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1 Learning Objective

In this section we provide detailed derivation of the objective presented in the
section 4.2 of the main paper.

Given the loss function ∆ (equation (9) of the main paper) which is tuned for
the task of instance segmentation, we compute the diversity terms as given in the
equation (7) of the main paper. Recall that the diversity for any two distributions
is the expected loss of the samples drawn from the two distributions. For the
prediction distribution Prp and the conditional distribution Prc, we derive the
diversity between them and their self diversities as follows.

Diversity between prediction network and conditional network: Following equa-
tion (7) of the main paper, the diversity between prediction and conditional
distribution can be written as,

(1)DIV∆(Prp,Prc) = Eyp∼Prp(y|x;θp)[Eyc∼Prc(y|x,a;θc)[∆(yp,yc)]].

We then write the expectation with respect to the conditional distribution (the
inner distribution) as expectation over the random variables z with distribution
Pr(z) using Law of the Unconscious Statistician (LOTUS). The expectation
over the random variable z with distribution Pr(z) is approximated by taking
K samples from Pr(z),

(2)DIV∆(Prp,Prc) = Eyp∼Prp(y|x;θp)

[ 1

K

K∑
k=1

∆(yp,y
k
c )
]
.

We finally compute the expectation with respect to the prediction distribution
as,

(3)DIV∆(Prp,Prc) =
1

K

K∑
k=1

∑
y
(i)
p

Prp(y
(i)
p ;θp)∆(y(i)

p ,ykc ).
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Self diversity for conditional network: As above, using equation (7) of the main
paper, we write the self diversity coefficient of the conditional distribution as

(4)DIV∆(Prc,Prc) = Eyc∼Prc(y|x,a;θc)[Ey′
c∼Prc(y|x,a;θc)[∆(yc,y

′
c)]].

We now write the two expectations with respect to the conditional distribution
as the expectation over the random variables z and z′ respectively. In order
to approximate the expectation over the random variables z and z′, we use K
samples from the distribution Pr(z) as,

(5)DIV∆(Prc,Prc) =
1

K

K∑
k=1

1

K − 1

K∑
k′=1,
k′ 6=k

∆(ykc ,y
k′

c ).

On re-arranging the above equation, we get

(6)DIV∆(Prc,Prc) =
1

K(K − 1)

K∑
k,k′=1
k′ 6=k

∆(ykc ,y
k′

c ).

Self diversity for prediction network: Similar to the above two cases, using equa-
tion (7) of the main paper, we can write the self diversity of the prediction
network as

(7)DIV∆(Prp,Prp) = Eyp∼Prp(y|x;θp)[Ey′
p∼Prp(y|x;θp)[∆(yp,y

′
p)]].

Note that the prediction distribution is a fully factorized distribution, and we
can compute its exact expectation. Therefore, we compute the two expectations
with respect to the inner prediction distribution as,

(8)DIV∆(Prp,Prp) = Eyp∼Prp(y|x;θp)

[∑
y′(i)

p

Prp(y
′(i)
p ;θp)∆(yp,y

′(i)
p )
]
;

and the expectation with respect to the outer prediction distribution as,

(9)DIV∆(Prp,Prp) =
∑
y
(i)
p

∑
y′(i)

p

Prp(y
(i)
p ;θp) Prp(y

′(i)
p ;θp)∆(y(i)

p ,y′
(i)
p ).

2 Optimization

2.1 Optimization over Prediction Distribution

As parameters θc of the conditional distribution are constant, the learning ob-
jective of the prediction distribution is written as,

(10)θ∗p = arg min
θp

DIV∆(Prp,Prc)− (1− γ)DIV∆(Prp,Prp).
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This results in a fully supervised training of the Mask R-CNN network [3]. Note
that the only difference between training of a standard Mask R-CNN architecture
and our prediction network is the use of the dissimilarity objective function (10)
above, instead of simply minimizing the multi-task loss of the Mask R-CNN.

The prediction network takes as the input an image and the K predictions
sampled from the conditional network. Treating these outputs of the conditional
network as the pseudo ground truth label, we compute the gradient of our dissim-
ilarity coefficient based loss function. As the objective (10) above is differentiable
with respect to parameters θp, we update the network by employing stochastic
gradient descent.

2.2 Optimization over Conditional Distribution

Similar to the prediction network, the conditional network is optimized by treat-
ing the parameters of the prediction network θp as constant. Its learning obective
is given as,

(11)θ∗c = arg min
θc

DIV∆(Prp,Prc)− γDIV∆(Prc,Prc).

