated frames are realistic,
consistent, and synchronized with the audio.

We conduct experiments on three datasets, two new multimodal datasets:
(i) Multimodal Stochastic Moving MNIST with a Surprise Obstacle (M3SO)
and (ii) Youtube-Painting, alongside a third dataset – AudioSet-Drums – which
is an adaptation of the well-known AudioSet datset [14]. The M3SO dataset
is an extension of stochastic moving MNIST [10], however incorporates audio
based on the location and identity of the digits in the video, while also includ-
ing a surprise component that requires learning audio-visual synchronization
and stochastic reasoning. The Youtube-Painting dataset is created by crawling
Youtube for painting videos and provides a challenging setting for Sound2Sight
to associate painting motions of an artist and the subtle sounds of brush strokes.
Our experiments on these datasets show that Sound2Sight leads to state-of-the-
art performances in quality, diversity, and consistency of the generated videos.
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Before moving on, we summarize below the key contributions of this paper.

– We study the novel task of future frame generation consistent with the given
audio and a set of initial frames.

– We present Sound2Sight, a novel deep variational multimodal encoder-decoder
for this task, that combines the power of VAEs, GANs, and multimodal
transformers in a coherent learning framework.

– We introduce three datasets for evaluating this task. Extensive experiments
are provided, demonstrating state-of-the-art performances, besides portray-
ing diversity in the generation process.

2 Related Works

In this section, we review prior works that are closely related to our approach.
Audio-Visual Joint Representations: The natural co-occurrence of audio-
and-visual cues is used for better representation learning in several recent works
[1,3,20,39,40,41]. We too draw upon this observation, however, our end-goal of
future frame generation from audio is notably different and manifests in our
proposed architecture. For example, while both [1] and [39] propose a common
multimodal embedding layer for video representation, our multimodal embed-
ding module is only used for capturing the prior and posterior distributions of
the stochastic components in the generated frames.
Video Generation: The success of GANs has resulted in a myriad of image gen-
eration algorithms [11,15,16,30,31,36,61]. Inspired from these techniques, meth-
ods for video generation have also been proposed [46,52,55]. These algorithms
usually directly map a noise vector sampled from a known or a learned dis-
tribution into a realistic-looking video and as such are known as unconditional
video generation methods. Instead, our proposed generative model uses addi-
tional audio inputs, alongside encoding of the past frames. Models like ours are
therefore, typically referred to as conditional video generation techniques. Prior
works [17,34,19,42,59] have shown the success of conditional generative meth-
ods when information, such as the video categories, captions, etc., are available,
using which constraints the plausible generations, improving their quality. Our
proposed architecture differs in the modalities we use to constrain the genera-
tions and the associated technical innovations required to accommodate them.
Video Prediction/Forecasting: This is the task of predicting future frames,
given a few frames from the past. Prior works in this area typically fall un-
der: (i) Deterministic, and (ii) Diversity-based methods. Deterministic meth-
ods often use an encoder-decoder model to generate video frames autoregres-
sively. The inherent stochasticity within the video data (due to multiple plausi-
ble futures or encoding noise) is thus difficult to be incorporated in such mod-
els [44,54,12,25,37,48,22]. Our approach circumvents these issues via a stochastic
module. There have been prior efforts to capture this stochasticity from unimodal
cues, such as [57,10,62,4], by learning a parametric prior distribution. Different
from these approaches, we model the stochasticity using multimodal inputs.
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Fig. 2: Overview of the architecture of Sound2Sight. Our model takes F “seen”
video frames (during inference) and all T audio samples, producing T −F video
frames (each denoted by X̂t). During training, the multimodal discriminator
predicts if an input video is real or fake. We construct the fake video by replac-
ing the t-th frame of the ground truth by X̂t. Note that during training, the
generated frames (X̂F+1:t−1) which are input to the audio/visual transformer,
are replaced by their real counterparts (XF+1:t−1), while also using the current
frame Xt to train the stochastic network.

We also note that there are several works in the area of generating human
face animations conditioned on speech [24,26,47,50,51], however these techniques
often make use of additional details, such as the identity of the person or leverage
strong facial cues such as landmarks, textures, etc. - hindering their applicability
to generic videos. There are methods free of such constraints, such as [38], how-
ever they synthesize images and not videos. A work similar to ours is Vougioukas
et al. [56] that synthesizes face motions directly from speech and an initial frame,
however it operates in the restricted domain of generating facial motions only.

