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I. GAN architecture
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Fig. 1: Details of one GAN in the stacking-GANs. Illustrated is the first GAN
which receives the visual-relation layout (64×64×128) and Gaussian distribution
noise (64 × 64 × 32) as its inputs. The second (the third) GAN receives the
upsampled visual-relation layout and the hidden features of previous GAN.

We employ stacking-GANs to progressively generate coarse-to-fine images. It
consists of three GANs, each of which is conditioned on θ(t) (Fig. 1).
Generator. Our generator consists of five refinement layers [18] producing 512,
256, 128, 64, 32 outputs and two convolution layers outputting 32 and 3 channels.

We concatenate θ(t) and Gaussian noise (for the first generator) or the output
of the last refinement layer of the previous generator (for the second and the third
generators) to produce the input of l× l× 160 (l = 64, 128, 256). The size of the
input is upsampled using the bilinear interpolation [21] to be consistent with that
of the generator input. At each level of the refinement layers of each generator,
the generator input is downsampled and concatenated with the output of the
previous refinement layer (upsampled using the bilinear interpolation) to produce
the input (except for the first refinement layer that receives the generator input
only).
Discriminator. Following [6], we design our discriminator as the classification
task rewarding high probability for real images and low one for generated images.
Our discriminator consists of five convolution layers, outputting 64, 128, 256, 512,
and 4 channels, respectively.
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II. More examples

We show some more examples in this supplementary material. These examples
show that our visual-relation layout preserves the scene structure more precisely
than the layouts by the compared state-of-the-arts. We remark that we have
confirmed that for all the results in the experiments, our method preserves the
scene structure consistent with text descriptions. Figure 2 shows results obtained
by our method, Johnson+ [1], Zhang+ [6], and Xu+ [9] on COCO-stuff [13].
Figure 3 shows results obtained by our method, Johnson+ [1], Zhang+ [6], and
Xu+ [9] on GENOME [14].

Figures 4 and 5 show some examples obtained by the ablation models. We see
that layouts by the completed model are consistent with those in ground-truth.
Moreover, we see that the quality of generated images by the models w/o any
subnet in our visual-relation layout module is degraded. This indicates that the
well-structured layout is crucial in generating photo-realistic images.

Next, we show the relation-units obtained by the individual usage subnet on
COCO-stuff [13] (Fig. 6) and GENOME [14] (Fig. 7). These examples illustrate
effectiveness of the individual usage subnet in keeping entities’ relations as much
as possible.

Finally, we show the outputs obtained along with the stacking-GANs on
COCO-stuff [13] (Fig. 8) and GENOME [14] (Fig. 9). These examples illustrate
effectiveness of the stacking-GANs in our method. From 64 × 64 to 128 × 128
resolution, details of images are significantly improved. From 128× 128 to 256×
256 resolution, on the other hand, the generated images become sharper. This can
be explained as follows. At the third GAN (256×256), the visual-relation layout
is upsampled twice using bilinear interpolation [21] (from 64× 64 to 256× 256).
This twice upsamplings may weaken the entity embeddings in the visual-relation
layout. As a result, the layout is not strong enough for the third GAN to generate
more details of entities (compared to the second GAN). Nevertheless, thanks to
the output of the second GAN, the third GAN can retain the scene structure and
generate sharper images. This observation leaves a room to improve the quality
of generated images.
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Fig. 2: Visual comparison on COCO-stuff [11]. For each example, we show the
scene graph and reference image at the first row. From second to the last rows,
we show the layouts and images generated by our method (256×256), Johnson+
[1] (64×64), Zhang+ [6] (256×256), and Xu+ [9] (256×256). The color of each
entity bounding-box corresponds to that in the scene graph. Scene graphs and
layouts are enlarged for best views.
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Fig. 3: Visual comparison on GENOME [14]. For each example, we show the
scene graph and reference image at the first row. From second to the last rows,
we show the layouts and images generated by our method (256×256), Johnson+
[1] (64×64), Zhang+ [6] (256×256), and Xu+ [9] (256×256). The color of each
entity bounding-box corresponds to that in the scene graph. Scene graphs and
layouts are enlarged for best views.



6 Duc M. Vo and A. Sugimoto

Model w/o 

individual usage

Model w/o 

weighted unification 

Completed modelModel w/o 

RefinedBB2layout

Reference layout 

and image

Scene graph

Comprehensive    

Individual ()  

RefinedBB2layout   

Scene graph

Scene graph

Scene graph

Fig. 4: Example of layouts and generated images by the ablation models. For
each model in each sample, the 1st row shows the layout, the 2nd row shows the
generated image. All images are at 256 × 256 resolution.



Supplementary Material 7

Model w/o 

individual usage

Model w/o 

weighted unification 

Completed modelModel w/o 

RefinedBB2layout

Reference layout 

and image

Scene graph

Comprehensive    

Individual ()  

RefinedBB2layout   

Scene graph

Scene graph

Scene graph

Fig. 5: Example of layouts and generated images by the ablation models. For
each model in each sample, the 1st row shows the layout, the 2nd row shows the
generated image. All images are at 256 × 256 resolution.
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Fig. 6: Example of relation-units in the individual usage subnet on COCO-stuff
[11]; layouts and generated images by model w/o weighted unification and com-
pleted model.
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Fig. 7: Example of relation-units in the individual usage subnet on GENOME
[14]; layouts and generated images by model w/o weighted unification and com-
pleted model.
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Fig. 8: Examples of outputs along with the stacking-GANs on COCO-stuff [11].
From left to right, scene graph, visual-relation layout, the outputs at 64 × 64,
128 × 128, 256 × 256 resolutions, and the reference image.
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Fig. 9: Examples of outputs along with the stacking-GANs on GENOME [14].
From left to right, scene graph, visual-relation layout, the outputs at 64 × 64,
128 × 128, 256 × 256 resolutions, and the reference image.


