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Abstract. The progressive clustering method and its variants, which it-
eratively generate pseudo labels for unlabeled data and per form feature
learning, have shown great process in unsupervised person re-identification
(re-id). However, they have an intrinsic problem of modeling the in-
camera variability of images successfully, that is, pedestrian features ex-
tracted from the same camera tend to be clustered into the same class.
This often results in a non-convergent model in the real world application
of clustering based re-id models, leading to degenerated performance. In
the present study, we propose an attention-driven two-stage clustering
(ADTC) method to solve this problem. Specifically, our method consists
of two strategies. Firstly, we use an unsupervised attention kernel to
shift the learned features from the image background to the pedestrian
foreground, which results in more informative clusters. Secondly, to aid
the learning of the attention driven clustering model, we separate the
clustering process into two stages. We first use kmeans to generate the
centroids of clusters (stage 1) and then apply the k-reciprocal Jaccard
distance (KRJD) metric to re-assign data points to each cluster (stage 2).
By iteratively learning with the two strategies, the attentive regions are
gradually shifted from the background to the foreground and the features
become more discriminative. Using two benchmark datasets Market1501
and DukeMTMC, we demonstrate that our model outperforms other
state-of-the-art unsupervised approaches for person re-id.

Keywords: Attention, Clustering, Unsupervised Learning, Person Re-
id
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Fig. 1. Examples of class activation maps (CAMs) of pedestrians extracted from the
same camera. From top to bottom are the original images, the CAMs without atten-
tion, and the CAMs with attention (the attcention mechanism is described in Sec.3.1).
Without attention, the CAMs highlight more on the background, leading to that im-
ages from the same camera are likely to be assigned to the same cluster. With attention,
the CAMs focus more on the informative features of pedestrians.

1 Introduction

The difficulties faced by supervised learning have motivated people to develop
unsupervised person re-id models which is more applicable in the real world
setting. One promising approach is the clustering-based method. The idea is to
train a clustering model for the unlabeled data points and a feature learning
model from the pseudo-labeled dataset in a iterative manner. However, in a real
world re-id system, pedestrian images detected in the same camera often share
similar background. This results in a clustering model which assigns pedestrian
features extracted from the same camera into the same cluster. Such model shows
great attention to the image background and fails to capture the in-camera vari-
ability of images (Fig. 1). Therefore, it is necessary to shift the foci from the
background to the foreground during the implementation of the clustering based
model. Under the setting of supervised person re-id, it is often done by intro-
ducing an attention kernel to highlight the informative features of pedestrians
(e.g., logos on clothes, backpacks) and suppresses uninformative ones (e.g., the
background) [23, 38, 41, 14]. However, due to the lack of supervisory signals un-
der the setting of unsupervised person re-id, it is hard for the attention model to
learn correct attentive regions. An alternative way is to use the off-the-shelf pose
estimation model to propose hard attentive local regions [34], but this introduces
local network branches which increases computational complexity of the model.

In the present study, to solve the aforementioned challenges, we propose an
Attention-Driven, Two-stage Clustering method, referred to as ADTC hereafter
(Fig. 2A), for unsupervised person re-id task. Specificaly, we adopt a voxel at-
tention kernel to highlight the features of images that are informative for pedes-
trian discrimination. This attention mechanism enhances the informative spa-
tial regions for pedestrians and recalibrates the channel-wise feature information
adaptively according to the inter-dependencies between channels. As a result, it
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Fig. 2. The scheme of our method ADTC. (A) Our model consists of two iterative
operations, the voxel attention and the two-stage clustering. The gray shadow denotes
the manifold of feature representations at the current round, and different colors rep-
resent different clusters. (B) The feature extractor of our model. GMP denotes global
max-pooling and BN batch normalization. (C) The detail of the attention kernel in the
red dotted box in (B).

