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Abstract. Temporal action proposal generation plays an important role
in video action understanding, which requires localizing high-quality ac-
tion content precisely. However, generating temporal proposals with both
precise boundaries and high-quality action content is extremely challeng-
ing. To address this issue, we propose a novel Boundary Content Graph
Neural Network (BC-GNN) to model the insightful relations between
the boundary and action content of temporal proposals by the graph
neural networks. In BC-GNN, the boundaries and content of temporal
proposals are taken as the nodes and edges of the graph neural network,
respectively, where they are spontaneously linked. Then a novel graph
computation operation is proposed to update features of edges and n-
odes. After that, one updated edge and two nodes it connects are used
to predict boundary probabilities and content confidence score, which
will be combined to generate a final high-quality proposal. Experiments
are conducted on two mainstream datasets: ActivityNet-1.3 and THU-
MOS14. Without the bells and whistles, BC-GNN outperforms previous
state-of-the-art methods in both temporal action proposal and temporal
action detection tasks.

Keywords: Temporal action proposal generation · Graph Neural Net-
work · Temporal action detection

1 Introduction

Temporal action proposal generation becomes an active research topic in recen-
t years, as it is a fundamental step for untrimmed video understanding tasks,
such as temporal action detection and video analysis. A useful action proposal
method could distinguish the activities we are interested in, so that only inter-
vals containing visual information indicating activity categories can be retrieved.
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Although extensive studies have been carried out in the past, generating tem-
poral proposals with both precise boundaries and rich action content remains a
challenge[26, 15, 1, 2, 5, 12, 13, 11].

Some existing methods [26, 15, 1, 2, 5, 12] are proposed to generate candidate
proposals by sliding multi-scale temporal windows in videos with regular interval
or designing multiple temporal anchor instances for temporal feature maps. Since
the lengths of windows and anchors are fixed and set previously, these methods
cannot generate proposals with precise boundaries and lack flexibility to retrieve
action instances of varies temporal durations.

Recent works [13, 11] aim to generate higher quality proposals. [13] adopts a
“local to global” fashion to retrieve proposals. In the first, temporal boundaries
are achieved by evaluating boundary confidence of every location of the video
feature sequence. Then, content feature between boundaries of each proposal
is used to generate content confidence score of proposal. [11] proposes an end-
to-end pipeline, in which confidence score of boundaries and content of densely
distributed proposals are generated simultaneously. Although these works can
generate proposals with higher quality, they ignore to make explicit use of inter-
action between boundaries and content.

Fig. 1. Schematic depiction of the proposed approach. The red box denotes an action
instance in a video. We regard temporal locations with regular interval as start loca-
tions and end locations for video segments. Start locations S and end locations E are
regarded as nodes. Only when the location of S is before E, we define the content
between them as an edge to connect them. Then, a novel graph reasoning operation
is applied to enable the relationship between nodes and edges. Finally, two nodes and
the edge connected them form a temporal proposal.
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To address this drawback, we propose Boundary Content Graph Neural Net-
work (BC-GNN), which uses a graph neural network to model interaction be-
tween boundaries and content of proposals. As shown in Fig 1, a graph neural
network links boundaries and content into a whole. For the graph of each video,
the nodes denote temporal locations, while the edges between nodes are de-
fined based on content between these locations. This graph enables information
exchanging between nodes and edges to generate more dependable boundary
probabilities and content confidence scores. In our proposed framework, a graph
neural network is constructed to link boundaries and content of temporal pro-
posals firstly. Then a novel graph computation operation is proposed to update
features of edges and nodes. After that, one updated edge and two nodes it con-
nects are used to product boundary probabilities and content confidence score,
which are combined to generate a candidate proposal.

In summary, the main contributions of our work are three folds:

(1) We propose a new approach named Boundary Content Graph Neural Net-
work (BC-GNN) based on the graph neural network to enable the relationship
between boundary probability predictions and confidence evaluation procedures.

(2) We introduce a novel graph reasoning operation in BC-GNN to update
attributes of the edges and nodes in the boundary content graph.

(3) Experiments in different datasets demonstrate that our method outper-
forms other existing state-of-the-art methods in both temporal action proposal
generation task and temporal action detection task.

