
Weakly Supervised Instance Segmentation by
Learning Annotation Consistent Instances

Aditya Arun1, C.V. Jawahar1, and M. Pawan Kumar2

1 CVIT, KCIS, IIIT Hyderabad
2 OVAL, University of Oxford

Abstract. Recent approaches for weakly supervised instance segmen-
tations depend on two components: (i) a pseudo label generation model
which provides instances that are consistent with a given annotation;
and (ii) an instance segmentation model, which is trained in a super-
vised manner using the pseudo labels as ground-truth. Unlike previous
approaches, we explicitly model the uncertainty in the pseudo label gen-
eration process using a conditional distribution. The samples drawn from
our conditional distribution provide accurate pseudo labels due to the use
of semantic class aware unary terms, boundary aware pairwise smooth-
ness terms, and annotation aware higher order terms. Furthermore, we
represent the instance segmentation model as an annotation agnostic
prediction distribution. In contrast to previous methods, our represen-
tation allows us to define a joint probabilistic learning objective that
minimizes the dissimilarity between the two distributions. Our approach
achieves state of the art results on the PASCAL VOC 2012 data set,
outperforming the best baseline by 4.2% mAPr0.5 and 4.8% mAPr0.75.

1 Introduction

The instance segmentation task is to jointly estimate the class labels and seg-
mentation masks of the individual objects in an image. Significant progress on
instance segmentation has been made based on the convolutional neural net-
works (CNN) [9, 17, 24, 26, 28]. However, the traditional approach of learning
CNN-based models requires a large number of training images with instance-
level pixel-wise annotations. Due to the high cost of collecting these supervised
labels, researchers have looked at training these instance segmentation models
using weak annotations, ranging from bounding boxes [18, 20] to image-level
labels [1, 10, 13, 23, 42, 43].

Many of the recent approaches for weakly supervised instance segmentation
can be thought of as consisting of two components. First, a pseudo label genera-
tion model, which provides instance segmentations that are consistent with the
weak annotations. Second, an instance segmentation model which is trained by
treating the pseudo labels as ground-truth, and provides the desired output at
test time.

Seen from the above viewpoint, the design of a weakly supervised instance
segmentation approach boils down to three questions. First, how do we represent
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the instance segmentation model? Second, how do we represent the pseudo label
generation model? And third, how do we learn the parameters of the two models
using weakly supervised data? The answer to the first question is relatively clear:
we should use a model that performs well when trained in a supervised manner,
for example, Mask R-CNN [17]. However, we argue that the existing approaches
fail to provide a satisfactory answer to the latter two questions.

Specifically, the current approaches do not take into account the inherent
uncertainty in the pseudo label generation process [1, 23]. Consider, for instance,
a training image that has been annotated to indicate the presence of a person.
There can be several instance segmentations that are consistent with this an-
notation, and thus, one should not rely on a single pseudo label to train the
instance segmentation model. Furthermore, none of the existing approaches pro-
vide a coherent learning objective for the two models. Often they suggest a
simple two-step learning approach, that is, generate one set of pseudo labels
followed by a one time training of the instance segmentation model [1]. While
some works consider an iterative training procedure [23], the lack of a learning
objective makes it difficult to analyse and adapt them in varying settings.

In this work, we address the deficiencies of prior work by (i) proposing suit-
able representations for the two aforementioned components; and (ii) estimating
their parameters using a principled learning objective. In more detail, we explic-
itly model the uncertainty in pseudo labels via a conditional distribution. The
conditional distribution consists of three terms: (i) a semantic class aware unary
term to predict the score of each segmentation proposal; (ii) a boundary aware
pairwise term that encourages the segmentation proposal to completely cover
the object; and (iii) an annotation consistent higher order term that enforces
a global constraint on all segmentation proposals (for example, in the case of
image-level labels, there exists at least one corresponding segmentation proposal
for each class, or in the case of bounding boxes, there exists a segmentation pro-
posal with sufficient overlap to each bounding box). All three terms combined
enable the samples drawn from the conditional distribution to provide accurate
annotation consistent instance segmentations. Furthermore, we represent the in-
stance segmentation model as an annotation agnostic prediction distribution.
This choice of representation allows us to define a joint probabilistic learning
objective that minimizes the dissimilarity between the two distributions. The
dissimilarity is measured using a task-specific loss function, thereby encouraging
the models to produce high quality instance segmentations.

