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Abstract. Few-shot learning, namely recognizing novel categories with
a very small amount of training examples, is a challenging area of ma-
chine learning research. Traditional deep learning methods require mas-
sive training data to tune the huge number of parameters, which is often
impractical and prone to over-fitting. In this work, we further research
on the well-known few-shot learning method known as prototypical net-
works for better performance. Our contributions include (1) a new em-
bedding structure to encode relative spatial relationships between fea-
tures by applying a capsule network; (2) a new triplet loss designated
to enhance the semantic feature embedding where similar samples are
close to each other while dissimilar samples are farther apart; and (3) an
effective non-parametric classifier termed attentive prototypes in place
of the simple prototypes in current few-shot learning. The proposed at-
tentive prototype aggregates all of the instances in a support class which
are weighted by their importance, defined by the reconstruction error for
a given query. The reconstruction error allows the classification poste-
rior probability to be estimated, which corresponds to the classification
confidence score. Extensive experiments on three benchmark datasets
demonstrate that our approach is effective for the few-shot classification
task.

Keywords: Few-shot learning - Meta learning - Capsule network - Fea-
ture embedding - Attentive prototype learning

1 Introduction

Deep learning has been greatly advanced in recent years, with many successful
applications in image processing, speech processing, natural language processing



2 Wu.F et al.

and other fields. However, the successes usually rely on the condition to access
a large dataset for training. If the amount of training data is not large enough,
the deep neural network would not be sufficiently trained. Consequently, it is
significant to develop deep learning for image recognition in the case of a small
number of samples, and enhance the adaptability of deep learning models in
different problem domains.

Few-shot learning is one of the most promising research areas targeting deep
learning models for various tasks with a very small amount of training dataset
[24], [29], [31], [34], [37],[39], i.e., classifying unseen data instances (query exam-
ples) into a set of new categories, given just a small number of labeled instances
in each class (support examples). The common scenario is a support set with
only 1~10 labeled examples per class. As a stark contrast, general classifica-
tion problems with deep learning models [15], [38] often require thousands of
examples per class. On the other hand, classes for training and testing sets are
from two exclusive sets in few-shot learning, while in traditional classification
problems they are the same. A key challenge, in few-shot learning, is to make
best use of the limited data available in the support set in order to find the right
generalizations as required by the task.

Few-shot learning is often elaborated as a meta-learning problem, with an
emphasis on learning prior knowledge shared across a distribution of tasks [39],
[21], [34]. There are two sub-tasks for meta-learning: an embedding that maps the
input into a feature space and a base learner that maps the feature space to task
variables. As a simple, efficient and the most popularly used few-shot learning
algorithm, the prototypical network [34] tries to solve the problem by learning
the metric space to perform classification. A query point (new point) is classified
based on the distance between the created prototypical representation of each
class and the query point. While the approach is extensively applied, there are
a number of limitations that we’d like to address and seek better solutions.

Firstly, the prototypical representations [34],[39], generated by deep Convo-
lutional Neural Networks, cannot account for the spatial relations between the
parts of the image and are too sensitive to orientation. Secondly, a prototypi-
cal network [34] divides the output metric space into disjoint polygons where
the nearest neighbor of any point inside a polygon is the pivot of the polygon.
This is too rough to reflect various noise effects in the data, thus compromising
the discrimination and expressiveness of the prototype. It has been well-known
that the performance of such a simple distance-based classification is severely
influenced by the existing outliers, especially in the situations of small training
sample size [7].

From the aforementioned discussion, we intend to improve the prototype net-
work by proposing a capsule network [32] based embedding model and reconstruction-
based prototypical learning within the framework of meta-learning. There are
two main components in the proposed scheme: a capsule network-based em-
bedding module which create feature representations, and an improved non-
parametric classification scheme with an attentive prototype for each class in the
support set, which is obtained by attentive aggregation over the representations
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of its support instances, where the weights are calculated using the reconstruc-
tion error for the query instance.