2 Related work

Action Recognition. Recognizing action classes in trimmed videos is a both
basic and significant task for the purpose of video understanding. Traditional ap-
proaches are mostly based on hand-crafted feature [10, 18, 4, 25]. As the progress
of Convolutional Neural Networks (CNN) in recent years, CNN based method-
s are widely adopted in action recognition and achieve superior performance.
One type of these methods [27, 6] focus on combining multiple data modalities.
Furthermore, other methods attempt to exploit the spatial-temporal feature by
using 3D convolution operation [23, 16, 3]. The feature sequence extracted by ac-
tion recognition models can be used as the input feature sequence of our network
framework to analyze long and untrimmed video.

Graph Neural Network. Graph Neural Networks(GNNs) are proposed to
handle graph-structured data with deep learning. With the development of deep
learning, different kinds of GNNs appear one after another. [17] proposes the
Graph Convolutional Networks(GCNs), which defines convolutions on the non-
grid structures. [24] adopts attention mechanism in GNNs. [9] proposes an ef-
fective way to exploit features of edges in GNNs. Methods[31, 19, 29] based on
GNNs are also applied to many areas in computer vision, since the effectiveness
of these GNNs. In this paper, we adopt a variation of convolution operation in
[9] to compute feature of nodes in our graph nueral network.
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Temporal Action Proposal Generation. The goal of temporal action pro-
posal generation task is to retrieve temporal segments that contain action in-
stance with high recall and precision. Previous methods [26, 15] use temporal
sliding window to generate candidate proposals. However, durations of ground
truth action instances are various, the duration flexibility are neglected in these
methods. Some methods [1, 2, 5, 12] adopt multi-scale anchors to generate pro-
posals, and these methods are similar with the idea in anchor-based object detec-
tion. [32] proposes Temporal Actionness Grouping (TAG) to output actionness
probability for each temporal location over the video sequence using a binary ac-
tionness classifier. Then, continuous temporal regions with high actionness score
are combined to obtain proposals. This method is effective and simple, but the
proposal it generates lacks the confidence for ranking. Recently, [13, 11] generate
proposals in a bottom-up and top-down fashion. As bottom-up, boundaries of
temporal proposals are predicted at first. As top-down, content between bound-
aries is evaluated as a confidence score. While the relations between boundaries
and content is not utilized explicitly, which is quite important we believe. In this
paper, we combine boundary probability predictions and confidence evaluation
procedures into a whole by graph neural network. It facilitates information ex-
changing through these two branches, and brings strong quality improvement in
temporal action proposal generation and temporal action detection.

3 Our Approach

In this section, we will introduce the details of our approach illustrated in Fig.2.
In Feature Encoding, visual contents of input video are encoded into feature
sequence by a spatial and temporal action recognition network, then this se-
quence of features is fed into our proposed Boundary Content Graph Neural
Network (BC-GNN) framework. There are four modules in BC-GNN: Base Mod-
ule, Graph Construction Module (GCM), Graph Reasoning Module (GRM) and
Output Module. The Base Module is the backbone which is used to exploit local
semantic information of input feature sequence. GCM takes feature sequences
from Base Module as input and construct a graph neural network. In the GRM
module, a new graph computation operation is proposed to update attributes of
edges and nodes. Output Module takes the updated edges and nodes as input to
predict boundary and content confidence scores. At last, proposals are generated
by score fusion and Soft-NMS.

3.1 Problem Definition

One untrimmed video consists of a sequence of lv frames, and this sequence can
be denoted as X = {xn}lvn=1. Action instances in the video content compose a

set named Ψg = {ψn = (tns , t
n
e )}Ngn=1, where tns and tne denote the start and end

temporal points of the nth action instance respectively, and Ng denotes the total
number of action instances in this video. Classes of these action instances are
not considered in temporal action proposal generation task.
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3.2 Feature Encoding

Two-stream network [22] is adopted in our framework as visual encoder, since
this encoder shows good performance in video action recognition task. This two-
stream network consists of spatial and temporal branches. Spatial one is used to
encode RGB frames and temporal one is adopted for encoding flow frames. They
are designed to capture information from appearance and motion seperately.