3 Proposed Method

Given a dataset D = {V1, V2, · · · , VN} consisting of N video sequences, where
each V is characterized by a pair (X1:T , A1:T ) of T video frames and its time-
aligned audio samples, i.e., X1:T = 〈X1, X2, ..., XF , XF+1, ..., XT 〉 and A1:T =
〈A1, A2, ..., AT 〉. We assume that the audio and the video are synchronized in
such a way that At corresponds to the sound associated with the frame Xt in the
duration (t, t + 1). Now, given as input a sequence of F frames X1:F , (F < T )
and the audio A1:T , our task is to generate frames X̂F+1:T that is as realistic
as possible compared to the true frames XF+1:T . Given the under-constrained
nature of the audio to video generation problem, we empirically show that it
is essential to provide the past frames X1:F to set the visual context besides
providing the audio input.
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Sound2Sight Architecture: In this section, we first present an overview of
the proposed model, before discussing the details. Figure 2 illustrates the key
components in our model and the input-output data flow. In broad strokes, our
model follows an encoder-decoder auto-regressive generator architecture, gener-
ating the video sequentially one frame at a time. This generator module has two
components, viz. the Prediction Network and the Multimodal Stochastic Net-
work. The former module takes the previous frame Xt−1 as input,3 encodes it
into a latent space, concatenates it with a prior latent sample zt obtained from
the stochastic network, and decodes it to generate a frame X̂t, which approxi-
mates the target frame Xt. Sans the sample zt, the prediction network is purely
deterministic and unimodal, and hence can fail to capture the stochasticity in
the motion dynamics. This challenge is mitigated by the multimodal stochastic
network, which uses transformer encoders [53] on the audio and visual input
streams to produce (the parameters of) a prior distribution from which zt is
sampled. The generator can thus be thought of as a non-linear heteroskedastic
dynamical system (whose variance is decided by an underlying neural network),
which generates X̂t from the pair (X̂t−1, zt), and implicitly conditioned on the
(latent) history of previous samples and the given audio.

During training, two additional data flows happen. (i) The transformer and
the stochastic network take as input the true video sequence X1:t as well. This
is used to estimate a posterior distribution which is in turn used to train the
stochastic prior so that it effectively captures the distribution of real video sam-
ples. (ii) Further, the generated frames are evaluated for their realism, motion
synchrony, and audio-visual alignment using a multimodal adversarial discrimi-
nator [15] ( Figure 2). This discriminator uses X̂t – the synthetic frame, inserted
at the t-th index of the original sequence, and Xt−R:t+(k−1) the set of R past,
and (k− 1) future frames, along with the corresponding audio, and compares it
with real (arbitrary) audio-visual clips of length R + k from the dataset. Since
discriminators match distributions, rather than matching individual samples,
this ensures that incorporating the generated frame X̂t results in a coherent
video that is consistent with the input audio, while permitting diversity. We
now elaborate on each of the above modules and layout our training strategy.

Prediction Network: Broadly speaking, the prediction network (PN) is a stan-
dard sequence-to-sequence encoder-decoder network. It starts off by embedding
the previous frame Xt−1 into a latent space. We denote this embedding by
f(Xt−1), where f(·) abstracts a convolutional neural network (CNN) [33]. Each
layer of this CNN consists of a set of convolution kernels, followed by 2D-Batch
Normalization [23] layers, Leaky ReLU activations, and has skip-connections to
the decoder part of the network. These skip connections facilitate reconstruc-
tion of static parts of the video [45]. The embedding of the frame f(Xt−1) is
then concatenated with a sample zt ∼ N (µφ, Σφ), a Gaussian prior provided
by the stochastic module (described next) where µφ and Σφ denote the mean
and a diagonal covariance matrix of this Gaussian prior. Our key idea is to

3 Xt−1 is the real frame during training, however during inference, it is the generated
frame X̂t−1 if t− 1 > F .
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Fig. 3: Details of our Multimodal Stochastic Network and Prediction Network.

have zt capture the cues about the future as provided by the available audio,
as well as the randomness in producing the next frame. We then feed the pair
(f(Xt−1), zt) to a Long-Short Term Memory (LSTM) [21], parametrized by θL
within the PN; this LSTM keeps track of the previously generated frames via
its internal states. Specifically, if ht−1 denotes the hidden state of this LSTM,
then we define its output ηt as: ηt = LSTMθL((f(Xt−1), zt) , ht−1). The LSTM
output ηt is then passed to the decoder network g(·), to generate the next frame,
i.e., X̂t = g(ηt). The decoder consists of a set of deconvolution layers with Leaky
ReLU activations, coupled with 2D-Batch Normalization layers.

