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Abstract. Conventional supervised super-resolution (SR) approaches
are trained with massive external SR datasets but fail to exploit desir-
able properties of the given test image. On the other hand, self-supervised
SR approaches utilize the internal information within a test image but
suffer from computational complexity in run-time. In this work, we ob-
serve the opportunity for further improvement of the performance of
single-image super-resolution (SISR) without changing the architecture
of conventional SR networks by practically exploiting additional infor-
mation given from the input image. In the training stage, we train the
network via meta-learning; thus, the network can quickly adapt to any
input image at test time. Then, in the test stage, parameters of this
meta-learned network are rapidly fine-tuned with only a few iterations
by only using the given low-resolution image. The adaptation at the test
time takes full advantage of patch-recurrence property observed in nat-
ural images. Our method effectively handles unknown SR kernels and
can be applied to any existing model. We demonstrate that the pro-
posed model-agnostic approach consistently improves the performance
of conventional SR networks on various benchmark SR datasets.

Keywords: Deep learning, Meta-learning, Single-image super-resolution,
Patch recurrence

1 Introduction

Super-resolution (SR) aims to increase the image size by recovering high-frequency
details from a given low-resolution (LR) input image, and SR becomes a key fea-
ture in electrical goods, such as smartphone and TV; it has become popular as
high-resolution (HR) screens are commonly available in our daily lives. The most
basic methods utilize interpolation techniques (e.g.,nearest and bicubic resizing)
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to fill in the missing pixels. These methods are efficient but produce blurry re-
sults. Moreover, dedicated hardware-equipped devices, such as jittering [2] and
focal stack [23] cameras, allow the use of multiple images to solve the LR image
problem. However, these specialized devices incur additional costs and cannot be
used to restore images captured with conventional cameras in the past. To miti-
gate these problems, numerous single-image super-resolution (SISR) algorithms
that restore high-quality images by using only a single LR image as input have
been studied; in particular, optimization-based [9, 14] and learning-based [5, 21,
27, 18, 30, 33, 34] methods have been investigated intensively.

Since Dong et al. [5] demonstrated that a three-layered convolutional neural
network could outperform the traditional optimization-based methods by a large
margin, researchers have proposed numerous deep-learning-based methods for
SISR. These methods aim to increase the performance of peak signal-to-noise
ratio (PSNR) and structural similarity (SSIM) by allowing deeper networks to
maximize the power of deep learning with large training datasets. In recent years,
however, PSNR values have reached a certain limit, and more studies using
perception metric [20, 22] have been introduced to focus on creating visually
pleasing and human-friendly images.

Most of the current deep-supervised-learning approaches do not explicitly
adapt their models during test time. Instead, fixed network parameters are used
for all test images regardless of what we can learn more from the new test
image. To fully utilize the additional information available from the given input
test image (LR), we propose to extend this single fixed model approach by
combining it with a dynamic parameter adaptation scheme. We find that the
adaptive network results in better performance, especially for unseen type of
images. In particular, we can utilize patch-recurrence property if available in the
input image, which can be described as self-supervised learning. The notion of
exploiting patch-recurrence has been introduced in prior works [9, 40]. Recently,
Shocher et al. [30] proposed a zero-shot SR (ZSSR) method employing deep
learning; this study is the most related work to our proposed method. ZSSR
trains a relatively small convolutional neural network at test time from scratch,
with training samples extracted only from the given input image itself. Therefore,
ZSSR can naturally exploit the internal information of the input image. However,
ZSSR has some limitations: (1) requirement of considerable inference time due
to slow self-training step; (2) failure to take full advantage of using pre-trained
networks learned by large amounts of external dataset;

Meta-learning can be a breakthrough for the above-mentioned problem. Meta-
learning, i.e.,learning to learn, is gaining popularity in recent deep-learning stud-
ies [35, 31]. Meta-learning aims to learn quickly and efficiently from a small set
of data available at test time. Several methods, such as recurrent architecture-
based [10], and gradient-based methods [13, 26], have been proposed. In particu-
lar, model agnostic meta-learning (MAML) [7] is an example of a gradient-based
method. We experimentally find that training a network with MAML results in
the best initialization of the network parameter to perform well when fine-tuning
with a small number of given input data. Consequently, as shown in Table 1, the
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External dataset? Internal dataset? Fast at run-time?