We test the efficacy of our approach on the Pascal VOC 2012 data set.
We achieve 50:9% mAPr

0:5, 28:5% mAPr
0:75 for image-level annotations and

32:1% mAPr
0:75 for bounding box annotations, resulting in an improvement of

over 4% and 10% respectively over the state-of-the-art.

2 Related Work

Due to the taxing task of acquiring the expensive per-pixel annotations, many
weakly supervised methods have emerged that can leverage cheaper labels. For
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the task of semantic segmentation various types of weak annotations, such as
image-level [2, 19, 29, 32], point [6], scribbles [25, 39], and bounding boxes [11, 31],
have been utilized. However, for the instance segmentation, only image-level [1,
10, 13, 23, 42, 43] and bounding box [18, 20] supervision have been explored. Our
setup considers both the image-level and the bounding box annotations as weak
supervision. For the bounding box annotations, Hsu et al. [18] employs a bound-
ing box tightness constraint and train their method by employing a multiple
instance learning (MIL) based objective but they do not model the annotation
consistency constraint for computational efficiency.

Most of the initial works [42, 43] on weakly supervised instance segmentation
using image-level supervision were based on the class activation maps (CAM) [30,
35, 40, 41]. In their work, Zhou et al. [42] identify the heatmap as well as its peaks
to represent the location of different objects. Although these methods are good at
finding the spatial location of each object instance, they focus only on the most
discriminative regions of the object and therefore, do not cover the entire object.
Ge et al [13] uses the CAM output as the initial segmentation seed and refines it
in a multi-task setting, which they train progressively. We use the output of [42]
as the initial segmentation seed of our conditional distribution but the boundary
aware pairwise term in our conditional distribution encourages pseudo labels to
cover the entire object.

Most recent works on weakly supervised learning adopt a two-step process
- generate pseudo labels and train a supervised model treating these pseudo
labels as ground truth. Such an approach provides state-of-the-art results for
various weakly supervised tasks like object detection [5, 37, 38], semantic seg-
mentation [11, 20], and instance segmentation [1, 23]. Ahn et al. [1] synthesizes
pseudo labels by learning the displacement fields and pairwise pixel affinities.
These pseudo labels are then used to train a fully supervised Mask R-CNN [17],
which is used at the test time. Laradji et al. [23] iteratively samples the pseudo
segmentation label from MCG segmentation proposal set [3] and train a super-
vised Mask R-CNN [17]. This is similar in spirit to our approach of using the
two distributions. However, they neither have a unified learning objective for
the two distribution nor do they model the uncertainty in their pseudo label
generation model. Regardless, the improvement in the results reported by these
two methods advocates the importance of modeling two separate distributions.
In our method, we explicitly model the two distributions and define a unified
learning objective that minimizes the dissimilarity between them.

Our framework has been inspired by the work of Kumar et al. [22] who were
the first to show the necessity of modeling uncertainty by employing two sepa-
rate distributions in a latent variable model. This framework has been adopted
for weakly supervised training of CNNs for learning human poses and object
detection tasks [4, 5]. While their framework provides an elegant formulation for
weakly supervised learning, its various components need to be carefully con-
structed for each task. Our work can be viewed as designing conditional and
prediction distributions, as well as the corresponding inference algorithms, which
are suited to instance segmentation.
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3 Method

3.1 Notation

We denote an input image as x 2 R(H�W�3), where H and W are the height
and the width of the image respectively. For each image, a set of segmentation
proposals R = fr1; : : : ; rP g are extracted from a class-agnostic object proposal
algorithm. In this work, we use Multiscale Combinatorial Grouping (MCG) [3] to
obtain the object proposals. For the sake of simplicity, we only consider image-
level annotations in our description. However, our framework can be easily ex-
tended to other annotations such as bounding boxes. Indeed, we will use bound-
ing box annotations in our experiments. Given an image and the segmentation
proposals, our goal is to classify each of the segmentation proposals to one of the
C + 1 categories from the set f0; 1; : : : ; Cg. Here category 0 is the background
and categories f1; : : : ; Cg are object classes.