The training of the proposed network is based on the metric learning algo-
rithm with an improved triplet-like loss, which generalizes the triplet network
[33] to allow joint comparison with K negative prototypes in each mini-batch.
This makes the feature embedding learning process more tally with the few-shot
classification problem. We further propose a semi-hard mining technique to sam-
ple informative hard triplets, thus speeding up the convergence and stabilize the
training procedure.

In summary, we proposed a new embedding approach for few-shot learn-
ing based on a capsule network, which features the capability to encode the
part-whole relationships between various visual entities. An improved routing
procedure using the DeepCaps mechanism [27] is designed to implement the
embedding. With a class-specific output capsule, the proposed network can bet-
ter preserve the semantic feature representation, and reduce the disturbances
from irrelevant noisy information. The proposed attentive prototype scheme is
query-dependent, rather than just averaging the feature points of a class for the
prototype as in the vanilla prototype network, which means all of the feature
points from the support set are attentively weighted in advance, and then the
weighting values completely depend on the affinity relations between two feature
points from the support set and the query set. By using reconstruction as an
efficient expression of the affinity relation, the training points near the query
feature point acquire more attention in the calculation of the weighting values.

The proposed approach has been experimentally evaluated on few-shot im-
age classification tasks using three benchmark datasets, i.e. the minilmageNet,
tieredlmageNet and Fewshot-CIFAR100 datasets. The empirical results verify
the superiority of our method over the state-of-the-art approaches. The main
contributions of our work are two-fold:

— We put forward a new few-shot classification approach with a capsule-based
model, which combines a 3D convolution based on the dynamic routing pro-
cedure to obtain a semantic feature representation while preserving the spa-
tial information between visual entities.

— We propose a novel attentive prototype concept to take account of all the
instances in a given support class, with each instance being weighted by the
reconstruction errors between the query and prototype candidates from the
support set. The attentive prototype is robust to outliers by design and also
allows the performance to be improved by refraining from making predictions
in the absence of sufficient confidence.

2 Related work

2.1 Few-shot learning

Few-shot learning aims to classify novel visual classes when very few labeled
samples are available [3], [4]. Current methods usually tackle the challenge using
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meta-learning approaches or metric-learning approaches, with the representative
works elaborated below.

Metric learning methods aim to learn a task-invariant metric, which pro-
vide an embedding space for learning from few-shot examples. Vinyals et al. [39]
introduced the concept of episode training in few-shot learning, where metric
learning-based approaches learn a distance metric between a test example and
the training examples. Prototypical networks [34] learn a metric space in which
classification can be performed by computing distances to prototype represen-
tations of each class. The learned embedding model maps the images of the
same class closer to each other while different classes are spaced far away. The
mean of the embedded support samples are utilized as the prototype to repre-
sent the class. The work in [18] goes beyond this by incorporating the context of
the entire support set available by looking between the classes and identifying
task-relevant features.

There are also interesting works that explore different metrics for the em-
bedding space to provide more complex comparisons between support and query
features. For example, the relation module proposed in [37] calculates the rela-
tion score between query images to identify unlabeled images. Kim et al. [12]
proposed an edge-labeling Graph Neural Network (EGNN) for few-shot classifi-
cation. Metric-based task-specific feature representation learning has also been
presented in many related works. Our work is a further exploration of the proto-
type based approaches [34], [37], aiming to enhance the performance of learning
an embedding space by encoding the spatial relationship between features. Then
the embedding space generates attentive prototype representations in a query-
dependent scheme.