Multimodal Stochastic Network: Several prior works have underscored the
importance of modeling the stochasticity in video generation [4,10,57,62], albeit
using a single modality. Inspired by these works, we introduce the multimodal
stochastic network (MSN) that takes both the audio and video streams as inputs
to model the stochastic elements in producing the target frame Xt. As alluded
to earlier, such a stochastic element allows for capturing the randomness in the
generated frame, while also permitting the sampling of multiple plausible futures
conditioned on the available inputs. As shown in Figure 3, the stochastic network
is effectuated by computing a prior and a posterior distribution in the embedding
space (from which zt is sampled) and training the model to minimize their mutual
discrepancy. The prior distribution is jointly conditioned on an embedding of
the audio sub-clip A1:t+(k−1) and an embedding of the video frames X1:t−1,
both obtained via transformer encoders. We denote the t-th audio encoding
by OAt , while the (t − 1)-th video encoding is denoted by MV

t−1. Let the prior
distribution be pφ(zt|OAt ,MV

t−1), parametrized as a Gaussian, with mean µφ
and diagonal covariance Σφ. Likewise, the posterior distribution pψ(zt|OAt , QVt ),
which is also assumed to be a Gaussian N (µψ, Σψ), is jointly conditioned on
audio clips A1:t+(k−1) and visual frames X1:t. Its audio embedding is shared with
the prior distribution and its visual input is obtained from the t-th transformer
encoding is denoted QVt . Here, it is worth noting that the visual conditioning
of the prior distribution, unlike the posterior, is only upto frame t − 1, i.e. the
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past visual frames. Since the posterior network has access to the t-th frame in
its input, it may attempt to directly encode this frame to be decoded by the
prediction network decoder to produce the next frame. However, due to the KL-
divergence loss between the prior and the posterior distributions, such a direct
decoding cannot happen; unless the prior is trained well such that the KL-loss
is minimized; which essentially implies the prior pφ(zt|OAt ,MV

t−1) will be able
to predict the latent distribution of the future samples (as if from the posterior
pψ(zt|OAt , QVt )), which is essentially what we require during inference.

To generate the prior distribution, we concatenate the embedded features
MV
t−1 and OAt as input to an LSTMφ. Different from standard LSTMs, this

LSTM predicts the parameters of the prior distribution directly, i.e., µφ, logΣφ =
LSTMφ(OAt ,M

V
t−1). The posterior distribution parameters are estimated simi-

larly, using a second LSTM, denoted LSTMψ that takes as input the embedded
and concatenated audio-video features OAt and QVt to produce: µψ, logΣψ =
LSTMψ(OAt , Q

V
t ).

Audio-Visual Transformer Encoder: Next, we describe the process of pro-
ducing the prior and posterior distributions from audio-visual joint embeddings.
As we want these embeddings to be “temporally-conscious” while computable
efficiently, we bank on the very successful Transformer Encoder Networks [53],
which are armed with self-attention modules that are well-known to produce
powerful multimodal representations. Re-using the encoder CNN f from the
prediction network, our visual transformer encoder takes as input the matrix
F = 〈f ′(X1), f ′(X2), · · · , f ′(Xt−1)〉 with f ′(Xi) in its i-th column, where f ′(Xi)
denotes the feature encoding f(Xi) augmented with the respective temporal po-
sition encoding of the frame in the sequence, as suggested in [53]. We then
apply `-head self-attention to F by designing Query (Q), Key (K), and Value
(V) triplets via linear projections of our frame embeddings F ; i.e., Qj = W j

qF ,

Kj = W j
kF , and Vj = W j

vF , where W j
q ,W

j
k ,W

j
v are matrices of sizes dk × d, d

is the size of the feature f ′, and j = 1, 2, · · · , `. Using `, dk × d weight matrix
Wh, our self-attended feature M̂V

t−1 from this transformer layer is thus:

M̂V
t−1 = concat`j=1

(
softmax

(
QjK>j√
dk

)
Vj

)
Wh, (1)

where concat denotes the concatenation operator. We use four consecutive self-
attention layers within every transformer encoder, which are then combined via
feed-forward layers to obtain the final encoding [53] MV

t−1, which is subsequently
used in the MSN module. Likewise, the re-purposed visual features for the poste-
rior distribution, QVt , can also be computed by employing a separate transformer
encoder module, which ensures a separation of the visual components of the prior
and the posterior networks. To produce the audio embeddings OAt , we first com-
pute STFT (Short-Time Fourier Transform) features (S1, S2, ..., St+(k−1)) from
the raw audio by choosing appropriate STFT filter sizes and strides, where each
Si ∈ RdHA×dWA and encode them using an audio transformer.
Generator Loss: To train our generator model, we directly maximize the vari-
ational Empirical Lower BOund (ELBO) [30] by optimizing the objective:
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LV =

T∑
t=F+1

E
zt∼pφ

log pφ(X̂t|MV
t−1, zt) −βKL

(
pψ
(
zt|OAt , QVt

)
‖ pφ

(
zt|OAt ,MV

t−1
))
,

where the KL-divergence matches the closeness of the posterior distribution and
the prior, while β is a constant. Casting the above as a minimization and ap-
proximating the first term by the pixel-wise `2 error, reduces the objective to:

LV ≈
T∑

t=F+1

‖Xt − X̂t‖22 + βKL(pψ||pφ). (2)

Multimodal Discriminator Network: Computing the training loss, as in (2),
is entirely based on the supplied ground truth (which is only one of many possi-
bilities) and thus might restrict generative diversity. We rectify this shortcoming
using a multimodal discriminator (see Fig. 2), which is designed to match the
distribution of synthesized frames pG against the ground truth distribution pD.
In contrast to conventional image-based GAN discriminators [5,15], our variant
couples a classifier, denoted Dstd, and an LSTM D, to produce binary labels in-
dicating if the t-th frame is drawn from pD or from pG. This is done via using a
set of ground-truth audio-visual frames from the neighborhood of the generated
frame, where this neighborhood spans the previous R and future (k− 1) frames.
When judging its inputs, the discriminator, besides looking into whether the
t-th frame appears real or fake, also looks at how well the regularities of object
motions are preserved with respect to the neighborhood via a motion dynam-
ics (MD) loss, and if the frames are synchronized with the audio via an audio
alignment (AA) loss. With these additional terms, our discriminator loss is:

Ladv = −
T∑

t=F+1

E
X′
t∼pD

logDstd(X
′
t)+ E

X̂t∼pG
log(1−Dstd(X̂t))

+ E
X′
t∼pD

logD(X ′t|A′t, B′t+(k−1), · · · , B
′
t+1, B

′
t−1, · · · , B′t−R)︸ ︷︷ ︸

Real Data - Motion Dynamics (MD)

+ E
X′
t∼pD

log (1−D(X ′t|A′t′ , C ′t+(k−1),t′+(k−1), · · · , C
′
t+1,t′+1, C

′
t−1,t′−1,· · · ,C ′t−R,t′−R))︸ ︷︷ ︸

Real Data - Audio Alignment (AA)

+ E
X̂t∼pG

log (1−D(X̂t|At, Bt+(k−1), · · · , Bt+1, Bt−1, ..., Bt−R))︸ ︷︷ ︸
Synthetic Frame - Motion Dynamics (MD)

+ E
X̂∼pG

log (1−D(X̂t|At′ , Ct+(k−1),t′+(k−1), · · · , Ct+1,t′+1, Ct−1,t′−1,· · · ,Ct−R,t′−R))︸ ︷︷ ︸
Synthetic Frame - Audio Alignment (AA)

(3)

where (X ′t, A
′
t) denotes a visual frame X ′t and its associated audio A′t from a

clip B′ = (X ′1:T , A
′
1:T ) arbitrarily sampled from the training set. Similarly, we



10 Chatterjee and Cherian

define Ct,t′ = (Xt, At′), t
′ 6= t, Bt = (Xt, At), C

′
t,t′ = (X ′t, A

′
t′), B

′
t = (X ′t, A

′
t),

Xt 6= X ′t, At 6= A′t. The first term in (3) defines a standard image-based GAN
loss, while D in the other terms denotes a convolutional LSTM. The motion
dynamics term captures the consistency of the generated frame against other
frames in the sequence (i.e., X ′t against B′ on the real, and X̂t against B on
the generated), while the audio alignment of the generated frame X̂t against
arbitrary audio samples A′ is captured by the AA term. We optimize for the
discriminator parameters by minimizing this loss above.