More specifically, an input video X with lv frames is downsampled to a
sequence of ls snippets S = {sn}lsn=1 in a regular temporal interval τ . Thus,
the length of snippet sequence ls is calculated as ls = lv/τ . Every snippet sn
in sequence S is composed of a RGB frame xn and several optical frames on.
After feeding S into two-stream network, two sequences of action class scores are
predicted from top layers of both branches. Then, these two sequences of scores
are concatenated together at feature dimension to generate a feature sequence
F = {fn}lsn=1.

Fig. 2. The framework of BC-GNN. Feature Encoding encodes the video into sequence
of feature. Base Module expands the receptive field. GCM constructs boundary content
graph network in which start nodes and end nodes are denoted as green circles and
yellow circles separately. GRM updates edges and nodes, to relate information between
edges and nodes. Finally, Output Module generates every candidate proposal with each
edge and its connected nodes.
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3.3 Boundary Content Graph Network

Base Module. On one hand, Base Module expands the receptive field, thus
it serves as the backbone of whole network. On the other hand, because of the
uncertainty of untrimmed videos’ length, Base Module applies temporal obser-
vation window with fixed length lw to normalize length of input sequences for
the whole framework. The length of observation windows depends on type of
datasets. We denote input feature sequence in one window as Fi ∈ RDi×lw ,
where Di is the input feature dimension size.

We use two stacked 1D convolution to design our Base Module since local
features are needed in sequential parts, written by Fb = conv1d2(conv1d1(fi)).
After feeding feature sequence Fi into convolutional layers, Fb ∈ RDb×lw is
generated.

Graph Construction Module(GCM). The goal of GCM is to construct a
boundary content graph network. Fig.3(a) shows the simplified structure of undi-
rected graph generated by GCM.

Three convolutional layers conv1ds, conv1de and conv1dc will be adopted
for Fb ∈ RDb×lw separately to generate three feature sequence Fs ∈ RDg×lw ,
Fe ∈ RDg×lw and Fc ∈ RDc×lw . It should be noted that feature dimension size
of Fs and Fe are equal to Dg.

We regard feature sequences Fs and Fe as two sets of feature elements, denot-
ed as Fs = {fs,i}lwi=1 and Fe = {fe,j}lwj=1, where fs,j and fe,j are the ith start fea-
ture in Fs and the jth end feature in Fe. Then we conduct the Cartesian product
between sets Fs and Fe, denoted as Fs ×Fe = {(fs,i, fs,j)|fs,i ∈ Fs ∧ fe,j ∈ Fe}.
To clear out the illegals, we remove every tuple whose start location i is greater
than or equal to the end feature location j from the Fs × Fe and name the
start-end pair set to MSE = {(fs,i, fs,j)|(fs,i ∈ Fs) ∧ (fe,j ∈ Fe) ∧ (i < j)}. The
pairs of start and end feature form a start-end pair set MSE .

To achieve content representation, we select feature elements between the ith
temporal location and the jth location from Fc as a sequence {fc,n}jn=i. We adopt
linear interpolation to achieve constant N vectors at temporal dimension from
{fc,n}jn=i, and denote it as fc,(i,j) ∈ RDc×N . After generating fc,(i,j), we reshape
its dimension size from Dc ×N to (Dc ·N)×1, and apply a fully connected layer
fc1 to make dimension size of fc,(i,j) same with fs,i and fe,j , denoted as fc,(i,j) ∈
RDg . Thus, we achieve a content set MC = {fc,(i,j)|i < j}. Content between the
ith temporal location and the jth temporal location composes content set MC .

Then, the start-end pair set MSE and content set MC make up a undirected
graph. Since the tuple (fs,i, fe,j) ∈MSE corresponds to the video segment that
starts at the ith temporal location and ends at the jth temporal location. If
elements in Fs and Fe are regarded as the nodes of a graph, tuples in MSE

identify the connection relationship between these nodes. Meanwhile the tuples
in MSE and elements in MC are mapped one by one. Therefore, elements in MC

can be regarded as the edges of this graph. Formally, graphs can be denoted as
G = (V,E, I), where V , E and I are their nodes, edges and incidence functions
respectively. In our graph, we define nodes as V = Fs ∪ Fe, edges as E = MC
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and incidence function as I = Mc ↔ MSE , where MSE ⊂ V × V . We call fs,i
start node, and call fe,i end node.