enlarges the separations between the negative and positive image pairs with re-
spect to a query. Moreover, this voxel attention kernel only has a small number
of trainable parameters, avoiding the overfitting problem during the iterative
training. Furthermore, to improve the training of the attention-related parame-
ters under the unsupervised setting, we adopt a two-stage clustering process to
generate pseudo-labels for data points. We first use kmeans++ [1] to generate the
centroids of clusters and then apply the k-reciprocal Jaccard distance (KRJD)
metric [45] to re-assign data points to each cluster. Due to the appealing property
of KRJD, data points belonging to the same class are more likely to be aggregated
together, and the clustering quality of images is significantly improved, which in
return facilitates the training of the model parameters. Overall, in our model,
data clustering (generating pseudo-labels) and model training (optimizing fea-
ture representations with attention) are executed iteratvely (Fig. 2A), and they
promote each other to achieve good performances. Using benchmark datasets,
we demonstrate that the proposed model can largely correct the mistakes made
by the previous clustering based models (Fig. 4) and outperform other state-
of-the-art unsupervised models for person re-id. The main contributions of this
paper include:

– We propose to use an unsupervised voxel attention strategy to correct the
mistakes made by the clustering based re-id models.

– We propose to use a two-stage clustering strategy to generate pseudo-labels
for data points, which improves the clustering quality and stabilizes the
progressive training.

– Our model achieves the state-of-the-art performances under the unsuper-
vised setting for person re-id on a number of benchmark datasets.
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2 Related Work

2.1 Unsupervised Person Re-ID

Traditional unsupervised person re-id studies have mainly focused on feature
engineering [9, 7, 42, 13], which created hand-craft features using human prior
knowledge that can be applied directly to the unsupervised learning paradigm.
These methods are efficient for a small dataset, but often fail to deal with a large
dataset, since they can not fully exploit the data distribution to extract the ap-
propriate semantic features. Recently, the domain adaptation strategy has been
widely used for unsupervised person re-id [24, 18, 25, 33, 32], which attempts to
reduce the discrepancy between the source and target data domains. During
training, the knowledge learned from the source domain is continuously trans-
ferred to the target domain to facilitate the learning process. For example, Lin et
al. [20] developed a feature alignment method to align the source and target data
in the feature space by jointly optimizing the classification and alignment losses.
Deng et al.[5] proposed a SPGAN model to preserve the similarity between two
domains and integrate image translation and model learning. However, these
approaches rely heavily on the assumption that the two domains have similar
distributions. When the discrepancy between two domains is large, there is no
guarantee that these methods will work well. Another direction for unsupervised
person re-id is the clustering-based method [6, 28, 40, 21, 39, 8], which generates
pseudo-labels by clustering data points in the feature space and then use these
pseudo-labels to train the model as if in the supervised manner. Fan et al. [6]
proposed a progressive clustering method to transfer the pre-learned deep rep-
resentations to an unseen domain, where feature clustering and representation
learning are performed iteratively like the EM-style algorithm. Lin et al. [21]
proposed a bottom-up clustering approach to jointly optimize a convolutional
neural network and the relationship between the individual samples. Recently,
Yang et.al [39] introduced the asymmetric co-teaching startegy in the clustering
based method. For a clustering-based unsupervised model, the clustering quality
of data is crucial. Compared to the existing clustering-based models, our method
has two differences: 1) we use an attention mechanism to drive the clustering
process, and 2) we cluster data points in two stages using a more appropriate
distance metric. It turns out that our method improves the clustering quality
significantly, which further leverages the model performances (see the details in
Sec. 3.1 and Sec. 3.2).

2.2 Attention in Person Re-ID

The attention in a person re-id model aims to highlight the informative features
of images to avoid the mis-alignments due to pose variance, occlusion, or body
parts missing in a bounding box [36, 27, 3, 49, 4]. The attention mechanisms pro-
posed in the literature can be divided into two main categories: hard-attention
and soft-attention. The former typically uses a pose estimation model to locate
coarse regions and then exploit these local features for discrimination [34, 43, 30,



ADTC for Person ReID 5

15]. However, these hard region-level attentions rely heavily on the pose estima-
tion, which is often inaccurate and does not consider the pixel-level information
within the selected regions that are potentially important for the identification
task. A soft-attention mechanism typically inserts trainable layers into the main
body of the model to mask the convolutional feature maps, so that the informa-
tive regions are highlighted [16, 38, 31, 2]. Two main soft-attention mechanisms
are widely used: the spatial attention and the channel attention. The former
enables the model to pay attention to the valuable features at different spatial
locations, and the latter enables the model to improve the representational power
by performing channel-wise recalibration. There are also works combining the
two soft-attention mechanisms. For example, Li et al. [17] proposed a Harmo-
nious Attention Convolutional Neural Network (HA-CNN) which combines the
pixel-level spatial information and the scale-level channel information to jointly
learn the attentive regions and feature representations. Notably, so far the atten-
tion mechanism has only been used under the supervised setting; here we apply
it under the unsupervised setting which is much harder to optimize.