Combining the adversarial losses above with (2), our final objective for opti-
mizing the generator is: L = LV − γLadv, where γ is a constant. We minimize
this loss using ADAM [29], while employing the reparameterization trick [30] to
ensure differentiability of the stochastic sampler.

4 Experiments

To benchmark the performance of our model, we present empirical experiments
on a synthetic and two real world datasets, which will be made publicly available.
Multimodal MovingMNIST with a Surprise Obstacle (M3SO): is a
novel extension of the stochastic MovingMNIST dataset [10] adapted to our
multimodal setting, and consists of MNIST digits moving along rectilinear paths
in a fixed size box (48 × 48) which bounce in random directions upon colliding
with the box boundaries. In addition: (i) we equip each digit with a unique tone,
(ii) the amplitude of this tone is inversely proportional to the digit’s distance
from the origin, and (iii) the tone changes momentarily when the digit bounces
off the box edge. We make this task even more challenging by introducing an
obstacle (square block of fixed size) at a random location within the unseen part
of the video. When the digit bounces against the block, a unique audio frequency
is emitted. The task on this dataset is not only to generate the frames, but
also to predict the location of the block by listening to the tone changes. See
supplementary materials for details. We also construct a version of the dataset,
where no block is introduced, called M3SO-NB. We produced 8,000 training,
1,000 validation, and 1,000 test samples for both M3SO and M3SO-NB.
AudioSet-Drums: includes videos from the Drums class of AudioSet [14]. We
clipped and retained only those video segments from this dataset for which the
drum player is visible when the drum beat is heard. This yielded a dataset
consisting of 8K clips which we split as 6K for training, 1K for validation, and
1K for test. Each video is of 64× 64 resolution, 30fps, and is 3 seconds long.
YouTube Painting: To analyze Sound2Sight in a subtle, yet real world set-
ting, we introduce the Youtube Painting dataset. The videos in this dataset are
manually collected via crawling painting videos on Youtube [2]. We selected only
those videos that contain a painter painting on a canvas in an indoor environ-
ment, and which have a clear audio of the brush strokes. These videos provide a
wide assortment of brush strokes and painting colors. The painter’s motions and
the camera viewpoints are often arbitrary which adds to the complexity and di-
versity, making it a very challenging dataset. Here the task is to generate frames
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showing the dynamics of the painter’s arms, while preserving the static compo-
nents in the scene. We collected 4.8K videos for training, 500 for validation and
500 for test. Each video is of 64× 64 resolution, 30fps, and 3s long.
Evaluation Setup: On the M3SO dataset, we conduct experiments in two
settings: (i) in M3SO-NB, all methods are shown 5 frames and the full audio,
with the task being to predict the next 15 frames at training and 20 frames at
test time, and (ii) using M3SO in which blocks are presented, we show 30 frames
at training and 30 frames are predicted, however the block appears at the 42-nd
frame. We predict 40 frames at test time. For the real-world datasets, we train
all algorithms on 15 seen frames and predict the next 15, while has to predict 30
at test time. We use the standard structural similarity (SSIM) [60] and the Peak
Signal to Noise Ratio (PSNR) scores for quantitative evaluation of the quality
of the generated frames against the ground-truth.
Baselines: As our task is novel, we compare our algorithm against the following
closely-related baselines: (i) Audio-Only : using a sequence-to-sequence model [49]
taking only the audio as input and generate the frames using an LSTM (thus,
the past context is missing), (ii) Video-Only, using three baselines: (ii-a) Denton
and Fergus [10], (ii-b) Hsieh et al. [22], and (ii-c) an ablated variant of our
model without audio (Ours - No audio), and (iii) Multimodal : with further three
baselines: (iii-a) Vougioukas et al. [56], that predicts the video from audio and the
first frame, (iii-b) [56] modified to use a set of seen frames (Multiframe [56]), (iii-
c) ablated variants of our model without the AA loss term in the discriminator
(Ours - No AA) and without the AA and MD loss terms (Ours - No AA, MD).
Implementation Details: The PN module uses an LSTM with two layers
and produces 128-D frame embeddings. We use 10-D stochastic samples (zt).
The prior and posterior LSTMs are both single-layered, each with 256-D inputs
from audio-frame embeddings (which are each 128-D). All LSTMs have 256-D
hidden states. Each transformer module has one layer and four heads with 128-
D feedforward layer. The discriminator uses an LSTM with a hidden layer of
256-D, a frame-history R = 2, and look-head k = 1. We train the generator and
discriminator jointly with a learning rate of 2e-3 using ADAM [29]. We set both
β and γ as 0.0001, and increased γ by a factor of 10 every 300 epochs. All hyper-
parameters are chosen using the validation set. During inference, we sample 100
futures per time step, and use sequences that best matches the ground-truth,
for our method and the baselines.