In summary, we build a restricted undirected bipartite graph in which start
nodes are only connected to end nodes whose temporal locations are behind
them. It should be noted edge feature in our boundary content graph is not
scalars but multi-dimensional feature vectors.

(a) Undirected Graph in GCM (b) Directed Graph in GRM

Fig. 3. (a) Construction of undirected graph in GCM. Yellow circle denotes the start
node fs,i sampled from feature Fs, green circle denotes the end node fe,i sampled
from feature Fe, and blue line denotes the undirected edge which is generated from
feature vectors between temporal locations Pi and Pj in Fc. The translucent circles
denote the nodes without edge connection. (b) Structure of directed graph in GRM.
For convenience of description, this digraph only contains one end node and three start
nodes. Red curves denote the start to end edge which point from start node to end
node, and the grey curves denote the end to start edge which point from end node to
start node.

Graph Reasoning Module(GRM). In order to enable information exchang-
ing between nodes and edges, we propose a new graph computation operation.
One time of graph reasoning operation is applied in a block named Graph Rea-
soning Block (GRB). GRM consists of two stacked GRBs.

Our graph computation operation is divided into edge update and node up-
date step. Edge update step is intended to aggregate the attributes of the two
nodes connected by the edge. As mentioned above, we construct an undirected
bipartite graph, in which edges are not directed and start nodes only connect
with end nodes. Since the feature required from start nodes to end nodes is differ-
ent from information from end nodes to start nodes. We converse the undirected
graph into a directed graph or a bi-directed edge. This conversion is shown in
Fig.3(b), every undirected edge is split into two opposite directed edges. In de-
tail, we divide an undirected edge in this graph into two directed edges with the
same nodes connection and opposite direction. In other words, one undirected
edge turns into two directed edges, which are start to end directed edge and end
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to start directed edge. We define one directed edge from the ith start feature
fs,i ∈ Fs to the jth end feature fe,j ∈ Fe as d(i,j), and define directed edge from
end feature fe,j to start feature fs,i as d(j,i), where subscript i is only used for
start node, j is only used for end node, and (i, j) identifies the direction of the
directed edge which points from the ith start node to the jth end node.

Features of directed edges d(i,j) and d(j,i) are same before the edge updating,
denoted as d(i,j) = d(j,i) = fc,(i,j), where fc,(i,j) is feature of the undirected edge
in undirected graph. The edge updating can be described as{

d̃(i,j) = σ(θs2e × (d(i,j) ∗ fs,i ∗ fe,j)) + d(i,j))

d̃(j,i) = σ(θe2s × (d(j,i) ∗ fs,i ∗ fe,j) + d(j,i))
, (1)

where “∗” and “×” denote element-wise product and matrix product separately.
θs2e ∈ RDg×Dg and θe2s ∈ RDg×Dg are different trainable parameter matrices,
and “σ” denotes activation function ReLU.

Node update step aims to aggregate attributes of the edges and their adjacent
nodes. We adopt the variation of graph convolution in [9]. For the convenience of
description, we denote start node and end node as general node nk ∈ RDg , where
k denotes the kth node in the graph. The total number of these nodes is lN = lw·2,
and these general nodes form a set asN = {nk}lNk=1. Meanwhile, we treat updated

start to end edge d̃(i,j) and updated end to start edge d̃(j,i) as general edge
e(h,t) ∈ RDg . These general edges form a set as E = {e(h,t)|nh ∈ N ∧ nt ∈ N}.
As usual, the node pointed by the directed edge is called the tail node, and the
node where the edge starts is called the head node. It is defined that e(h,t) is from
head node nh to tail node nt. Considering that the number of nodes connected
to each other is different, and to avoid increasing the scale of output features
through multiplication, we first normalize the features of edges before the graph
convolution operation. This normalization operation is described as

ẽp(h,t) =
ep(h,t)∑K

k=1 e
p
(h,k)

, (2)

where p is the pth feature in feature vectors e(h,t) and ẽ(h,t), and K is the num-
ber of tail nodes. Note that all elements in e(h,t) are nonnegative. Then the
convolution process of node features is described as

ñt = σ(θnode × (

H∑
h=1

(ẽ(h,t) ∗ nh)) + nt), (3)

where trainable matrix θnode ∈ RDg×Dg is divided into θstart and θend depend-
ing on type of node nt, and H is the number of head nodes. This convolution
operation gathers the information of head nodes to the tail nodes through the
directed edges.