3 Our Approach

3.1 Voxel attention (VA)

We first introduce the voxel attention strategy4. Given an input image x in the
unlabeled dataset X, denote the output of the backbone model as the corre-
sponding feature map fw×h×c, where w, h, c are the values of width and height,
and the number of channels, respectively. The attention feature map aw×h×c is
defined as (for clearance, we omit the superscript hereafter),

a = v � f , (1)

where v is the voxel attention kernel having the same size as f , and � denotes the
element-wise product. v is composed of two complementary parts: the spatial and
the channel attentions (Fig. 2C). For the spatial attention part, we first calculate
the mean intensity of activation at each spatial location along the corresponding

channel, which is given by I(i, j) =
∑c

l=1
f(i,j,l)

c ; afterwards we apply softmax

to calculate the probability of I(i, j), which is S(i, j) = eI(i,j)/
[∑

i,j e
I(i,j)

]
.

Here, the divisive normalization makes the spatial filters competitive (acts like
global inhibition) to highlight the most active (informative) ones. Note that
no trainable parameter is introduced for the spatial attention branch. For the
channel attention branch, we adopt the idea of [11] and apply a squeeze-and-
excitation block to improve the quality of representations. Firstly, we perform
global average pooling on f to squeeze the global spatial information into a

channel descriptor Cc
in, with each element clin =

∑h,w
i=1,j=1

f(i,j,l)
(h×w) aggregating the

feature information distributed across the spatial space in channel l. Secondly,

4 The term of voxel attention comes from that it is a 3D attention mask combining
the spatial and channel attentions.
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to capture the inter-dependencies between different channels in f , we employ a
gating function on Cc

in by forming a bottleneck with two fully connected layers,
i.e.,

C = σ [W2ReLU(W1Cin)] , (2)

where σ represents the sigmoid function, W1 ∈Dd×c, W2 ∈Dc×d,C ∈Dc, with
d� c. The total number of parameters in the channel attention part is only 2cd,
which is computationally efficient. Eventually, the voxel attention kernel v can
be written as tensor multiplication between S and C,

v = S ×C, (3)

i.e., each voxel vi in v at the location (i, j, l) is calculated as S(i, j)×C(l) (see
Fig. 2C).

The above voxel attention kernel can be regarded as a self-attention function,
which not only enhances the quality of spatial encoding by attending to active
spatial locations in the feature map f , but also recalibrates the channel-wise
feature responses adaptively by capturing the inter-dependencies between chan-
nels. Compared to the harmonious attention (HA) [17], the voxel attention has
a few differences: 1) it has a much simpler form with a much smaller number
of trainable parameters; 2) it is only applied after the backbone model, while
HA is inserted between several building blocks; 3) it includes a normalization
operation in the spatial attention to highlight the informative spatial locations.
It turns out that these differences contribute to improve the model performances
significantly (see Sec. 4.3,4.7).

3.2 Two-stage clustering (TC)

We now introduce the two-stage clustering strategy. The choice of the distance
metric is crucial for clustering. Although an off-the-shelf clustering algorithm
operating in the feature space, rather than in the raw pixel space, can alleviate
the problem of “curse of dimensionality” [29] to some extent, it may still lead
to an unsatisfactory clustering quality. Here we adopt a two-stage procedure to
improve the clustering performance. Firstly, we use the conventional kmeans++
to get the centroids of clusters, denoted as {cm}Mm=1, with M the predefined
number of clusters. Secondly, we re-assign data points to each cluster according
to their k-reciprocal Jaccard distances (KRJDs) [45] to the cluster centroids.
The k-reciprocal nearest neighbours of a feature point are defined as,

R(g, k) = {gj |(gj ∈ N(g, k)) ∩ (g ∈ N(gj , k))}, (4)

where g is a feature point for clustering, which is obtained by performing max-
pooling and 1-D batch normalization on the re-weighted attention feature map
a. N(g, k) denotes the k nearest neighbours of g. R(g, k) indicates that g and
each element in its neighbourhood are the mutually k nearest neighbours of each
other. The KRJD distance between two feature points is then defined as