2.2 Capsule Networks

The capsule network [11] is a new type of neural network architecture proposed
by Geoffrey Hinton, with the main motivation to address some of the shortcom-
ings of Convolutional Neural Networks (CNNs). For example, the pooling layers
of CNNs lose the location information of relevant features, one of the so-called
instantiation parameters that characterize the object. Other instanced param-
eters include scale and rotation, which are also poorly represented in CNNs.
Capsule network handles these instantiation parameters explicitly by represent-
ing an object or a part of an object. More specifically, a capsule network replaces
the mechanisms of the convolution kernel in CNNs by implementing a group of
neurons to encode the spatial information and the probability of the existence
of objects. The length of the capsule vector is the probability of the features
in the image, and the orientation of the vector will represent its instantiation
information.

Sabour et al. [32] first proposed a dynamic routing algorithm for capsule
networks in 2017 for the bottom-up feature integration, the essence of which
is the realization of a clustering algorithm for the information transmission in
the model. In [32], a Gaussian mixture model (GMM) was integrated into the
feature integration process to adjust network parameters through EM routing.
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Since the seminal works [11], [32], a number of approaches have been proposed
to implement and improve the capsule architecture [13], [17], [27], [43].

Many applications have been attempted by applying capsule networks, for
example, intent detection [40], text classification [25] and computer vision [41],
[42]. A sparse, unsupervised capsules network [28] was proposed showing that the
network generalizes better than supervised masking, while potentially enabling
deeper capsule networks. Rajasegaran et al. [27] proposed a deep capsule network
architecture called DeepCaps that adapts the original routing algorithm for 3D
convolutions and increases its performance on more complex datasets.

3 Method

3.1 Approach Details

In this section, we first revisit the DeepCaps network [27], which is designed
for more complex image datasets. We then extend it to the scenario of few-shot
learning and describe the proposed algorithm in detail.

DeepCaps Revisit DeepCaps is a deep capsule network architecture proposed
in [27] to improve the performance of the capsule networks for more complex
image datasets. It extends the dynamic routing algorithm in [32] to stacked
multiple layers, which essentially uses a 3D convolution to learn the spatial
information between the capsules. The model consists of four main modules:
skip connected CapsCells, 3D convolutional CapsCells, a fully-connected capsule
layer and a decoder network. The skip-connected CapsCells have three ConvCaps
layers, the first layer output is convolved and skip-connected to the last layer
output. The motivation behind skipping connections is to borrow the idea from
residual networks to sustain a sound gradient flow in a deep model. The element-
wise layer is used to combine the outputs of the two capsule layers after skipping
the connection.

DeepCaps has a unit with a ConvCaps3D layer, in which the number of route
iterations is kept at 3. Then, before dynamic routing, the output of ConvCaps is
flattened and connected with the output of the capsule, which is then followed
by 3D routing (in CapsCell 3). Intuitively, this step helps to extend the model
to a wide range of different datasets. For example, for a dataset composed of
images with less rich information, such as MNIST, the low-level capsule from cell
1 or cell 2 is sufficient, while for a more complex dataset, we need the deeper 3D
ConvCaps to capture rich information content. Once all capsules are collected
and connected, they are routed to the class capsule through the fully-connected
capsule layer.

Network Architecture As explained in the Introduction, our proposed model
has two parts: (1) a modified DeepCaps network with improved triplet-like loss
that learns the deep embedding space, and (2) a non-parameter classification
scheme that produces a prototype vector for each class candidate, which is
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Fig. 1. Framework of the proposed method for few-shot learning. We perform joint
end-to-end training of the Embedding Module (modified DeepCaps) together with the
Prototypical Learning via an improved triplet-like loss from the training dataset. The
well-learned embedding features are used to compute the distances among the query
images and the attentive prototype generated from the support set. The final classifi-
cation is performed by calculating the posterior probability for the query instance.

derived from the attentive aggregation over the representations of its support
instances, where the weights are calculated using the reconstruction errors for
the query instance from respective support instances in the embedding space.
The final classification is performed by calculating the posterior probability for
the query instance based on the distances between the embedding vectors of the
query and the attentive prototype. Figure 1 schematically illustrates an overview
of our approach to few-shot image classification. Each of the parts is described
in detail below.