After performing the above two steps, there are a new node feature set Ñ =
{ñk}lNk=1 and an edge feature set Ẽ = {ẽ(h,t)|ñh ∈ Ñ ∧ ñt ∈ Ñ} generated in one
GRB. These two sets become input of the second GRB.
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Output Module. As shown in Fig.1, a candidate proposal is generated using
a pair of opposite directed edges and their connected nodes. Boundaries and
content confidence scores of the candidate proposals are generated based on
their nodes and edges, respectively. The details are described as following.

Before fed into Output Module, directed edge feature set Ẽ is divided into
a start to end edge feature set and an end to start edge feature set, which
are denoted as Ẽs2e = {ẽs2e,(i,j)|i < j ∧ ẽs2e ∈ Ẽ} and Ẽe2s = {ẽe2s,(j,i), |i <
j ∧ ẽe2s,(j,i) ∈ Ẽ}. Meanwhile, node feature set Ñ is divided into a start node

feature set Ñs = {ñs,i}lwi=1 and an end node feature set Ñe = {ñe,j}lwj=1. Based
on this divided feature sets, we build a candidate proposal feature set MSCE =
{(ñs,i, ñe,j , ẽs2e,(i,j), ẽe2s,(j,i))|i < j}, where ñs,i ∈ Ñs is the ith start node feature

, ñe,j ∈ Ñe is the jth end node feature, ẽs2e,(i,j) ∈ Ẽs2e is directed edge feature

from the ith start node to the jth end node and ẽe2s,(j,i) ∈ Ẽe2s is directed edge
feature from the jth end node to the ith start node. The elements in MSCE are
mapped to MSE one by one.

Output Module generates one proposal set Ψp = {ψn}lΨn=1, where ψn =
(ts, ps, te, pe, pc). ts and te are start and end temporal locations of ψn sepa-
rately. ps, pe and pc are the confidence scores of boundary locations ts, te and
confidence score of content between boundaries ts and te.

Each element in MSCE is computed to get a ψn, and the computation oper-
ation is described as

ψn =



ts = i,

te = j,

ps = σ(θSO × ñs,i),
pe = σ(θEO × ñe,j),
pc = σ(θCO × (ẽs2e,(i,j)‖ẽs2e,(j,i)))

, (4)

where “σ” denotes activation function sigmoid, “×” denotes matrix multipli-
cation, and “‖” denotes concatenating operation at feature dimension between
vectors. θSO, θEO and θCO denote trainable vectors.

3.4 Training of BC-GNN

Label Assignment. Given a video, we first extract feature sequence by two-
stream network [22]. Then, we use sliding observation windows with length lw
in feature sequence to get a series of feature sequences with length of lw.

The ground-truth action instances in this window compose an instance set

Ψg = {ψn
g = (tng,s, t

n
g,e)}

lg
n=1, where lg is the size of Ψg. ψn

g starts at the temporal
position tng,s and ends at tng,e. For each ground truth action instance ψg

n, we
define its start interval rns = [tng,s − dng /10, tng,s + dng /10] and end interval rng,e =
[tng,s−dng /10, tng,s +dng /10] separately, where dng = tng,e− tng,s. After that, the start
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region and end region are defined as following
rg,s =

lg
∪

n=1
rng,s

rg,e =
lg
∪

n−1
rng,e

. (5)

Extracted features in observation window are denoted as Fi. Taking Fi as

the input, BC-GNN outputs a set Ψp = {ψn = (ts, ps, te, pe, pc)}
lp
n=1, where

lp is the size of Ψp. Because a plenty of temporal proposals share boundaries,
boundary locations ts and te are duplicated in Ψp. We select a start set S =