J(gi, gj) = 1− |R(gi, k) ∩R(gj , k)|
|R(gi, k) ∪R(gj , k)|

. (5)
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Compared to Euclidean distance, KRJD takes into account the reciprocal re-
lationship between data points, and is a stricter rule measuring whether two
feature points match or not (see Fig. 5 and more examples in SI.6). KRJD can
also be seen as a refinement of the k-nearest neighbour in the Euclidean space
which is more accurate for sorting feature points. Then we obtain a refined clus-
ter Cpm by selecting the top p closest feature points to cm with the KRJD metric.
Some of the refined clusters may share some data points due to noises or vari-
ances of input images, especially when feature points are intertwined with each
other at the first few rounds of training. To alleviate this problem, we remove
data points having ambiguous pseudo-labels, and obtain the final pseudo-labeled
training set {(xj , yj)}Nr

j=1, yj ∈ [1, 2, ...,M ], where Nr is the number of remaining
data.

3.3 Progressive Training

In our model, the voxel attention (in combination with model training and fea-
ture extraction) and two-stage clustering (generating pseudo-labels) are per-
formed iteratively. At each training round t, we optimize the model parameters
using the pseudo-labelled train set. When choosing the loss function, we note
that the clustering assignments of two adjacent training rounds can be com-
pletely different, even if the same set of training samples are used. We therefore
adopt the metric learning loss, rather than the softmax loss, as the latter will
lead to the failure of model learning. In other words, we only impose that the dif-
ference of (dis-)similarities between the positive and negative pairs with respect
to a query is larger than a predefined margin, such that the absolute values of
assignments are irrelevant. Specifically, we adopt the triplet loss with in-batch
hard example mining [10] to optimize the model parameters, which is written as

Lm
tri

(
g, g+, g−;θ

)
= max(0, ‖ g − g+ ‖22 − ‖ g − g

− ‖22 +m),

where g+ = arg max
{gp}
‖g − gp‖22, and g− = arg min

{gn}
‖g − gn‖22.

(6)

Here {gp} and {gn} denote the positive and negative sets with respect to g in the
mini-batch, respectively, m is the margin between feature pairs, θ denotes the
model parameters. In order to avoid overfitting on the current pseudo labeled set,
we only trainMt in each round for a few gradient update steps to getMt+1.MT

denotes the final model when the stopping criterion is reached. The two steps of
attention-driven clustering and feature learning are performed iteratively, and
they facilitate each other to achieve the final well-performing model. The detail
of our method ADTC is summarized in Algorithm 1.

4 Experiments

4.1 Datasets

Market-1501 is a dataset containing 32668 images with 1501 identities captured
from 6 cameras [44]. The dataset is split into three parts: 12936 images with 751
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Algorithm 1 Attention-driven Two-stage Clustering (ADTC) method for un-
supervised person re-id

Input: The unlabeled dataset X, the model M0.
Output: Final model MT .
1: t=0.
2: repeat
3: Attention Step:
4: Extracting feature point fi of each data point xi ∈ X before the global max-

pooling layer.
5: Applying the voxel attention kernel vi on fi to get the attention feature point

ai.
6: Applying global max-pooling and 1-D batch normalization on ai to get the final

feature point gi.
7: Clustering Step:
8: Performing kmeans++ clustering on {gi}Ni=1 and obtaining centroids {cm}Mm=1.
9: For each centroid cm, computing its p-nearest neighbours Cp

m based on the KRJD
metric, and assigning the pseudo-label m to all data points in Cp

m.
10: Removing ambiguous data points belonging to more than one clusters and ob-

taining the pseudo-labelled train set {(xj , yj)}Nr
j=1.

11: Parameter Updating Step:
12: Training Mt with the triplet loss on {(xj , yj)}Nr

j=1 to get Mt+1.
13: t = t+1;
14: until t = T

identities forming the training data, 19732 images with 750 identities forming
the testing gallery, and another 3368 images from the testing gallery forming the
query data.
DukeMTMC contains 36411 images with 1812 identities captured from 8 cam-
eras [26]. The dataset is split into three parts: 16522 images with 702 identities
forming the training data, 17661 images with 1110 identities forming the testing
gallery, and another 2228 images with 702 identities from the testing gallery
forming the query data. Note that the evaluation protocol on two dataset are
the same.