Embedding module. We follow the practice of episodic training in [39]
which is the most popular and effective meta learning methodology [34], [37].
We construct support set S and query set ) from Dy,.4;y, in each episode to train
the model.

S = {81, S92, ..y SK} 5

Q:{ql,sz,...,qN}7 (1)

where K and N represent the number of samples in the support set and query
set for each class, respectively. As shown in Fig. 2, we first feed the samples
S and @ into the convolution layer and CapsCells, then the collected capsules
are routed to the class capsules after the Flat Caps layer. Here, the decision
making happens via Lo and the input image is encoded into the final capsule
vector. The length of the capsule’s output vector represents the probability that
the object represented by the capsule exists in the current input. We assume
the class capsules as P € Y?*? which consists of the activity vectors for all
classes, where b and d represents the number of classes in the final class capsule
and capsule dimension, respectively. Then, we only feed the activity vector of
predicted class P, € Y'*? into the final embedding space in our setting, where
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Fig. 2. The architecture of the embedding module in which obtains only the activity
vectors of the predicted class.

m = argmax;(||P;||3). The embedding space acts as a better regularizer for the
capsule networks, since it is forced to learn the activity vectors jointly within a
constrained Y% space. The function of margin loss used in DeepCaps enhances
the class probability of the true class, while suppressing the class probabilities
of the other classes. In this paper, we propose the improved triplet-like loss
based on an attentive prototype to train the embedding module and learn more
discriminative features.

Attentive prototype. The prototypical network in [34] computes a D di-
mensional feature representation p; € R, or prototype, of each class through an
embedding function fy : RP — RM with learnable parameters ¢. Each prototype
is the mean vector of the embedded support points belonging to its class:

pi:ﬁ S fala) (2)

3
(zi,yi)€si

where each z; € s; is the D-dimensional feature vector of an example from class
i. Given a distance function d : RP x RP — [0, +00), prototypical networks
produce a distribution over classes for a query point z based on a softmax over
distances to the prototypes in the embedding space:

= cap(=d(fo(@),p1))
po(y = tlz) > exp(—d(fo(x), pyr)) @

Learning proceeds by minimizing the negative log-probability J(¢) = —logps(y =
t|z) of the true class ¢ via Stochastic Gradient Descent (SGD). Most prototypical
networks for few-shot learning use some simple non-parametric classifiers, such
as kNN. It is well known that non-parametric classifiers are usually affected by
existing outliers [6], which is particularly serious when the number of samples




8 Wu.F et al.

is small, the scenario addressed by few-shot learning. A practical and reliable
classifier should be robust to outliers. Motivated by this observation, we propose
an improved algorithm based on the local mean classifier [22]. Given all proto-
type instances of a class, we calculate their reconstruction errors for the query
instance, which are then used for the weighted average of prototype instances.
The new prototype aggregates attentive contributions from all of the instances.
The reconstruction error between the new prototype and the query instance
not only provides a discrimination criteria for the classes, but also serves as a
reference for the reliability of the classification.

More specifically, with K support samples {z;1, %2, ..., Z;x } selected for class
i, a membership 7;; can be defined for a query instance ¢ by employing normal-
ized Gaussian functions with the samples in support sets, e.g.,

exp( llg 2:-?” )

T K —za|?
D=1 exp(%)

where z;; are the j-th samples in class 4, and o; is the width of the Gaussian
defined for class i, and we set the value o; relatively small (e.g, 0;=0.1).

Then, for each class i, an attentive prototype pattern ¢; can be defined for a
query sample ¢

Vi =1 Ki=1,..,M (4)

K
K
G = Ejfl'yzy Yoo

s Vi
Where ;; is defined in Eq. 4 and ¢; can be considered as the generalized support
samples from class ¢ for the query instance ¢. Here we want to ensure that an
image ¢® (anchor) of a specific class in the query set is closer to the attentive
prototype of the positive class ¢P (positive) than it is to multiple ¢" (negative)
attentive prototypes.