A non-differentiable training procedure: The conditional network is modeled us-
ing a Discrete Disco Nets which employs a sampling step from the scoring func-
tion Sk(yc). This sampling step makes the objective function non-differentiable
with respect to the parameters θc, even though the scoring function Sk(yc) itself
is differentiable. However, as the prediction network is fixed, the above objective
function reduces to the one used in Bouchacourt et al. [2] for fully supervised
training. Therefore, similar to Bouchacourt et al. [2] we solve this problem by
estimating the gradients of our objective function with the help of temperature
parameter ε as,

∇θc
DISCε∆(Prp(θp),Prc(θc)) = ± lim

ε→0

1

ε
(DIV ε∆(Prp,Prc)− γDIV ε∆(Prc,Prc))

(12)

where,

(13)DIV ε∆(Prp,Prc) = Eyp∼Prp(θp)

[
Ezk∼Pr(z)[∇θcS

k(ŷa)−∇θcS
k(ŷc)]

]
,

(14)DIV ε∆(Prc,Prc) = Ezk∼Pr(z)

[
Ezk′∼Pr(z)[∇θc

Sk(ŷb)−∇θc
Sk

′
(ŷ′c)]

]
,

and,

ŷc = arg max
y∈Y

Sk(yc)

ŷ′c = arg max
y∈Y

Sk
′
(yc)

ŷa = arg max
y∈Y

Sk(yc)± ε∆(yp, ŷc)

ŷb = arg max
y∈Y

Sk(yc)± ε∆(ŷc, ŷ
′
c)

(15)
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In our experiments, we fix the temperature parameter ε as, ε = +1.

Intuition for the gradient computation: We now present an intuitive explanation
of the computation of gradient, as given in equation (12). For an input x and
two noise samples zk, zk

′
, the conditional network outputs two scores Sk(yc)

and Sk
′
(yc), with the corresponding maximum scoring outputs ŷc and ŷ′c. The

model parameters θc are updated via gradient descent in the negative direction
of ∇θc

DISCε∆(Prp(θp),Prc(θc)).

– The term DIV ε∆(Prp,Prc) updates the model parameters towards the maxi-
mum scoring prediction ŷc of the score Sk(yc) while moving away from ŷa,
where ŷa is the sample corresponding to the maximum loss augmented score
Sk(yc)±ε∆(yp, ŷc) with respect to the fixed prediction distribution samples
yp. This encourages the model to move away from the prediction providing
high loss with respect to the pseudo ground truth labels.

– The term γDIV ε∆(Prc,Prc) updates the model towards ŷb and away from the
ŷc. Note the two negative signs giving the update in the positive direction.
Here ŷb is the sample corresponding to the maximum loss augmented score
Sk(yc) ± ε∆(ŷc, ŷ

′
c) with respect to the other prediction ŷ′c, encouraging

diversity between ŷc and ŷ′c.

Training algorithm for conditional network: Pseudo-code for training the con-
ditional network for a single sample from weakly supervised data is presented
in algorithm 1 below. In algorithm 1, statements 1 to 3 describe the sampling
process and computing the loss augmented prediction. We first sample K differ-
ent predictions ŷkc corresponding to each noise vector zk in statement 2. For
the sampled prediction ŷkc we compute the maximum loss augmented score
Sk(yc) ± ε∆(yp, ŷc). This is then used to find the loss augmented prediction
ŷa given in statement 3.

In order to compute the gradients of the self diversity of conditional distri-
bution, we need to find the maximum loss augmented prediction ŷb. Here, the
loss is computed between a pair of K different predictions of the conditional
network that we have already obtained. This is shown by statements 4 to 7 in
algorithm 1.

For the purpose of optimizing the conditional network using gradient descent,
we need to find the gradients for the objective function of the conditional network
defined in equation (11) above. The computation of the unbiased approximate
gradients for the individual terms in the objective function is shown in statement
8. We finally optimize the conditional network by the employing gradient descent
step and updating the model parameters by descending to the approximated
gradients as shown in statement 9 of algorithm 1.

3 Experiments

In this section we present the implementation details of the prediction and the
conditional network presented in the main paper. Next, we present details of our
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Algorithm 1: Conditional network training algorithm

Input : Training input (x, a) ∈ W, and prediction network outputs yp
Output: ŷ1

c , . . . , ŷ
K
c , sample K predictions from the model

1 for k = 1 . . .K do

2 Sample noise vector zk, generate output ŷkc :

ŷkc = arg max
y∈Y

Sk(yc)

3 Find loss augmented prediction ŷka w.r.t. output from prediction network
yp:

ŷka = arg max
y∈Y

Sk(yc)± ε∆(yp, ŷ
k
c )

4 Compute loss augmented predictions:
5 for k = 1, . . . ,K do
6 for k′ = 1, . . . ,K, k′ 6= k do

7 Find loss augmented prediction ŷkb w.r.t. other conditional network

outputs ŷkc :

ŷk,k
′

b = arg max
y∈Y

Sk(yc)± ε∆(ŷkc , ŷ
′
c)

8 Compute unbiased approximate gradients for DIV ε∆(Prc,Prc) and
DIV ε∆(Prc,Prc) as:

DIV ε∆(Prp,Prc) =
1

K

K∑
k=1

[
∇θcS

k(ŷa)−∇θcS
k(ŷc)

]
,

DIV ε∆(Prc,Prc) =
2

K(K − 1)

K∑
k,k′=1
k′ 6=k

[
∇θcS

k(ŷb)−∇θcS
k′(ŷ′

c)
]
.