4.2 Implementation Details

We use a Resnet-50 pretrained on Imagenet as the backbone model. Following
[37], we add a batch normalization layer after the global pooling layer to pre-
vent overfitting and directly use the batch-normalized global pooling features to
execute identity classification (for the performance of the model architecture on
supervised dataset, see SI.4). The output channels are set as 800 in the voxel
attention kernel. During clustering, we set the number of clusters M to be 1000
(for the effect of M , see SI.2) and the neighbour size p is 20. All input images are
resized to 256× 128. Except random horizontal flipping, no other data augmen-
tation strategy is used. 32 pseudo-classes and 4 examples per class are randomly
sampled to form a mini-batch. The margin m between negative pairs and posi-
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tive pairs is 0.3. The total training rounds is set to be 20. To prevent overfitting,
the model is fine-tuned for 10 epochs in each round. The Adam optimizer is
used for optimization with an initial learning rate of 0.0001 which exponentially
decays after epoch 5 (for more detailed setting of hyper-parameters, see SI.1).

4.3 Model Performances on Benchmark Datasets

We compare our model with other state-of-the-art unsupervised person re-id
methods on two benchmark datasets Market1501 and DukeMTMC. These meth-
ods include: 1) two hand-crafted features: LOMO [19], BoW [44]; 2) four feature
alignment methods, MMFA [20], TJ-AIDL [32], ARN [18], and EANet [12]; 3)
four GAN-based domain adaptation methods, IPGAN [22], eSPGAN+LMP [5],
CamStyle [47], and HHL [46]; 4) two clustering-based methods, PUL [6] and
DAR [28]. Note that when training on Market1501, we first initialize our model
on DukeMTMC and vice versa (domain adaptation).

source to target DukeMTMC to Market1501 Market1501 to DukeMTMC

mAP rank1 rank5 rank10 mAP rank1 rank5 rank10

Directly transfer 18.8 44.0 62.1 69.4 18.2 34.0 49.1 55.9

LOMO [19] 8.0 27.2 - - 4.8 12.3 - -
BoW [44] 14.8 35.8 - - 8.3 17.2 - -

MMFA [20] 24.7 45.3 59.8 66.3 27.4 56.7 75.0 81.8
TJ-AIDL [32] 26.5 58.2 74.8 81.1 23.0 44.3 59.6 65.0

ARN [18] 39.4 70.3 80.4 86.3 33.4 60.2 73.9 79.5
EANet [12] 51.6 78.0 - - 48.0 67.7 - -

IPGAN [22] 25.6 56.4 76.0 82.5 26.7 46.8 62.0 67.9
eSPGAN+LMP [5] 30.4 52.6 66.3 71.7 31.7 63.6 80.1 86.1

CamStyle [47] 27.4 58.8 78.2 84.3 25.1 48.4 62.5 68.9
HHL [46] 31.4 62.2 78.8 84.0 27.2 46.9 61.0 66.7

PUL [6] 20.1 44.7 59.1 65.6 16.4 30.4 44.5 50.7
DAR [28] 53.7 75.8 89.5 93.2 49.0 68.4 80.1 83.5
SSG [8] 58.3 80.0 90.0 92.4 53.4 73.0 80.6 83.2

ADTC w/o DA 38.8 59.5 71.6 76.9 37.9 59.4 70.0 74.1
ADTC (Ours) 59.7 79.3 90.8 94.1 52.5 71.9 84.1 87.5

Table 1. Comparison of different unsupervised learning methods. DukeMTMC to
MarKet1501 means model initialized on DukeMTMC and trained on Market1501.
Market1501 to DukeMTMC means model initialized on Market1501 and trained on
DukeMTMC. ADTC w/o DA means we trained our model directly on the unlabeled
dataset without initialization on the source domain dataset. Note that the LOMO,
BoW and PUL also don’t use the source domain data to initialize models.