M (5)

lg® — ¢°115 + o < ||g* — §"[15,Y¢" € Q. (6)

f where « is a margin that is enforced between positive and negative pairs, @ is
the query set cardinality M N. The loss that is being minimized is then:

MN
S [l1F(a) — FaEDIE— I1£(as) — I +al (7)
m=1
For image classification, a query image can be classified based on the com-
parison of the errors between the reconstructed vectors and the presented image.
That is, a query image ¢ is assigned to class m* if

m* = argmin erry, (8)
m
where err,, =||¢ — Gm||,m=1,..., M.
Improved Triplet-like loss. In order to ensure fast convergence it is crucial
to select triplets that violate the triplet constraint in Eq. 7. The traditional triplet
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loss interacts with only one negative sample (and equivalently one negative class)
for each update in the network, while we actually need to compare the query
image with multiple different classes in few-shot classification. Hence, the triplet
loss may not be effective for the feature embedding learning, particularly when
we have several classes to handle in the few-shot classification setting. Inspired by
[1], [35], we generalize the traditional triplet loss with E-negatives prototypes to
allow simultaneous comparisons jointly with the E negative prototypes instead of
just one negative prototype, in one mini-batch. This extension makes the feature
comparison more effective and faithful to the few-shot learning procedure, since
in each update, the network can compare a sample with multiple negative classes.
In particular, we randomly choose the F negative prototypes ¢"<,e = {1,2,..., E}
to form into a triplet. Accordingly, the optimization objective evolves to:

MN E
L(qm> Gm> T) Z Z 1f(am) — f(@)Il
*Hf( n) = Flano)ls +a]

For the sample ¢%, in the query set, the optimization shall maximize the distance
to the negative prototype ¢!, to be larger than the distance to the positive
prototypes ¢P, in the feature space. For each anchor sample ¢ , we then learn
the positive prototype ¢?, from the support set of the same class as g2 and
further randomly select E other negative prototypes whose classes are different
from ¢% . Compared with the traditional triplet loss, each forward update in our
improved Triplet-like loss includes more inter-class variations, thus making the
learnt feature embedding more discriminative for samples from different classes.

Mining hard triplets is an important part of metric learning with the triplet
loss, as otherwise training will soon stagnate [10]. This is because when the
model begins to converge, the embedding space learns how to correctly map the
triples relatively quickly. Thus most triples satisfying the margin will not con-
tribute to the gradient in the learning process. To speed up the convergence and
stabilize the training procedure, we propose a new hard-triplet mining strategy
to sample more informative hard triplets in each episode. Specifically, triplets
will be randomly selected in each episode as described above, we then check
whether the sampled triplets satisfy the margin. The triplets that have already
met the margin will be removed and the network training will proceed with the
remaining triplets.

(9)

4 Experiments

Extensive experiments have been conducted to evaluate and compare the pro-
posed method for few-shot classification using on three challenging few-shot
learning benchmarks datasets, minilmageNet [39], tieredImageNet [29] and Fewshot-
CIFAR100 (FC100) [24]. All the experiments are implemented based on PyTorch
and run with NVIDIA 2080ti GPUs.
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4.1 Datasets

minilmageNet is the most popular few-shot learning benchmark proposed by
[39] and derived from the original ILSVRC-12 dataset [30]. It contains 100 ran-
domly sampled different categories, each with 600 images of size 84 x 84 pixels.
The tieredImageNet [29] is a larger subset of ILSVRC-12 [30] with 608 classes
and 779,165 images in total. The classes in tieredlmageNet are grouped into
34 categories corresponding to higher-level nodes in the ImageNet hierarchy cu-
rated by humans [2]. Each hierarchical category contains 10 to 20 classes, which
are divided into 20 training (351 classes), 6 validation (97 classes) and 8 test
(160 classes) categories. Fewshot-CIFAR100 (FC100) is based on the popu-
lar object classification dataset CIFAR100 [14]. Oreshkin et al. [24] offer a more
challenging class split of CIFAR100 for few-shot learning. The FC100 further
groups the 100 classes into 20 superclasses. Thus the training set has 60 classes
belonging to 12 superclasses, the validation and test data consist of 20 classes
each belonging to 5 superclasses each.