Self-supervision [30] 7 3 7

Supervision [5, 27, 18] 3 7 3

MLSR(ours) 3 3 3

Table 1: Conventional supervised SR methods are trained with external SR
datasets and run fast. Whereas, self-supervised SR methods typically exploit
information using the given test image at run-time, which is time-consuming
and impractical. Meta-learning for SR (MLSR) can efficiently utilize both exter-
nal and internal information and take advantages of each approach.

proposed method can efficiently utilize both external and internal information
and take advantages of each approach.

To this end, we introduce a method employing the meta-learning (fast adap-
tation) algorithm to solve the SISR problem. Using a large number of degraded
images generated with various SR kernels, our SR networks are trained not only
to generalize over large external data but also to adapt fast to any input image
with real SR kernels.

Our contributions can be summarized as follows:

– To our knowledge, fully exploiting supervision signals available from both ex-
ternal and internal data with an effective meta-learning method is successful
for the first time.

– Most state-of-the-art SR networks can be improved with our meta-learning
scheme without changing the predefined network architectures.

– Our method achieves the state-of-the-art performance over benchmark datasets.

2 Related Works

In this section, we review the most relevant SISR works. Also, methods for
handling unknown SR kernel (i.e.,blind SR) are briefly described.

An early example-based SISR method [8] learned the complicated relation-
ships between LR and HR patches by learning how to use the external dataset. A
locally linear embedding-based SISR method was introduced by Chang et al. [4].
Yang et al. [36] proposed a sparse coding-based algorithm assuming that a pair
of LR and HR patches shares the same sparse coefficients with each distinct
dictionary. Also, learning methodologies like random forest [17, 29, 28], hierar-
chical decision tree [16], and deep learning [5, 21, 27, 22, 18] have been proposed
to boost the performance of SISR.

The self-similarity-based methods assume that a natural image contains repet-
itive patterns and structures within and across different image scales. Glasner et
al. [9] proposed a unified framework that incorporates self-similarity-based ap-
proaches by exploiting patch-recurrence within and across different scales of a
given LR input image. Huang et al. [14] handled transformed patches by es-
timating the transformations between the corresponding LR–HR patch pairs.



4 S. Park et al.

Dong et al. [6] proposed the non-local centralized sparse representation to ex-
ploit the non-local self-similarity of a given LR image. Huang et al. [15] combined
the benefits from both external and internal databases for SISR by employing a
hierarchical random forest.

Recently, a study dealing with the unknown SR kernel has begun to draw
attention. Michaeli and Irani [25] exploit the nature of recurrence of small patches
to handle unknown SR kernel. Yuan et al. [37] propose an unsupervised learning
method with CycleGAN [39], and Gu et al. [11] estimate unknown SR kernel
iteratively and additionally add a spatial feature transform (SFT) layers into the
SR network for handling multiple blur kernels. Based on a simple convolutional
neural network, ZSSR [30] deals with SR kernels given at test time by exploiting
information from an input image itself.

In this work, we focus on overcoming the limitations of these conventional
SISR methods. We observe that many existing deep learning-based methods
fail to fully utilize the information provided in a given input image. Although
ZSSR [30] utilizes both the power of deep learning and information from the
input image at test time, it does not use pre-trained networks with large ex-
ternal dataset. Therefore, we start from training network to utilize the exter-
nal examples. Then, we fine-tune the network with the input image to utilize
the information captured by internal patch-recurrence and cover unknown SR
kernels (given at test time) for the input. To obtain a well-trained network
that can quickly adapt to the input image by using patch-recurrence, we inte-
grate a meta-learning technique inspired by MAML [7] with conventional SISR
networks without changing the network architectures. MAML aims to learn a
meta-network that can swiftly adapt to new learning task and examples using
a small number of iterations for fine-tuning. MAML is applicable in a variety
of tasks, such as few-shot learning [19, 32] and reinforcement learning [12]. We
apply the MAML method to fine-tune the pre-trained SR parameters to input
images quickly and efficiently. We experimentally verify that our approach can
boost the performance of state-of-the-art SISR by a large margin.