The results are summarized in Table 1. We observe that: 1) our model
achieves 59.7%/79.3% on Market1501 and 52.5%/71.9% on DukeMTMC on the
mAP/rank1 accuracy, which is one of the state-of-the-art (SOTA) models. Note
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that we only initialized the model on the source labeled domain and then trained
it without any auxiliary label information in the unlabeled domain; whereas most
of the aforementioned methods keep using the auxiliary label information in the
source domain during the domain transfer learning. 2) Compared to the feature
alignment methods which implicitly make an assumption that the data distri-
butions of the source and target domains are similar, our model learns directly
from the unlabeled target dataset and achieves better performances. 3) Com-
pared to the GAN-based models which aim at translating the style of labeled
images from the source domain to the target domain, our model achieves bet-
ter performances even without the voxel attention or two-stage clustering (see
Table.2). 4) Although the clustering-based SSG model achieves a slightly better
performance on DukeMTMC (mAP/rank1) than ours, they use multi learning
branches and the DBSCAN clustering method while our model only consists of
only one learning branch and adopts the simple kmeans clustering method. No-
tably, the main concern in our paper is to enhance the in-camera variability so as
to improve the accuracy of unsupervised person ReID model rather than intro-
duce other strategies to boost the performance. Overall, our model achieves the
state-of-art performances on the two benchmark datasets. In below, we inspect
how different elements of the model contribute to its superior peformances.

4.4 Contribution of the Voxel Attention

Fig. 3A&B present the class activation maps (CAMs) [48] of a few example im-
ages, which display the spatial regions where the model pays attention to. We
see that without the voxel attention, the model pays more attention to the back-
ground than to the foreground, resulting in wrong cluster assignments. Indeed,
such a degenerate performance often occurs in a clustering-based method with-
out attention, since pedestrian images extracted from the same camera, espe-
cially those from the same location, tend to have less variability than those from
different cameras (also see Fig. 1). Consequently, the model will assign clusters
based on the overall image appearances, rather than the details of pedestrians,
and thus fail to capture the in-camera variability of images crucial for the re-id
task. Fig. 3A&B also show that the voxel attention helps to increase the margin
of the negative pair (g, g−) and decrease the margin of the positive pair (g, g+)
in a triplet. We calculate the margin difference δ = ‖g − g−‖22 − ‖g − g+‖22 of
10000 triplets randomly sampled from DukeMTMC, and find that by applying
the voxel attention, δ increases significantly across the whole dataset (Fig. 3C).
This implies that the images belonging to the same identity have a more com-
pact aggregation in the feature space, which makes the retrieval task easier than
that without the voxel attention (see SI.5).

To further unveil the role of the voxel attention, we differentiate the wrongly
retrieved rank1 images to a query into the in-camera errors (ICE), i.e., those in
the same camera as the query, and the cross-camera errors (CCE), i.e., those
in different cameras with the query. Fig. 4 compares the results of our model
with that of the progressive clustering method without attention. It shows that
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Fig. 3. The voxel attention highlights the informative parts of images and makes them
more discriminatable. (A-B) Two examples from DukeMTMC with/without the voxel
attention. From top to bottom are the raw images, the CAMs without the voxel at-
tention, and the CAMs with the voxel attention. The value in black stands for the
euclidean distance between two feature maps, and the value in red for the margin dif-
ference defined in Sec. 4.4. (C) The statistical result of the margin difference δ from
10000 triplets randomly sampled from DukeMTMC.
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of query images having the correct rank1, the number of in-camera error (ICE), and
the number of cross-camera errors (CCE). DukeMTMC is used.
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without attention, the progressive clustering method can improve the rank1 ac-
curacy from 34.0% to 60.3% compared to the baseline (i.e., the result of the
model initialized via the label data); but our model can improve the rank1 ac-
curacy further to 71.9%. Notably, this further improvement is mainly attributed
to the decrease of ICE, from 588 to 340 out of 2228 queries. This supports our
idea that the voxel attention helps to capture the in-camera variability of im-
ages; whereas the progressive clustering method without attention is lack of this
capability and hence makes more mistakes in-camera identifications.

4.5 Contribution of Two-Stage Clustering

Fig. 5. Example clusters with top 10 nearest neighbours after training with/without
two-stage clustering. Market1501 is used. Upper: ranking by the Euclidean distance to
the cluster centroid. Lower: ranking by KRJD to the cluster centroid with two-stage
clustering. Blue, Red: the correctly, the wrongly assigned images.

We continue to inspect the contribution of two-stage clustering. Fig. 5 shows
that when two-stage clustering is used during training, more positive (correct)
examples appear in the neighbourhood of a given cluster centroid, compared
to that of using only the Euclidean distance based Kmeans++ algorithm. This
indicates that KRJD indeed serve as a better metric to compute the neighbour-
hood relationship between feature points, which improves the clustering quality
and leverage the model performances (see SI.6 for more examples).