4.2 Implementation Details

Following the general few-shot learning experiment settings [34], [37], we con-
ducted 5-way 5-shot and 5-way 1-shot classifications. The Adam optimizer is
exploited with an initial learning rate of 0.001. The total training episodes on
manilmageNet, tieredlmageNet and FC100 are 600,000, 1,000,000 and 1,000,000,
respectively. The learning rate is dropped by 10% every 100,000 episodes or when
the loss enters a plateau. The weight decay is set to 0.0003. We report the mean
accuracy (%) over 600 randomly generated episodes from the test set.

4.3 Results Evaluation

Comparison with the baseline model. Using the training/testing data split
and the procedure described in Section 3, the baseline in Table 1, Table 2 and Ta-
ble 3 evaluate a model with modified DeepCaps, without the attentive prototype.
The accuracy is 75.214+0.43%, 78.41+0.34% and 59.8+1.0% and in the 5-way
5-shot setting on minilmageNet, tieredlmageNet and FC100 respectively. Our
baseline results are on a par with those reported in [37], [34]. As shown in Table 1,
Table 2 and Table 3, using the attentive prototype strategy in the model training
with improved triplet-like loss, our method significantly improves the accuracy
on all three datasets. There are obvious improvements of approximately +4.96%
(from 75.21% to 80.17%), +4.83% (from 78.41% to 83.24%), +2.5% (from 57.3%
t0 59.8%) under the 5-way 5-shot setting for minilmageNet, tieredlmageNet and
FC100, respectively. These results indicate that the proposed approach is toler-
ant to large intra- and inter-class variations and produces marked improvements
over the baseline.

Comparison with the state-of-the-art methods. We also compare our
method with some state-of-the-art methods on minilmageNet tieredlmageNet
in Table 1 and Table 2, respectively. On minilmageNet, we achieve a 5-way
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Few-shot learning method 5-Way 1-Shot 5-Way 5-Shot
Matching Networks [39] 43.56 £ 0.84 55.314+0.73
MAML [5] 48.70+1.84  63.1140.92
Relation Net [37] 50.44+0.82  65.32+0.70
REPTILE [23] 49.97£0.32  65.99+0.58
Prototypical Net [34] 49.4240.78  68.201+0.66
Predict Params [26] 59.60+£0.41  73.74 £ 0.19
LwoF [8] 60.06+£0.14  76.39 £ 0.11
TADAM [24] 58.50+0.30  76.70£0.30
EGNN [12] - 66.85
EGNN+Transduction [12] - 76.37

CTM [18] 62.05+0.55 78.63%0.06
wDAE-GNN [9] 62.96+0.15  78.85+0.10
MetaOptNet-SVM-trainval [16] 64.09+0.62  80.0010.45
CTM, data augment [18] 64.12+0.82  80.51+0.13
Baseline 59.71+£0.35  75.21+0.43
Ours 63.23+0.26  80.17£0.33
Ours, data augment 66.43+0.26 82.13+0.21

Table 1. Few-shot classification accuracies (%) on minilmageNet.