{sn = (ts, ps, bs)|}lsn=1, an end set E = {en = (te, pe, be)}len=1 and a content set
C = {cn = (ts, te, pc, bc)}lcn=1 from ΨP . In these three sets, bs, be and bc are
assigned labels for sn, en and cn based on Ψg. If ts locates in the scope of rg,s,
label bs in start tuple sn is set to constant 1, otherwise it is set to 0. In the
same way we can get the label of en. If bc of content tuple cn is set to 1, two
conditions need to be satisfied. One is that ts and te of content tuple cn located
in the regions of rg,s and rg,e respectively. The other is that IoU between [ts, te]
and any ground-truth action instances ψg = (tg,s, tg,e) is larger than 0.5.
Training Objective. We train BC-GNN in the form of a multi-task loss func-
tion. It can be denoted as

Lobjective = Lbl(S) + Lbl(E) + Lbl(C). (6)

We adopt weighted binary logistic regression loss function Lbl for start, end and
content losses, where Lbi is denoted as

Lbl(X) =

N∑
n=1

(α+ · bi · log pn + α− · (1− bi)) · log(1− pn)), (7)

where α+ = N∑
(bi)

, α− = N∑
(1−bi) and N is the size of set X.

3.5 Inference of BC-GNN

During inference, we conduct BC-GNN with same procedures described in train-

ing to generation proposals set Ψp = {ψn = (ts, te, ps, pe, pc)}
lp
n=l. To get final

results, BC-GNN undergos score fusion and redundant proposals suppression
steps.
Score Fusion. To generate a confidence score for each proposal ψn, we fuse
its boundary probabilities and content confidence score by multiplication. This
procedure can be described as

pf = ps ∗ pe ∗ pc. (8)

Thus, the proposals set can be denoted as Ψp = {ψn = (ts, te, pf )}lpn=l.
Redundant Proposals Suppression. After generating a confidence score for
each proposal, it is necessary to remove redundant proposals which highly overlap
with each other. In BC-GNN, we adopt Soft-NMS algorithm to remove redun-

dant proposals. Candidate proposal set ΨP turns to be Ψ ′P = ψn = (ts, te, p′f )
l′P
n=1

,

where l′P is the number of final proposals.
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4 Experiment

We present details of experimental settings and evaluation metrics in this section.
Then we compare the performance of our proposed method with previous state-
of-the-art methods on benchmark datasets.

4.1 Dataset and Setup

ActivityNet-1.3. This dataset is a large-scale dataset for temporal action pro-
posal generation and temporal action detection tasks. ActivityNet-1.3 contains
19,994 annotated videos with 200 action classes, and it is divided into three sets
by ratio of 2:1:1 for training, validation and testing separately.
THUMOS-14. This dataset includes 1,010 videos and 1,574 videos in the vali-
dation and testing sets with 20 classes. And it contains action recognition, tem-
poral action proposal generation and temporal action detection tasks. For the
action proposal generation and detection tasks, there are 200 and 212 videos
with temporal annotations in the validation and testing sets.
Evaluation Metrics. Average Recall (AR) with Average Number (AN) of
proposals per video calculated under different temporal intersection over union
(tIoU) is used to evaluate the quality of proposals. AR calculated at different AN
is donated as AR@AN. tIoU thresholds [0.5 : 0.05 : 0.95] is used for ActivityNet-
1.3 and tIoU thresholds [0.5 : 0.05 : 1.0] is used for THUMOS-14. Specially, the
area under the AR vs. AN curve named AUC is also used as an evaluation metric
in ActivityNet-1.3 dataset.