3 Meta-Learning for Super-Resolution

In this section, we introduce a new neural approach that integrates recent meta-
learning techniques to solve the SISR problem by exploiting additional informa-
tion available in the input LR image.

3.1 Exploiting patch-recurrence for deep SR

According to [9, 14, 30], small patches inside the natural image recur multiple
times across the different scales of a given image. Therefore, unlike conventional
learning-based methods that utilize large external datasets, we can find multiple
HR patches corresponding to a given LR patch within a single-input image using
the patch-recurrence. However, these previous methods have been developed sep-
arately and handle external and internal datasets differently. Thus, we develop a
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Fig. 1: Increasing PSNR values of ENET [27], IDN [18], and RCAN [38] with
fine-tuning process during the testing phase.

new method that facilitates SR networks by utilizing both (large) external and
(small) internal datasets to further enhance the quality of the restored images.

First, we conduct a simple experiment to improve the performance of ex-
isting deep SR networks without changing their network architectures by using
the patch-recurrence from a given LR test image. To achieve such goal, we re-
train (fine-tune) the fully trained SR networks, such as ENET [27], IDN [18],
and RCAN [38], with a new training set consisting of LR test image and its
down-scaled version (×0.5). Note that, RCAN is currently state-of-the-art SR
network. By updating the network parameters using the gradient descent, the
PSNR values of SR networks increase. Also note that we can further increase
PSNR values without using the ground truth HR image, because we utilize ad-
ditional information obtained from the patch-recurrence of the new training set
(Figure 1). The PSNR values in Figure 1 are obtained by calculating the average
of the updated PSNR values on the Urban100 dataset [14]. The PSNR values
tend to increase until 50 iterations, then decrease because the networks can be
over-fitted with a small training set at test time. The performance of RCAN
drops relatively quickly due to huge number of parameters used in the network.

This experiment demonstrates that there is still room to improve the per-
formance of conventional SR networks while keeping their original network ar-
chitectures, and patch-recurrence property is a key to boost the performance by
adapting parameters of the fully pre-trained networks.

3.2 Handling unknown SR kernel for deep SR

SR in unknown degradation settings (i.e.,unknown SR kernel) is more challeng-
ing than conventional SR problem in ideal setting using the bicubic interpolation.
According to [25], the performance of the conventional SR networks trained with
only bicubic kernel deteriorates significantly when it comes to the non-bicubic
and real SR kernels in real scenario [30]. That is, generalization capability of the
networks which can handle newly seen SR kernel during test phase is restricted
in real situation. However, many conventional SR networks still assume ideal and
fixed bicubic SR kernel, and thus cannot handle real non-bicubic SR kernels.

In this section, we perform a simple experiment to see whether this problem
can be also alleviated with patch-recurrence property. We first degrade input LR
image with a non-bicubic SR kernel to generate a new training set consisting of
LR image and its down-sized image (×0.5), and then evaluate the performance
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Model Set5 Set14 BSD100 Urban100

IDN [18] 28.24 26.29 26.28 23.49
IDN-Finetune 31.52 28.91 28.47 25.93

Table 2: Average PSNR for scale factor ×2 dealing with unknown SR kernel.

of the original IDN and its fine-tuned version with the down-sized training set.
Note that the original IDN is initially trained with only bicubic SR kernel on
the DIV2K [1] dataset, and our IDN with fine-tuning (IDN-Finetune) is further
optimized for 1000 iterations with the gradient update. In Table 2, we observe
that IDN-Finetune can handle the images degraded by non-bicubic SR kernel
much better on numerous benchmark datasets compared to the original IDN
trained with bicubic SR kernel. Thus, we can see that the patch-recurrence
property still holds and can be also used to improve SR performance by handling
unknown SR kernels.