1-shot accuracy =63.23+0.26, 5-way 5-shot accuracy =80.17 + 0.33%
when using the proposed method, which has a highly competitive performance
compared with the state-of-the-art. On tieredlmageNet, we arrive at 5-way 1-
shot accuracy = 65.534+0.21, 5-way 5-shot accuracy =83.24 + 0.18%
which is also very competitive. The previous best result was produced by in-
troducing a Category Traversal Module [18] and data augmention that can be
inserted as a plug-and-play module into most metric-learning based few-shot
learners. We further investigate whether the data augmention could work on
our model. By training a version of our model with basic data augmentation,
we obtain the improved results 5-way 5-shot accuracy = 82.13+0.21% on
manilmageNet. On tieredlmageNet, we also observe a performance 5-way 5-
shot accuracy = 86.35+0.41%.

For the FC100 dataset, our proposed method is superior to all the other
methods [5], [24], [36] in accuracy. The comparisons consistently confirm the
competitiveness of the proposed method on few-shot image classification. In
terms of size and computational cost, for the models trained on mini-ImageNet,
the proposed model has only 7.22 million parameters, while the ResNet-18 used
in the existing SOTA approach has 33.16 million parameters. We also tested both
models’ inference time, ResNet-18 takes 3.65 ms for a 64 x 64 x3 image, while
our model takes only 1.67 ms for a 64 x 64 x3 image. In summary, our proposed
attentive prototype learning scheme improve over the previous methods, mainly
due to the better embedding space provided by the capsule network and the
attentive prototyping scheme. The importance value is used as the weighting
value for the support set instances, which is completely dependent on the affinity
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Few-shot learning method 5-Way 1-Shot 5-Way 5-Shot
MAML [5] 51.67+1.81 70.30+0.08
Meta-SGD [19], reported by [31] 62.954+0.03 79.3440.06
LEO [31] 66.33+£0.05 81.44+0.09
Relation Net [37] 54.484+0.93 71.324+0.78
Prototypical Net [34] 53.31+0.89 72.69+0.74
EGNN [12] - 70.98
EGNN+Transduction [12] - 80.15

CTM [18] 64.7840.11 81.05£0.52
MetaOptNet-SVM-trainval [16]  65.814+0.74 81.754+0.53
CTM, data augmention [18] 68.414+0.39 84.28+1.73
Baseline 63.25+0.31 78.41+0.34
Ours 65.53+0.21 83.24+0.18
Ours, data augmention 69.87+0.32 86.35+0.41

Table 2. Few-shot classification accuracies (%) on tieredlmageNet.

relationship between the two feature points from the support set and the query.
The importance weighting values vary exponentially, with larger value reflecting
nearby pairs of feature points and a smaller value for the distant pair. This
conforms that the feature points from the support set that are nearer to the
query feature point should be given more attention.

Few-shot learning method 5-Way 1-Shot 5-Way 5-Shot 5-Way 10-Shot

MAML [5] 38.1£1.7 50.4%+1.0 56.2+0.8
TADAM [24] 40.1+0.4 56.14+0.4 61.6+0.5
MTL [36] 45.1£1.8 57.6+0.9 63.4+0.8
Baseline 44.24+1.3 57.3£0.8 62.84+0.6
Ours 47.54+0.9 59.8+1.0 65.44+0.5

Table 3. Few-shot classification accuracies (%) on the FC100 dataset.

Ablation study: To verify the effectiveness of components in the pro-
posed method, we conducted ablation experiments on the minilmageNet and
tieredlmageNet datasets. First, to investigate the contribution of the designed
attentive prototype method, we compare the performance of the proposed method
with vanilla prototypical networks [34]. Then, we verify the effectiveness of our
proposed feature embedding module by embedding it into the metric-based al-
gorithm Relation Net [37].Table 4 summarizes the performance of the different
variants of our method.

1) Attentive prototype: In vanilla prototypical networks [34], the prototypes
are defined as the averages the embed features of each class in the support set.
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mintlmageNet tieredlmageNet
5-Way 5 shot 10-Way 5 shot 5-Way 5-shot 10-Way 5-shot

Few-shot learning method

Prototypical Net [34] 68.20 - 72.69 -
Ours (average mechanism) 76.32 58.41 80.31 62.17
Ours (attentive prototype) 80.17 63.12 83.24 66.33
Relation Net [37] 65.32 - 71.32 -

Relation Net [37]

. . 80.91 64.34 83.98 67.86
(our implementation)

Table 4. Ablation study on the attentive prototype and embedding module.