Update model parameters by descending to the approximated gradients:

θt+1
c = θtc − η∇θcDISC∆(Prp(θp),Prc(θc))

ResNet based architecture and the detailed class-specific results on the Pascal
VOC 2012 data set.

3.1 Implementation Details

We use the standard Mask R-CNN as the prediction network and adapt the
U-Net architecture for the conditional network, as shown in figure 1 of the main
paper. For a fair comparison, the prediction network, we use ImageNet pre-
trained ResNet-50 architecture for experiments with image-level annotation and
a pretrained ResNet-101 architecture for the bounding box annotations.
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Similar to [4], the U-Net architecture is modified by adding a noise sample as
an extra channel after the deconvolutional layers as shown in figure 1 of the main
paper. A 1 × 1 convolution is applied to bring the number of channels back to
the original dimensions (32 channels). The segmentation region proposal masks
taken from MCG [1] is then multiplied element-wise with the features from all the
channels. This allows us to extract features only from the segmentation proposal.
A 1×1 convolution is applied again to make the number of channels equal to the
number of classes. This is followed by a global average pooling layer which gives
us, for each of the segmentation proposals, a vector of dimensions equal to the
number of classes. This vector for each of the segmentation proposal is passed to
the inference algorithm which in turn provides the output segmentation masks
corresponding to the image-level annotations. For all our experiments we choose
K=10 for the conditional network and use the Adam optimizer. For all the other
hyper-parameters we use the same configuration as described in [4]. For the
prediction network, we use default hyper-parameters described in [3].

3.2 ResNet based architecture for the conditional network

In section 6.4 of the main paper, we study the effect of an alternative architecture
for the conditional network. In what follows, we provide the details of this ResNet
based conditional network.

Fig. 1. ResNet based conditional network

The architecture for the ResNet based conditional network is shown in fig-
ure 1. The image is first passed through the ResNet module to obtain low-
resolution high-level features. For the experiments where we use only the image-
level annotations, a ResNet-50 module is employed and where we use the bounding-
box level annotations, a ResNet-101 module is used. A noise filter is appended
as an extra channel followed by a 1 × 1 convolutional filter, which brings the
number of channels back to the original dimensions. The segmentation proposal
masks are then multiplied element-wise to obtain segmentation proposal specific
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Table 1. Per class result for mAPr0.5 metric on Pascal VOC 2012 data set for methods
that are trained on using image-level supervision I and bounding box annotations B

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike pson plant sheep sofa train tv mAP

Ours (ResNet-50)
I 74.2 52.6 68.6 44.1 25.0 63.4 35.9 72.6 18.2 47.1 24.6 63.5 53.7 67.3 40.9 29.4 42.8 39.6 69.5 61.2 49.7

Ours
I 75.5 53.6 69.9 45.3 26.7 64.3 37.4 73.7 19.3 48.7 25.3 64.6 55.0 68.3 42.1 30.8 44.2 40.5 70.6 62.2 50.9

Ours (ResNet-101)
B 77.9 62.6 73.8 49.0 35.9 72.6 45.8 78.4 29.7 55.7 31.9 70.6 61.3 73.6 49.2 39.9 50.8 47.9 76.5 69.6 57.7

Ours
B 79.1 63.9 75.1 49.3 36.5 73.1 46.4 78.8 30.1 56.4 32.1 71.3 61.6 74.8 49.5 40.2 51.1 48.3 77.2 69.9 58.2

features. Next, a 1× 1 convolutional is applied to make the number of channels
equal to the number of classes. Finally, a global average pooling is applied to
obtain a vector whose dimensions is equal to the number of classes in the data
set. This vector is then passed through the inference algorithm to obtain the
final predicted samples. As mentioned in section 6.4 of the paper, the results
obtained using this ResNet based conditional network architecture are called as
Ours (ResNet-50) and Ours (ResNet-101).

Note that, the U-Net based conditional network provides a higher resolu-
tion image features as compared to its ResNet based counterparts. These are
then used to obtain the individual features of the segmentation mask proposals.
The higher resolution features thus provide richer per-mask features. These are
especially useful for smaller objects and cluttered environment where context
resolution is important. The superior results of our method when using a U-Net
based conditional network empirically verify this claim.

3.3 Class specific results on VOC 2012 data set

We present the per-class result for our method on the Pascal VOC 2012 data
set in table 1. The first two rows correspond to the result where our method
was trained only using the image-level annotations. The last two rows corre-
spond to the results where our methods were trained using the bounding box
annotations.The qualitative results for each class is presented in figure 2.
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Fig. 2. Qualitative results of our proposed approach on VOC 2012 validation set.
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