3.3 Proposed Method

In previous sections, we have shown that the patch-recurrence property can be
used not only to improve the performance of SR networks but also to deal with
non-bicubic SR kernels. However, to update and adapt the pre-trained network
parameters at test time to the specific input image, naive fine-tune-based up-
date with stochastic gradient descent (SGD) requires large number of iterations
and takes much time. To solve this problem, we integrate a meta-learning tech-
nique [7] with the SR networks to facilitate use of the patch-recurrence and boost
the speed of the adaptation procedure at test time.

First, we define each task to employ meta-learning as super-resolving a single
specific LR image by utilizing internal information available within the given
LR input image. However, unlike conventional few-shot/k-shot problems which
can be solved by meta-learning, our new SR task does not provide the ground-
truth data (HR image) corresponding to the LR input image for adaptation at
test time. Thus, it is difficult to directly apply the conventional meta-learning
algorithms to our new learning task for SR.

Therefore, we develop a Meta-Learning for SR (MLSR) algorithm based on
our observation that a pair of images composed of LR input and its down-scaled
version (LR↓) can be used as a new training sample for our new SR task due
to the patch-recurrence property of the natural image, which learns to adapt
the pre-trained SR networks to the given test image. To be specific, we em-
ploy the recent model-agnostic meta-learning (MAML) approach. In particular,
MAML allows fast adaptation to a new task with only a small number of gradi-
ent updates [7], so we can boost the speed of our test-time learning task which
originally requires large number of gradient update steps without meta-learning
scheme (i.e., naive fine-tune).

In Figure 2, the overall flow of the proposed method is illustrated. First,
we initialize the conventional SR networks with large external train datasets.
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Fig. 2: Overall flow of the proposed method (MLSR). (a) Initialization stage
of MLSR. Conventional SR network is trained with large external dataset. (b)
Meta-learning stage of MLSR. The SR network is meta-trained to allow fast
adaptation to any input image at test time. (c) Test stage of MLSR. Meta-
learned parameters are rapidly tuned to the given LR image.

Next, we start meta-learning using MAML which optimizes the initialized SR
parameters to enable quick adaptation to the new LR test image. Finally, during
the test phase, we adapt the meta-learned parameters with the given LR test
image, and restore the HR image by using the adapted parameters.

Specifically, we formulate the proposed method more concretely. Our SR
model fθ which is initialized with parameter θ renders an HR image from a
given LR image by minimizing the loss L, and it yields,

L(fθ(LR), HR) = ||fθ(LR)−HR||22, (1)

and our goal of meta-learning is to optimize the network parameter θ to be
quickly adapted to θi at test time with the given input image LRi and its down-

Algorithm 1: MLSR training algorithm

Require: p(I): Distribution (e.g.,uniform) over images
Require: α, β: Hyper-parameters (step-size)

1 Initialize θ
2 while not converged do
3 Sample a batch of images {Ii} ∼ p(I)
4 Generate {HRi}, {LRi}, {LRi ↓} from {Ii}
5 foreach i do
6 Evaluate ∇θL(fθ(LRi ↓), LRi) using L
7 Compute adapted parameters with SGD:

θi ← θ − α∇θL(fθ(LRi ↓), LRi)
8 Update θ ← θ − β∇θ

∑
i L(fθi(LRi), HRi)
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Algorithm 2: MLSR inference algorithm

Require: I: Given image
Require: α: Hyper-parameter (step-size)
Require: n: Number of gradient updates

1 Initialize θ with meta-trained parameter
2 Generate LR, LR ↓ from I
3 i← 0
4 while i < n do
5 Compute adapted parameters with SGD: θ ← θ − α∇θL(fθ(LR ↓), LR)
6 i← i+ 1

7 Compute fθ(LR)

scaled image LRi ↓. Therefore, the adaptation formulation with gradient update
is given as follows:

θi = θ − α∇θL(fθ(LRi ↓), LRi), (2)

where hyper-parameter α controls the learning rate of the inner update proce-
dure. Notably, to generate the down-scaled image LR ↓ we can use any SR kernel
if available. Then, we optimize the following objective function w.r.t. θ:

argmin
θ

∑
i

L(fθi(LRi), HRi), (3)

and the optimization is preformed by the gradient update as:

θ ← θ − β∇θ
∑
i

L(fθi(LRi), HRi). (4)

In general, we can use multiple iterations for the adaptation in (2), but it
increases computational cost in calculation of high-order derivatives in (4). To
alleviate this problem, we can simply employ the first-order approximation meth-
ods [7, 26], which is known to give competitive results with lower computational
cost. In our experiments, we use the first-order MAML introduced in [7].