Such a simple class-wise feature takes all instances into consideration equally.
Our attentive prototype scheme is a better replacement. A variant of DeepCaps
is applied with improved triplet-like loss to learn the feature embedding instead
of a shallow CNN network. To further verify the effectiveness of our attentive pro-
totype, we also compared the average-based prototypes created from our embed-
ding framework. The experimental results on minilmageNet and tieredImageNet
are summarized in Table 4. It can be observed that the attentive prototype gains
an approximately 3%-4% increase after replacing the average mechanism. This
shows that the attentive prototypes can be more ‘typical’ when compared to the
original average vectors by giving different weights for different instances.

j = .' ’;'. & U ®

vy .oy
g -
o-.d ] v ]
; & v g
Relation Net Improved Relation Net Relation Net Improved Relation Net
minilmageNet minilmageNet tieredlmageNet tieredlmageNet

(a) 5-way 5-shot setting

L 9
P
- . -
& g 3

& Pt ‘ ¢
5 *e
» - .

Relation Net Improved Relation Net Relation Net Improved Relation Net

minilmageNet minilmageNet tieredlmageNet tieredlmageNet

(b) 10-way 5-shot setting

Fig. 3. The t-SNE visualization [20] of the improved feature embeddings learnt by our
proposed approach..
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2)Embedding module: The embedding is switched from four convolutional
blocks in Relation Net [37] to the modified DeepCaps model and the supervision
loss is changed to the improved triplet-like loss. Table 4 shows the results ob-
tained by the improvements over the Relation Net. We find that the improved
Relation Net exceeds the original model by approximately +10%. This shows
the ability of the proposed capsule network-based embedding network to im-
prove the performance of the metric based method. Fig. 3 visualizes the feature
distribution using t-SNE [20] for the features computed in 5-way 5-shot setting
and 10-way 5-shot setting. As can be clearly observed, the improved Relation
Net model has more compact and separable clusters, indicating that features are
more discriminative for the task. This is caused by the design of the embedding
module.

3)Improved Triplet-like loss: To help analyze our model and show the benefit
of improved Triplet-like loss, we design several comparison methods as follows:
Setting-1: Baseline model (modified DeepCaps); Setting-2: Using the attentive
prototype strategy in the model training; Setting-3: Based on the Setting 2, we
add the improved triplet-like loss to make the feature comparison more effec-
tive. With the help of improved triplet-like loss, we observed an improvement

Few-shot learning method 5-Way 1-Shot 5-Way 5-Shot

Setting-1 59.71+£0.35  75.21+0.43
Setting-2 61.76+£0.12  78.45+0.23
Setting-3 63.23+£0.26  80.17+£0.33

Table 5. Few-shot classification accuracies (%) on minilmageNet.

of +1.5% as shown in Table 5. Thus making the learnt feature embedding more
discriminative for samples from different classes.

5 Conclusion

In this paper, we proposed a new few-shot learning scheme aiming to improve
the metric learning-based prototypical network. Our proposed scheme has the
following novel characteristics: (1) a new embedding space created by a capsule
network, which is unique in its capability to encode the relative spatial relation-
ship between features. The network is trained with a novel triple-loss designed to
learn the embedding space; (2) an effective and robust non-parameter classifica-
tion scheme, named attentive prototypes, to replace the simple feature average
for prototypes. The instances from the support set are taken into account to gen-
erate prototypes, with their importance being calculated by the reconstruction
error for a given query. Experimental results showed that the proposed method
outperforms the other few-shot learning algorithms on all of the minilmageNet,
tieredImageNet and FC100 datasets.
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