We denote the image-level annotations by a = f0; 1gC , where a(j) = 1 if im-
age x contains the j�th object. Furthermore, we denote the unknown instance-
level (segmentation proposal) label as y = f0; : : : ; CgP , where y(i) = j if the
i�th segmentation proposal is of the j�th category. A weakly supervised data
set W = f(xn;an) j n = 1; : : : ; Ng contains N pairs of images xn and their
corresponding image-level annotations an.

3.2 Conditional Distribution

Given the weakly supervised data set W, we wish to generate pseudo instance-
level labels y such that they are annotation consistent. Specifically, given the
segmentation proposals R for an image x, there must exists at least one segmen-
tation proposal for each image-level annotation a(j) = 1. Since the annotations
are image-level, there is inherent uncertainty in the figure-ground separation of
the objects. We model this uncertainty by defining a distribution Prc(y j x;a; �c)
over the pseudo labels conditioned on the image-level weak annotations. Here,
�c are the parameters of the distribution. We call this a conditional distribution.

The conditional distribution itself is not explicitly represented. Instead, we
use a neural network with parameters �c which generates samples that can be
used as pseudo labels. For the generated samples to be accurate, we wish that
they have the following three properties: (i) they should have high fidelity with
the scores assigned by the neural network for each region proposal belonging
to each class; (ii) they should cover as large a portion of an object instance as
possible; and (iii) they should be consistent with the annotation.

Modeling: In order for the conditional distribution to be annotation consistent,
the instance-level labels y need to be compatible with the image-level annotation
a. This constraint cannot be trivially decomposed over each segmentation pro-
posal. As a result, it would be prohibitively expensive to model the conditional
distribution directly as one would be required to compute its partition function.
Taking inspiration from Arun et al. [5], we instead draw representative samples
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Fig. 1. The conditional network: a modi�ed U-Net architecture is used to model the con-
ditional network. For a single input image and three di�erent noise samples fz1, z2, z3g
(represented as red, green, and blue matrix) and a pool of segmentation proposals, three
di�erent instances are predicted for the given weak annotation (aeroplane in this ex-
ample). Here the noise sample is concatenated as an extra channel to the �nal layer
of the U-Net. The segmentation proposals are multiplied element-wise with the global
feature to obtain the proposal speci�c feature. A global average pooling is applied to get
class speci�c score. Finally, an inference algorithm generates the predicted samples.

from the conditional distribution using the Discrete Disco Nets [7]. We will now
describe how we model the conditional distribution through a Discrete Disco
Nets, which we will now call a conditional network.

Consider the modified fully convolutional U-Net [34] architecture shown in
figure 1 for the conditional distribution. The parameters of the conditional distri-
bution �c are modeled by the weights of the conditional network. Similar to [21],
noise sampled from a uniform distribution is added after the U-Net block (de-
picted by the colored filter). Each forward pass through the network takes the
image x and noise sample zk as input and produces a score function F k

u;yu
(�c) for

each segmentation proposal u and the corresponding putative label yu. We gen-
erate K different score functions using K different noise samples. These score
functions are then used to sample the segmentation region proposals yk

c such
that they are annotation consistent. This enables us to efficiently generate the
samples from the underlying distribution.

Inference: Given the input pair (x; zk) the conditional network outputs K
score functions for each of the segmentation proposal F k

u;yu
(�c). We redefine

these score functions to obtain a final score function such that it is then used to
sample the segmentation region proposals yk

c . The final score function has the
following three properties.

1. The score of the sampled segmentation region proposal should be consis-
tent with the score function. This semantic class aware unary term ensures
that the final score captures the class specific features of each segmentation
proposal. Formally, Gk

u;yu
(yc) = F k

u;yu
(�c).
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2. The unary term alone is biased towards segmentation proposals that are
highly discriminative. This results in selecting a segmentation proposal which
does not cover the object in its entirety. We argue that all the neighboring
segmentation proposals must have the same score discounted by the edge
weights between them. We call this condition boundary aware pairwise term.
In order to make the score function Gk

u;yu
(yc) pairwise term aware, we em-

ploy a simple but efficient iterative algorithm. The algorithm proceeds by
iteratively updating the scores Gk

u;yu
(yc) by adding the contribution of their

neighbors discounted by the edge weights between them until convergence.
In practice, we fix the number of iteration to 3. Note that, it is possible
to backpropagate through the iterative algorithm by simply unrolling its
iterations, similar to a recurrent neural networks (RNN). Formally,

