Supplementary Materials: Patch-wise Attack for Fooling Deep Neural Network

Lianli Gao 1, Qilong Zhang 1, Jingkuan Song 1, Xianglong Liu 2, and Heng Tao Shen 1*

Center for Future Media and School of Computer Science and Engineering, University of Electronic Science and Technology of China, China Beihang University, China qilong.zhang@std.uestc.edu.cn

A Appendix

Here we discuss the influence of project factor γ and iteration T, we consider 12 models to do these experiments:

- NT: Inc-v3 [4], Inc-v4 [3], IncRes-v2 [3], Res-152 [1] and Dense-161 [2].
- EAT [5]: Inc-v3_{ens}, Inc-v3_{ens}, Inc-v3_{ens} and IncRes_{ens}.
- FD [6]: ResNeXt_{DA}, Res152_B and Res152_D.

Then we report the results for different project factor γ settings in Sec. A.1 and the influence of different iterations T in Sec. A.2.

A.1 Selection of project factor γ

In this section, we show the results of difference project factor γ settings. For the following tables, the amplification factor β and project kernel W_p are fixed to the same settings mentioned in our paper. As shown in Tab. 1,2,3,4,5,6, setting the project factor γ to $\epsilon/T \cdot \beta$ is the best choice in most cases. Besides, it is better not to use large project factor for attack methods with input diversity strategy, and if we use Res152_B as our substitute model to attack against feature denoising models, setting γ to 1.0 is better.

A.2 The number of iteration T

In this section, we discuss the influence of different iteration T. Here step size is set to ϵ/T , amplification factor β is set to T, and project factor T is set to T. From the results of Tab. 7,8,9, we observe that when the iteration T exceeds 10, further increasing it will not bring significant improvement. Besides, the computational cost is proportional to T. Since our PI-FGSM is based on FGSM, we want to highlight "fast". Therefore we do not consider a bigger T and just set T to 10 in our paper.

^{*} Corresponding author

Table 1. The average success rate(%) of non-targeted attacks in different project factor γ settings. Here we use Inc-v3 to generate adversarial examples by PI-FGSM.

T 0	т	4 D 150	II D 0	D 101	lτ ο	т о	lτ ο	I D	A .
Inc-v3	γ Inc-v	4 Res-152	IncRes-v2	Dense-161	Inc-v3 _{adv}	Inc-v3 _{ens3}	$Inc-v3_{ens4}$	$ \text{IncRes}_{en} $	s Avg
	1.0 39.5	2 28.7	33.8	36.5	24.2	13.7	12.8	7.1	24.5
	2.0 42.1	29.6	37.9	38.2	25.2	13.5	14.0	8.4	26.1
	3.0 42.	28.2	35.2	38.9	25.0	16.0	14.2	8.0	26.0
	4.0 42.8	3 29.9	39.7	40.8	24.9	15.6	14.8	9.0	27.2
	5.0 46.3	31.3	40.3	42.7	26.1	16.4	17.0	8.1	28.5
	6.0 48.4	31.8	40.9	44.4	27.1	18.1	16.7	9.8	29.7
	7.0 50.9	34.7	44.0	45.5	26.5	18.8	17.9	10.0	31.0
DI EGGM	8.0 53.1	36.2	45.5	46.6	28.5	20.2	19.7	11.7	32.7
PI-FGSM	9.0 52.8	35.3	45.3	49.8	28.7	21.6	21.7	13.3	33.6
	10.0 53.5	36.9	48.8	52.5	28.5	22.1	23.3	14.8	35.0
	11.0 55.8	39.9	49.6	53.4	30.0	26.7	27.2	17.0	37.5
	12.0 55.	40.9	50.8	55.3	29.8	28.1	29.7	18.7	38.6
	13.0 57.4	41.7	50.3	55.6	32.1	31.2	31.5	22.7	40.3
	14.0 57.8	3 44.7	51.4	58.3	35.3	34.1	35.0	25.8	42.8
	15.0 58.5	5 44.3	52.3	59.2	38.6	37.1	36.8	26.9	44.2
	16.0 59.	8 46.9	52.7	60.2	40.7	40.2	39.7	29.6	46.2

Table 2. The average success rate (%) of non-targeted attacks in different project factor γ settings. Here we use Inc-v3 to generate adversarial examples by DPI-FGSM.