At test time, we first adapt the parameters (θ) of the meta-learned SR net-
work with the input LR image (LR) and its down-sized image (LR ↓), then
restore the HR image using the adapted SR parameters as elaborated in Algo-
rithm 2.

4 Experimental Results

In this section, we perform extensive experiments to demonstrate the superior-
ity of the proposed method, and show quantitative and qualitative comparison
results. Our source code is publicly available.1

1 https://github.com/parkseobin/MLSR
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Model Iteration
DIV2K BSD100 Urban100

PSNR SSIM PSNR SSIM PSNR SSIM

SRCNN [5] - 34.11 0.9272 31.13 0.8852 29.39 0.8927

+ MLSR (ours)

5 34.14 0.9274 31.15 0.8855 29.42 0.8931

20 34.18 0.9276 31.19 0.8857 29.48 0.8936

100 34.23 0.9281 31.22 0.8860 29.54 0.8945

ENET [27] - 34.59 0.9329 31.64 0.8935 30.38 0.9097

+ MLSR (ours)

5 34.62 0.9331 31.69 0.8936 30.46 0.9105

20 34.64 0.9333 31.69 0.8936 30.49 0.9108

100 34.67 0.9335 31.67 0.8934 30.52 0.9112

IDN [18] - 35.24 0.9403 32.11 0.8994 31.95 0.9269

+ MLSR (ours)

5 35.36 0.9408 32.17 0.8996 32.06 0.9275

20 35.38 0.9409 32.17 0.8996 32.17 0.9280

100 35.40 0.9413 32.08 0.8988 32.23 0.9286

RCAN [38] - 35.69 0.9451 32.38 0.9023 33.10 0.9369

+ MLSR (ours)

5 35.72 0.9454 32.39 0.9023 33.27 0.9373

20 35.75 0.9458 32.37 0.9022 33.32 0.9379

100 35.48 0.9444 32.04 0.8982 33.26 0.9373

Table 3: PSNR and SSIM results from different SR networks on different test
dataset with scale ×2. Bicubic SR kernel is used. Baseline SR networks are
SRCNN [5], ENET [27], IDN [18], and RCAN [38], and + MLSR indicates the
meta-learned version of the baseline network.

4.1 Implementation details

For our experiments, we first pre-train conventional SR networks (SRCNN [5],
ENET [27], IDN [18], and RCAN [38]) with DIV2K [1] dataset. We use publicly
available pre-trained parameters for IDN and RCAN (TensorFlow versions), and
use our own parameters trained from scratch for SRCNN and ENET. Next, we
start meta-learning for these baseline SR networks in accordance with iterative
steps in Algorithm 1. For meta-learning, we still use DIV2K dataset, and use
5 inner gradient update steps in (2) (line 7 in Algorithm 1). We set α = 10−5,
β = 10−6, train patch size to 512×512, and mini-batch size to 16.

4.2 MLSR with fixed bicubic SR kernel

First, we assume fixed bicubic SR kernel and compare PSNR and SSIM values
of our SR networks on Urban100 and BSD100 [24] datasets. For the comparison
on DIV2K, test set of DIV2K is used since our networks are trained with DIV2K
train set. Results are shown in Table 3, and we can see that PSNR and SSIM
values of SR networks with meta-learning are higher than the original ones.
Notably, the performance gaps on Urban100 are significantly larger than on
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Dataset Model Before/after adaptation

DIV2K
IDN [18] 32.19 / -

IDN-ML 32.19 / 32.37

Urban100*
IDN [18] 32.28 / -

IDN-ML 32.13 / 32.43

Table 4: PSNR results of IDN [18] and IDN-
ML trained on different datasets. 40 im-
ages in Urban100 dataset are selected for
the evaluation. * Another 50 images in the
dataset are used for training.