(1)Gk;n
u;yu

(yc) = Gk;n�1
u;yu

(yc) +
1

Hk;n�1
u;v (yc) + �

exp (�Iu;v):

Here, n denotes the iteration step for the iterative algorithm and � is a
small positive constant added for numerical stability. In our experiments,
we set � = 0:1. The term Hk;n�1

u;v (yc) is the difference between the scores
of the neighboring segmentation proposal. It helps encourage same label for
the neighboring segmentation proposals that are not separated by the edge
pixels. It is given as,

(2)Hk;n�1
u;v (yc) =

X
u;v2Nu

�
Gk;n�1

u;yu
(yc)�Gk;n�1

v;yu
(yc)

�2
:

The term Iu;v is the sum of the edge pixel values between the two neighbor-
ing segmentation regions. Note that the pairwise term is a decay function
weighted by the edge pixel values. This ensures a high contribution to the
pairwise term is only from the pair of segmentation proposals that does not
share an edge.

3. In order to ensure that at there must exist at least one segmentation proposal
for every image-level annotation,a higher order penalty is added to the score.
We call this annotation consistent higher order term. Formally,

(3)Sk(yc) =

PX
u=1

Gk;n
u;yu

(yc) +Qk(yc):

Here,

(4)Qk(yc) =

8><>:
0 if 8j 2 f1; : : : ; Cg s:t: a(j) = 1;

9i 2 R s:t: y(i) = j;

�1 otherwise:

Given the scoring function in equation (3), we compute the k�th sample of
the conditional network as,

(5)yk
c = arg max

y2Y
Sk(yc):
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Algorithm 1: Inference Algorithm for the Conditional Net

Input : Region masks: R, Image-level labels: a
Output: Predicted instance level instances: ykc

/* Iterative Algorithm */

1 Gku,yu
(yc) = F ku,yu

(θc)
2 repeat
3 for v 2 Nu do

4 Hk,n−1
u,v (yc) =

∑
u,v∈Nu

(
Gk,n−1
u,yu

(yc)�Gk,n−1
v,yv

(yc)
)2
.

5 Gk,nu,yu
(yc) = Gk,n−1

u,yu
(yc) + 1

H
k;n�1
u;v (yc)+δ

exp (�Iu,v)

6 until Gk,nu,yu
(yc) has coverged

/* Greedily select highest scoring non-overlapping proposal */

7 Y  φ

8 for j  f1, . . . , Cg ^ a(j) = 1 do
9 Yj  φ

10 Rj  sort(Gk,nu,yu
(yc))

11 for i 2 1, . . . , P do
12 Yj  ri
13 Rj  Rj � ri
14 for l 2 Rj ^ ri∩rl

rl
> t do

15 Rj  Rj � rl
16 Y  Yj

17 return ykc = Y

Observe that in equation (5), the arg max is computed over the entire output
space Y. A näıve brute force algorithm is therefore not feasible. We design
an efficient greedy algorithm that selects the highest scoring non-overlapping
proposal. The inference algorithm is described in Algorithm 1.

3.3 Prediction Distribution

The task of the supervised instance segmentation model is to predict the in-
stancemask given an image. We employ Mask R-CNN [18] for this task. As pre-
dictions for each of the regions in the Mask R-CNN is computed independently,
we can view the output of the Mask R-CNN as the following fully factorized
distribution,

(6)Prp(y j x; �p) =

RY
i=1

Pr(yi j ri;xi; �p):

Here, R are the set of bounding box regions proposed by the region proposal
network and ri are its corresponding region features. The term yi is the corre-
sponding prediction for each of the bounding box proposals. We call the above
distribution a prediction distribution and the Mask R-CNN a prediction network.
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4 Learning Objective

Given the weakly supervised data set W, our goal is to learn the parameters
of the prediction and the conditional distribution, �p and �c respectively. We
observe that the task of both the prediction and the conditional distribution is to
predict the instance segmentation mask. Moreover, the conditional distribution
utilizes the extra information in the form of image-level annotations. Therefore,
it is expected to produce better instance segmentation masks. Leveraging the
task similarity between the two distribution, we would like to bring the two
distribution close to each other. Inspired by the work of [4, 5, 8, 22], we design
a joint learning objective that can minimize the dissimilarity coefficient [33]
between the prediction and the conditional distribution. In what follows, we
briefly describe the dissimilarity coefficient before applying it to our setting.