Mean Average Precision (mAP) is used to evaluate the results of action
detector. Average Precision (AP) of each class is calculated individually. On
ActivityNet-1.3 dataset, a set of tIoU thresholds [0.5 : 0.05 : 0.95] is used
for calculating average mAP and tIoU thresholds {0.5, 0.75, 0.95} for mAP. On
THUMOS-14, mAP with tIoU thresholds {0.3, 0.4, 0.5, 0.6, 0.7} is used.
Implement Details. We adopt two-stream network [22] for feature encoding,
which pre-trained on training set of ActivityNet-1.3. The frame interval τ is set
to 5 in THUMOS-14 and 16 in ActivityNet-1.3. In Base Module, we set the
length of observation window lw to 128 on THUMOS-14. And in GCM, we get
rid of the segments more than 64 snippets, which can cover 98% of all action
instances. We linearly interpolate feature sequence of each video to 100 at the
temporal dimension in ActivityNet-1.3, which means lw = 100 in this dataset.
The learning rate of training BC-GNN is set to 0.0001, and weight decay is set to
0.005 on both datasets. We conduct 20 epoch of model training with the strategy
of early stopping.

4.2 Temporal Action Proposal Generation

Temporal action proposal generation method aims to find segments in videos
which highly overlap with ground-truth action instances. We compare BC-GNN
with state-of-the-art methods to verify the effectiveness of our method in this
section.
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Comparison with state-of-the-art methods. Comparative experiments are
conducted on two widely used benchmarks ActivityNet-1.3 and THUMOS-14.

The results of comparison on validation of ActivityNet-1.3 dataset between
our method and other state-of-the-art temporal action proposal generation ap-
proaches are shown in Table 1. Our method BC-GNN outperforms other leading
methods by a large margin, and our method performs particularly well in aspect
of AR@100.

Table 1. Comparison between our approach and other state-of-the-art methods on
validation set of ActivityNet-1.3 dataset in terms of AR@AN and AUC.

Method Prop-SSAD [12] CTAP [7] BSN [13] MGG [14] BMN [11] BC-GNN

AR@100(val) 73.01 73.17 74.16 74.54 75.01 76.73
AUC(val) 64.40 65.72 66.17 66.43 67.10 68.05

Table 2. Comparison between our approach with other state-of-the-art methods on
testing set of THUMOS-14 in terms of AR@AN.

Feature Method @50 @100 @200 @500 @1000

C3D SCNN-prop [21] 17.22 26.17 37.01 51.57 58.20
C3D SST [1] 19.90 28.36 37.90 51.58 60.27
C3D BSN [13] + NMS 27.19 35.38 43.61 53.77 59.50
C3D BSN + Soft-NMS 29.58 37.38 45.55 54.67 59.48
C3D MGG [14] 29.11 36.31 44.32 54.95 60.98
C3D BMN [11] + NMS 29.04 37.72 46.79 56.07 60.96
C3D BMN + Soft-NMS 32.73 40.68 47.86 56.42 60.44

C3D BC-GNN + NMS 33.56 41.20 48.23 56.54 59.76
C3D BC-GNN + Soft-NMS 33.31 40.93 48.15 56.62 60.41

2Stream TAG [32] 18.55 29.00 39.61 - -
Flow TURN [8] 21.86 31.89 43.02 57.63 64.17

2Stream CTAP [7] 32.49 42.61 51.97 - -
2Stream BSN [13] + NMS 35.41 43.55 52.23 61.35 65.10
2Stream BSN + Soft-NMS 37.46 46.06 53.21 60.64 64.52
2Stream MGG [14] 39.93 47.75 54.65 61.36 64.06
2Stream BMN [11] + NMS 37.15 46.75 54.84 62.19 65.22
2Stream BMN + Soft-NMS 39.36 47.72 54.70 62.07 65.49

2Stream BC-GNN + NMS 41.15 50.35 56.23 61.45 66.00
2Stream BC-GNN + Soft-NMS 40.50 49.60 56.33 62.80 66.57

Comparison between our method and other state-of-the-art proposal gen-
eration methods on testing set of THUMOS-14 dataset in terms of AR@AN is
demonstrate in Table 2. Flow feature, 2Stream feature and C3D feature are adopt
as the input of these methods for ensuring a fair comparison. In this experiment,
BC-GNN outperforms other state-of-the-art methods in a large margin.