4.1 Experimental Results

M3SO Results: Table 1 shows the performance of our model versus competing
baselines on the M3SO dataset in two settings: (i) without block (M3SO-NB)
and (ii) with block (M3SO). For M3SO-NB, we observe that our method at-
tains significant improvements over prior works, even on long-range generation.
In M3SO, when the block is introduced at the 42-nd frame, the generated frame
quality drops across all methods. Nevertheless, our method continues to demon-
strate better performance. Figure 4(b) presents a visualization of the generated
frames by our method vis-á-vis prior works on the M3SO dataset. Contrasting
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Table 1: SSIM, PSNR for M3SO-NB and M3SO. Highest, Second highest scores.
Notation: Multimodal (M), Unimodal-Video (V), Unimodal-Audio (A)

Experiments with M3SO-NB with 5 seen frames

Method Type SSIM PSNR
Fr 6 Fr 15 Fr 25 Fr 6 Fr 15 Fr 25

Our Method M 0.9575 0.8943 0.8697 21.69 17.62 16.84

Ours - No AA M 0.9547 0.8584 0.8296 21.80 17.36 16.97
Ours - No AA, MD M 0.9477 0.8546 0.8251 21.16 16.16 15.49
Ours - No audio V 0.9556 0.8351 0.6920 22.66 15.59 12.40

Multiple Frames - [56] M 0.9012 0.8690 0.8693 18.09 15.23 15.33
Vougioukas et al. [56] M 0.8600 0.8571 0.8573 15.17 14.99 15.01

Denton and Fergus [10] V 0.9265 0.8300 0.7999 18.59 14.65 13.98
Audio Only A 0.8499 0.8659 0.8662 13.71 13.16 12.94

Experiments on M3SO with 30 seen frames (Block appears: 42nd frame)

Fr 31 Fr 42 Fr 70 Fr 31 Fr 42 Fr 70

Our Method M 0.8780 0.6256 0.6170 19.50 9.39 9.41

Multiple Frames - [56] M 0.8701 0.6073 0.6050 15.41 8.53 8.53
Vougioukas et al. [56] M 0.8681 0.6009 0.6007 15.17 8.48 8.48

Denton and Fergus [10] V 0.7353 0.5115 0.4991 12.25 7.13 7.00
Audio Only A 0.6474 0.5397 0.5315 12.39 9.25 8.84

the output by our method against prior works clearly reveals the superior gener-
ation quality of our method, which closely resembles the ground truth. We find
that the method of [10] fares well under uncertainty, however our task demands
reasoning over audio - an element missing in their setup. Further note that our
model localizes the block in time (i.e. after the 42-th frame) better than other
methods. This is quantitatively analyzed in Table 3 by comparing the mean IoU
of the predicted block location in the final generated frame against the ground
truth. Our scheme outperforms the closest baseline [10] by ∼30%.
Comparisons on Real-world Datasets: As with M3SO, we see from Table 2
that our approach outperforms the baselines, even at long-range generation.
Due to the similarity in visual content (e.g., background) of the unseen frames
to the seen frames, prior methods (e.g., [56] and [10]) are seen to copy the seen
frames as predicted ones, yielding relatively high SSIM/PSNR early on (Figures 1
and 4(a) that show that drummer’s and painter’s arms remain fixed); however
their performances drop in the long-range. Instead, our method captures the
hand motions. Further, our generations are free from artifacts, as corroborated
by the fooling rate on the fully-trained discriminator, that achieves 79.26% for
AudioSet Drums and 65.99% for YouTube Painting.
Human Preference Scores: To subjectively assess the video generation qual-
ity, we conducted a human preference evaluation between a randomly selected
subset of our generated videos and those produced by the closest competitor-
Vougioukas et al. [56] on both the real-world datasets. The results in Table 4
evince that humans preferred our method for more than 80-90% of the videos
against those from [56].
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Table 2: SSIM, PSNR for AudioSet, YouTube Painting. Highest, Second highest
scores. Notation: Multimodal (M), Unimodal-Video (V), Unimodal-Audio (A)