Fig. 3: Performance changes of
IDN-Finetune, and IDN-ML
during adaptation on DIV2K.

other datasets, as urban scenes in the dataset mainly include structured scene
with lots of patch-redundancy [14].

To further explore the patch-recurrence of natural images, we train the net-
works with the meta-learning scheme in Algorithm 1 on the Urban100 dataset
which includes a large number of similar patches. For meta-learning with Ur-
ban100, we use 50 images for training, 10 images for validation, and the remain-
ing 40 images for test. In Table 4, we evaluate differently trained IDNs, and IDN
trained on Urban100 with meta-learning algorithm outperforms other models.
Note that PSNR value of meta-learned IDN (IDN-ML) is relatively low before
the adaptation, but improves dramatically with only 5 gradient updates (0.3dB
gain). This proves that our MLSR method can learn better on images with rich
patch-recurrence in urban scenes. More qualitative comparison results are shown
in Figure 4, and the test images are particularly well restored with our network
trained with meta-learning algorithm since specific patterns are repeated over
the image itself. Moreover, we can see that the adapted parameters with more
gradient update steps render visually much better results.

Moreover, in Figure 3, we show how PSNR value changes when the number of
gradient steps in (2) increases during meta-learning and test phases. As shown,
our meta-learned model (IDN-ML) can quickly adapt SR parameters at test
time, and achieves competitive results with only few gradient updates. Indeed,
only 5 gradient updates can produce results which can be obtainable with ∼15
iterations of IDN with naive fine-tuning (IDN-Finetune).

4.3 MLSR with unseen SR kernel

In this section, we further conduct experiments to see the capability of the
proposed MLSR algorithm in dealing with new and unseen SR kernel during the
test phase. We carry out meta-learning in Algorithm 1 with randomly generated
5×5 SR kernels on the DIV2K dataset and train for 30k iterations. Moreover,
We generate 40k 5×5 SR kernels as in [3], and use 38k kernels for training, 1k
for validation, and 1k for test.
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Fig. 4: Qualitative comparison with differently trained IDN [18]. Number inside
the bracket indicates the number of gradient update steps in run-time.

Model Set5 Set14 BSD100 Urban100

ZSSR [30] 29.68 27.76 27.53 25.02

IDN-ML / 0 28.10 26.22 26.19 23.48

IDN-ML / 5 29.17 27.08 26.82 24.36

IDN-ML / 20 29.86 27.67 27.32 24.96

IDN-ML / 100 30.41 28.12 27.75 25.42

Table 5: Comparing ZSSR [30] and meta-trained IDN on non-bicubic SR kernel.
Right side of the slash indicates the number of gradient update steps in run-time.

In Table 2, unlike fine-tuning with bicubic SR kernel, we need a large number
of iterations (∼1000) to achieve the highest PSNR value in dealing with non-
bicubic SR kernel. However, our IDN-ML trained with many different SR kernels
learnt the way to be quickly adapted to the new SR kernel given at test time,
and it shows competitive results with only few gradient updates using the new
kernel. Notably, we assume that the SR kernel is given or can be estimated with
conventional methods as in [25, 30]. In Figure 5, we can see that results with
only 5 gradient updates (IDN-ML) are similar to the results from 350 iterations
using the naive fine-tune without our meta-learning (IDN-Finetune).

After meta-training, we compare our model on Set5, Set14, BSD100 and Ur-
ban100 datasets. In the inference stage, an SR kernel that has not been shown
during training stage, and an LR image degraded with that SR kernel are pro-
vided. The results in Figure 5 show consistent improvements for various datasets
as the number of gradient update steps increases. Specifically, the performances
raise strikingly (∼1dB) at around 5 iterations, and it verifies that the network
can quickly adapt to the given input image and SR kernel at test time with the
small number of updates. Notably, the result on Urban100 is slightly different
from others. Performance of the adapted network on Urban100 improves more
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Fig. 5: Performance curve of PSNR val-
ues on various test datasets. Random
5×5 SR kernels are used.