These experiments verify the effectiveness of our BC-GNN. BC-GNN achieves
the significant performance improvement since it makes explicit use of interaction
between boundaries and content.
Ablation Study. In GRM module, we convert an undirected graph into a di-
rected graph and propose an edge feature updating operation. To evaluate the
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Fig. 4. Ablation study for our BC-GNN is verified the effectiveness of its modules.

effectiveness of these strategies, we study ablation experiments in two control
groups. We study the models in two control groups. In the first group, we study
three types of the graphs: model with Graph Convolutional Network (GCN)
manner in which edges are formed by cosine distance between nodes features, and
model with directed or undirected edges. Since GCNs does not update edges, the
models in the first group do not apply edge updating for the fair. In the second
group, we study the effectiveness of directed edge in BC-GNN. The experimen-
tal results are listed in Table 3 and the average recall against average number
of proposals at different tIoU thresholds are shown in Fig.4 . The comparison
results show that both of strategies are effective and essential.

Table 3. Ablation study for model with GCN, edge update step and directed edge.

Method Directed Edge updating AR@100 AUC(val)

GCN - - 75.57 66.88
BC-GNN × × 76.18 67.36
BC-GNN X × 76.15 67.53

BC-GNN × X 76.40 67.79
BC-GNN X X 76.73 68.05

4.3 Temporal Action Detection with Our Proposals

Temporal action detection is another aspect of evaluating the quality of pro-
posals. On ActivityNet-1.3, we adopt a two-stage framework that detects ac-
tion instances by classifying proposals. Proposals are generated by our proposal
generator firstly and the top-100 temporal proposals per video are retained by
ranking. Then, for each video in validation set, its top-1 video-level classification
result will be obtained by using two-stream network [33] and all the proposals
of this video share the classification result as their action classes. On THUMOS-
14, we use the top-2 video-level classification scores generated by UntrmmedNet
[28] and proposal-level classification score generated by SCNN-cls to classify first
200 temporal proposals for one video. The results of multiplying the confidence
scores of proposals with classification are used for retrieving detection results.
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Comparison results between our method and other approaches on validation
set of ActivityNet-1.3 in terms of mAP and average mAP are shown in Table
4. Our method reaches state-of-the-art on this dataset which validates our ap-
proach. We compare our method with other existing approaches on testing set
of THUMOS-14 in Table 5. Our approach is superior to the other existing two-
stage methods on the evaluation metrics mAP, which confirms the effectiveness
of our proposed proposal generator.

Table 4. Action detection results on validation set of ActivityNet-1.3 dataset in terms
of mAP and average mAP.

Method 0.5 0.75 0.95 Average

CDC [20] 43.83 25.88 0.21 22.77
SSN [30] 39.12 23.48 5.49 23.98

BSN [13] + [33] 46.45 29.96 8.02 30.03
BMN [11] + [33] 50.07 34.78 8.29 33.85

BC-GNN + [33] 50.56 34.75 9.37 34.26

Table 5. Comparison between our approach and other temporal action detection meth-
ods on THUMOS-14.

Method Classifier 0.7 0.6 0.5 0.4 0.3

TURN [8] SCNN-cls 7.7 14.6 25.6 33.2 44.1
BSN [13] SCNN-cls 15.0 22.4 29.4 36.6 43.1
MGG [14] SCNN-cls 15.8 23.6 29.9 37.8 44.9
BMN [11] SCNN-cls 17.0 24.5 32.2 40.2 45.7

BC-GNN SCNN-cls 19.1 26.3 34.2 41.2 46.3

TURN [8] UNet 6.3 14.1 24.5 35.3 46.3
BSN [13] UNet 20.0 28.4 36.9 45.0 53.5
MGG [14] UNet 21.3 29.5 37.4 46.8 53.9
BMN [11] UNet 20.5 29.7 38.8 47.4 56.0

BC-GNN UNet 23.1 31.2 40.4 49.1 57.1

5 Conclusion

In this paper, a new method of temporal action proposal generation named
Boundary Content Graph Network (BC-GNN) is proposed. A boundary con-
tent graph is proposed to exploit the interaction between boundary probability
generation and confidence evaluation. A new graph reasoning operation is also
introduced to update the features of nodes and edges in the boundary content
graph. In the meantime, an output module is designed to generate proposals
using the strengthened features. The experimental results on popular datasets
show that our proposed BC-GNN method achieves promising performance in
both temporal proposal generation and temporal action detection tasks.
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