4.6 Contribution of Progressive Training

We further inspect how the voxel attention and two-stage clustering are executed
iteratively to generate good feature representations. To measure the clustering
quality, we adopt the normalized mutual information (NMI), which is given by

NMI (C,L) =
I(C,L)√
H(C)H(L)

, (7)

where C = {Cp1 , C
p
2 , ..., C

p
M} denote M clusters, L the corresponding ground truth

label set, and I the mutual information between C and L. H(C) and H(L) are
the entropies of C and L, respectively. The value of NMI is between 0 and 1,
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Fig. 6. (A) The clustering performance NMI vs. the training round. (B) The rank1
accuracy vs. the training round.

with 1 standing for the perfect labeling of data points. The larger the NMI, the
closer the pseudo-labels to the ground truth5. Fig. 6A shows how the clustering
performance increases along with the training round. Initially, the assignment
of clusters is unsatisfactory (NMI ≈ 0.77), as data points are intertwined with
each other. Along with the training, data points belonging to the same class
are gradually grouped together, and the assigned pseudo-clusters become more
similar to the ground truth (NMI ≈ 0.90). Fig. 6B further shows that the rank1
accuracy of the model increases in the same pace as the clustering performance.
This suggests that in our model, data clustering and model training promote each
other during progressive training, in the sense that the improved assignments by
two-stage clustering will select more reliable samples to facilitate the learning of
the voxel attention, which in return will highlight more informative features to
further improve cluster assignments.

4.7 Component Analysis of ADTC

Source to Target DukeMTMC to Market1501 Market1501 to DukeMTMC

mAP rank1 rank5 rank10 mAP rank1 rank5 rank10

Only TC 41.1 66.2 84.2 88.9 28.2 49.8 68.2 74.2
Only VA 35.5 61.7 74.3 79.1 32.6 52.0 65.3 69.4

TC + channel attention 42.8 68.9 87.1 91.2 30.1 52.2 71.5 78.9
TC + spatial attention 41.3 66.6 85.0 89.2 28.8 50.7 69.1 75.2

TC + HA 50.6 76.2 88.1 92.0 48.9 69.2 81.5 85.1
TC + CABM 55.2 77.3 88.8 93.5 49.1 69.8 82.0 85.9

Full model 59.7 79.3 90.8 94.1 52.5 71.9 84.1 87.5

Table 2. Component analysis of the performances of our model. Except the ablating
part, all other hyper-parameters are fixed.

We carry out component analysis of our method. Table 2 shows that both the
voxel attention and two-stage clustering are indispensable to our model, in the

5 Note that NMI is independent of the absolute values of labels, in term of that a
permutation of cluster labels does not change its value.
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sense that when either of them is ablated, the model performance is degraded.
Moreover, we check that for the voxel attention, both the channel attention and
the spatial attention are indispensable, in the sense that when either of them
is ablated, the model performance is degraded. We also replace the proposed
voxel attention module with the Harmonious Attention (HA) kernel [17] and the
CABM attention kernel [35] (Table 2). It shows that the proposed attention ker-
nel is superior and leads to better performance under the unsupervised setting.
Besides, we also carry out robustness analysis of our model to hyper-parameters,
e.g., the number of clusters, the margin m the updating epochs in each training
round (see SI.2) and the balance level of the original dataset (SI.3). All these
results indicate that our model is potentially feasible in real-world applications.

5 Conclusion

In this study, we have proposed an Attention-Driven Two-stage Clustering (ADTC)
method for learning an unsupervised model for person re-id. It captures the in-
camera variability of images and reduce the noisy labels when clustering(which
has been ignored in current unsupervised ReID methods). The method has two
indispensable components. Firstly, we use the voxel attention strategy to high-
light the informative parts of pedestrian images, which captures the in-camera
variability of images crucial for the re-id task. Secondly, we adopts a two-stage
clustering strategy, which uses the KRJD metric to improve the clustering qual-
ity and stabilizes the progressive training. Through progressive training, the
two strategies facilitate with each and enables our model to outperform other
unsupervised approaches for person re-ID and achieve the state-of-the-art per-
formances on two benchmark datasets. We also empirically show that our model
is robust to a number of varying conditions, making it potentially feasible in
real-world applications.
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