Experiments on the AudioSet Dataset [14], with 15 seen frames

Method Type SSIM PSNR
Fr 16 Fr 30 Fr 45 Fr 16 Fr 30 Fr 45

Our Method M 0.9843 0.9544 0.9466 33.24 27.94 26.99

Multiple Frames - [56] M 0.9398 0.9037 0.8959 26.21 23.78 23.29
Vougioukas et al. [56] M 0.8986 0.8905 0.8866 23.62 23.14 22.91

Denton and Fergus [10] V 0.9706 0.6606 0.5097 30.01 16.57 13.49
Hsieh et al. [22] V 0.1547 0.1476 0.1475 9.42 9.54 9.53
Audio Only A 0.6485 0.6954 0.7277 18.81 19.79 20.50

Experiments on the YouTube Painting Dataset, with 15 seen frames

Our Method M 0.9716 0.9291 0.9110 32.73 27.27 25.57

Multiple Frames - [56] M 0.9657 0.9147 0.8954 30.09 25.40 24.08
Vougioukas et al. [56] M 0.9281 0.9126 0.9027 26.97 25.58 24.78

Denton and Fergus [10] V 0.9779 0.6654 0.4193 32.52 16.05 11.84
Hsieh et al. [22] V 0.1670 0.1613 0.1618 9.11 9.57 9.72
Audio Only A 0.5997 0.6462 0.6743 16.75 17.53 18.04

Table 3: Block IoU on M3SO.

Method Localization IoU

Ours 0.5801

[10] 0.2577

[56] 0.1289

Table 4: Human preference score on
samples from our method vs. [56]

Datasets Prefer ours

AudioSet 83%

YouTube Painting 92%

Sample Diversity: In Figure 4(c), we show the diversity in the samples gen-
erated on the M3SO dataset. Figure 5(b) shows quantitative evaluations of di-
versity. Specifically, we generated a set of K futures at every time step (for |K|
ranging from 1−100), and plotted the SSIM of the samples which matched max-
imally with the ground truth. As is clear, this plot shows an increasing trend
suggesting that samples closer to the ground-truth are obtainable by increasing
K; i.e., generative diversity. We further analyze this over SSIMs on optical flows
computed from the Youtube Painting and Drums datasets. In Figure 5(c), we
plot the intra-sample diversity, i.e., the average pairwise SSIMs for sequences in
K; showing a downward trend, suggesting these sequences are self-dissimilar.

Ablation Results: To study the influence of the transformer network, we con-
trast our model by substituting the transformer by an LSTM with 128-D hidden
states. Figure 5(a) shows the result, clearly suggesting the benefits of using
transformers. From this plot, we also find that having our discriminator is im-
portant. Tables 1 and 2 show that removing the AA and MD loss terms from
the discriminator hurts performance.
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Fig. 4: (a,b) show qualitative comparisons of generated frames and optical flow
images, (c) shows generative diversity on M3SO.
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Fig. 5: Ablation and diversity studies (see text for details).

5 Conclusions

In this work, we explored the novel task of video generation from audio and the
visual context for generic videos. We proposed a novel deep variational encoder-
decoder model for this task, that also characterizes the underlying stochasticity
in real-world videos. We combined our video generator with a multimodal dis-
criminator to improve its quality and diversity. Empirical evaluations on three
datasets demonstrated the superiority of our method over competing baselines.
Acknowledgements: MC thanks the support from the Joan and Lalit Bahl
Fellowship and inputs from Prof. Narendra Ahuja and the annotators.
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