Fig. 6: PSNR of IDN [18] with scale
×3, ×4 on Urban100 dataset. Right
and left sides of the y-axis indicate the
PSNR values with respect to the up-
scaling factor ×3 and ×4, respectively.

rapidly than adapted networks on other datasets as rich patch-recurrence with
urban scenes helps to handle newly seen SR kernels at test time.

In Table 5, we also compare ours with ZSSR [30] on numerous dataset with SR
kernels used in ZSSR, and our proposed method with 20 gradient updates shows
competitive results compared to ZSSR, and significantly outperforms ZSSR when
adapted for 100 iterations. Notably, ours with 100 iterations takes only 6 minutes
to restore 100 urban images, but ZSSR requires more than 3 hours with GeForce
RTX 2080Ti.

In Figure 7 and Figure 8, we compare visual results by naive fine-tuning
(IDN−Finetune), meta-learning (IDN−ML) and ZSSR. We see that the quality
improves significantly within few iterations with our MLSR algorithm, and the
boundaries are restored gradually as iteration goes. Moreover, artifacts near
boundaries caused by ZSSR are not produced by our proposed method.

4.4 SR with large scaling factor

Finally, we study the validity of the patch-recurrence property with large SR
scaling factor. Unfortunately, as shown in Figure 6, exploiting patch-recurrence
on big scale factor is hard (i.e.,×3 or ×4). Maximal performance gained by fine-
tuning with large SR factors are around 0.04dB which are negligible. Therefore,
to produce large images with large scaling factors, we can employ multi-scale
(coarse-to-fine) approaches embedded into the conventional SR methods with
small scale factor (e.g.,×1.25) which also exploit self-similarity nature of the
given test images [9, 14, 30].

5 Conclusion

In this work, we introduced a new SR method which utilizes both the power
of deep learning with large external dataset and additional information avail-
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(a) Ground truth 
(PSNR, Gradient update steps)

(b) IDN
(22.80, -)

(c) IDN - Finetune
(24.69, 100)

(d) ZSSR 
(21.64, -)

(e) IDN - ML 
(23.50, 0)

(f) IDN - ML 
(25.32, 100)

Fig. 7: The “butterfly” image from Set5 dataset with upscaling factor ×2. Input
LR image is downscaled with a non-bicubic 5×5 SR kernel.

able from the input image at test time. To this end, we proposed a novel Meta-
Learning for SR (MLSR) algorithm which enables quick adaptation of SR param-
eters using only input LR image during the test phase. MLSR can be combined
with conventional SR networks without any architecture changes, and can uti-
lize the patch-recurrence property of the natural image, which can further boost
PSNR performance of various deep learning-based methods. In addition, MLSR
can handle non-bicubic SR kernel that exists in real world because meta-learned
networks can be adapted to the specific input image. In experiments, we show
that our MLSR can greatly boost up the performance of existing SR networks,
with a few gradient update steps. Moreover, we experimentally demonstrated
that MLSR takes advantage of the patch-recurrence well, by showing the perfor-
mance improvements on the Urban100 dataset, where patch-recurrence occurs
frequently. Finally, the proposed MLSR algorithm was also validated with the
unseen non-bicubic SR kernel and showed that MLSR required less gradient
updates than naive fine-tuning. We believe that the proposed method can be
applied not only to SR but also to various types of reconstruction and low-level
vision tasks.
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(a) Ground truth 

(PSNR, Gradient update steps)

(b) IDN 

(25.93, -)

(c) IDN - Finetune 

(26.09, 100)

(e) IDN - ML 

(26.11, 0)

(f) IDN - ML

(27.56, 100)

(d) ZSSR 

(26.94, -)

Fig. 8: The “102061” image from BSD100 dataset with upscaling factor ×2.
LR image is generated using a non-bicubic kernel. Our method achieves better
performance than naive fine-tuning with the same number of inner updates at
run-time.
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