Dissimilarity Coe�cient: The dissimilarity coefficient between any two distri-
butions Pr1(�) and Pr2(�) is determined by measuring their diversities. Given a
task-specific loss function ∆(�; �), the diversity coefficient between the two dis-
tribution Pr1(�) and Pr2(�) is defined as the expected loss between two samples
drawn randomly from the two distributions respectively. Formally,

(7)DIV∆(Pr1;Pr2) = Ey1�Pr1(�)
�
Ey2�Pr2(�)[∆(y1;y2)]

�
:

If the model brings the two distributions close to each other, we could expect
the diversity DIV∆(Pr1;Pr2) to be small. Using this definition, the dissimilarity
coefficient is defined as the following Jensen difference,

(8)DISC∆(Pr1;Pr2) = DIV∆(Pr1;Pr2)� 
DIV∆(Pr2;Pr2)

� (1� 
)DIV∆(Pr1;Pr1);

where, 
 = [0; 1]. In our experiments, we use 
 = 0:5, which results in dissimi-
larity coefficient being symmetric for the two distributions.

4.1 Task-Speci�c Loss Function:

The dissimilarity coefficient objective requires a task-specific loss function. To
this end, we use the multi-task loss defined by Mask R-CNN [17] as,

(9)∆(y1;y2) = ∆cls(y1;y2) + ∆box(y1;y2) + ∆mask(y1;y2):

Here, ∆cls is the classification loss defined by the log loss, ∆box is the bounding
box regression loss defined as the smooth-L1 loss, and ∆mask is the segmentation
loss for the mask defined by pixel-wise cross entropy, as proposed by [17].

Note that the conditional network outputs the segmentation region y, where
there are no bounding box coordinates predicted. Therefore, for the conditional
network, only ∆cls and ∆mask is active as the gradients for ∆box is 0. For the
prediction network, all three components of the loss functions are active. We
construct a tight bounding box around the pseudo segmentation label, which
acts as a pseudo bounding box label for Mask R-CNN.
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4.2 Learning Objective for Instance Segmentation:

We now specify the learning objective for instance segmentation using the dis-
similarity coefficient and the task-specific loss function defined above as,

(10)��p;�
�
c = arg min

θp;θc

DISC∆ (Prp(�p);Prc(�c)) :

As discussed in Section 3.2, modeling the conditional distribution directly is dif-
ficult. Therefore, the corresponding diversity terms are computed by stochastic
estimators from K samples yk

c of the conditional network. Thus, each diversity
term is written as3,

(11a)DIV∆(Prp;Prc) =
1

K

KX
k=1

X
y

(i)
p

Prp(y(i)
p ; �p)∆(y(i)

p ;yk
c );

(11b)DIV∆(Prc;Prc) =
1

K(K � 1)

KX
k;k0=1
k0 6=k

∆(yk
c ;y

k0

c );

(11c)DIV∆(Prp;Prp) =
X
y

(i)
p

X
y0

(i)
p

Prp(y(i)
p ; �p) Prp(y0

(i)
p ; �p)∆(y(i)

p ;y0
(i)
p )

Here, DIV∆(Prp;Prc) measures the cross diversity between the prediction and
the conditional distribution, which is the expected loss between the samples of
the two distribution. Since Prp is a fully factorized distribution, the expectation
of its output can be trivially computed. As Prc is not explicitly modeled, we
draw K different samples to compute its required expectation.

5 Optimization

As the parameters of the two distribution, �p and �c are modeled by a neural
network, it is ideally suited to be minimized by stochastic gradient descent. We
employ a block coordinate descent strategy to optimize the two sets of param-
eters. The algorithm proceeds by iteratively fixing the prediction network and
training the conditional network, followed by learning the prediction network for
a fixed conditional network.

The iterative learning strategy results in a fully supervised training of each
network by using the output of the other network as the pseudo label. This allows
us to readily use the algorithms developed in Mask R-CNN [17] and Discrete
Disco Nets [7]. Note that, as the conditional network obtains samples over the
arg max operator in equation (5), the objective (10) for the conditional network
is non-differentiable. However, the scoring function Sk(yc) in equation (3) itself
is differentiable. This allows us to use the direct loss minimization strategy [16,
36] developed for computing estimated gradients over the arg max operator [7,
27]. We provide the details of the algorithm in the supplementary.

3 Details in the supplementary material