Inc-v3	γ	Inc-v4	Res-152	IncRes-v2	Dense-161	$ \text{Inc-v3}_{adv} $	$Inc-v3_{ens3}$	$ \text{Inc-v3}_{ens4} $	$IncRes_{ens}$
	1.0	72.9	48.6	64.0	49.5	24.7	15.5	14.4	8.4
	2.0	73.0	50.4	65.2	54.7	26.2	15.4	15.6	8.6
	3.0	73.2	50.9	66.6	60.6	26.4	16.7	17.7	9.1
	4.0	70.1	49.0	62.1	60.3	25.9	17.5	15.8	9.1
	5.0	66.0	48.7	59.4	61.1	27.8	17.3	19.1	10.6
	6.0	62.7	47.9	54.7	61.6	27.7	18.0	19.9	9.5
	7.0	61.8	46.0	52.0	61.8	28.8	20.8	20.4	11.4
	8.0	58.2	45.5	47.8	59.2	30.4	21.8	23.8	12.0
DPI-FGSM	9.0	55.2	43.7	47.8	58.7	29.9	23.2	23.4	13.0
	10.0	53.9	44.6	46.2	59.1	31.1	26.0	26.4	16.5
	11.0	53.8	44.3	44.6	57.6	31.2	26.9	29.7	17.9
	12.0	55.2	42.5	45.3	58.7	33.3	30.4	32.7	19.0
	13.0	52.2	43.5	43.5	58.1	34.8	33.4	34.6	22.9
	14.0	55.3	41.7	40.8	59.0	37.0	35.0	35.9	26.4
	15.0	52.1	40.9	41.1	56.8	40.8	39.8	40.1	28.6
	16.0	51.9	43.5	41.5	57.9	42.3	40.9	41.6	31.2

Table 3. The average success rate(%) of non-targeted attacks in different project factor γ settings. Here we use Inc-v3 to generate adversarial examples by MPI-FGSM.

Inc-v3	$\mid \gamma \mid$	Inc-v4	Res-152	IncRes-v2	Dense-161	Avg
	1.0	56.2	41.2	54.5	46.1	49.5
	2.0	57.2	40.2	54.9	48.0	50.1
	3.0	57.6	41.2	57.0	46.0	50.5
	4.0	57.5	42.1	57.7	46.8	51.0
	5.0	58.8	42.0	56.2	47.2	51.1
	6.0	58.7	41.9	57.4	47.5	51.4
	7.0	57.7	43.5	57.2	48.4	51.7
	8.0	59.1	42.4	56.3	50.8	52.2
MPI-FGSM	9.0	58.7	42.4	56.3	48.6	51.5
	10.0	60.1	43.3	57.9	49.1	52.6
	11.0	60.1	43.4	59.5	51.9	53.7
	12.0	62.6	44.4	59.5	52.6	54.8
	13.0	62.6	45.3	59.7	55.7	55.8
	14.0	64.0	47.7	60.9	57.7	57.6
	15.0	64.1	48.1	60.4	59.0	57.9
	16.0	64.1	50.2	59.4	60.4	58.5

Table 4. The average success rate (%) of non-targeted attacks in different project factor γ settings. Here we use Inc-v3 to generate adversarial examples by TPI-FGSM.

Inc-v3	γ	Inc-v3_{adv}	$\operatorname{Inc-v3}_{ens3}$	$\left \text{Inc-v3}_{ens4} \right $	$IncRes_{ens}$	Avg
	1.0	32.8	29.7	31.0	20.9	28.6
	2.0 3.0	$32.0 \\ 34.0$	31.2 31.4	31.6 32.2	22.2 23.0	29.3 30.2
	4.0	34.0	32.7	34.0	22.6	30.8
	5.0 6.0	$34.9 \\ 35.3$	34.3 34.7	34.7 33.6	23.4 23.1	31.8
	7.0	35.8	35.8	36.1	24.4	33.0
TPI-FGSM	$\begin{vmatrix} 8.0 \\ 9.0 \end{vmatrix}$	$37.9 \\ 36.4$	36.4 37.0	37.5 38.3	$25.9 \\ 26.5$	34.4
	10.0	38.6	38.0	38.2	26.6	35.4
	$\begin{vmatrix} 11.0 \\ 12.0 \end{vmatrix}$	$38.0 \\ 40.4$	40.9 41.6	40.3 40.2	27.1 28.9	$\frac{36.6}{37.8}$
	13.0	41.8	42.8	43.3	29.7	39.4
	$\begin{vmatrix} 14.0 \\ 15.0 \end{vmatrix}$	43.8 46.6	44.0 46.6	44.7 47.0	$32.9 \\ 34.8$	41.4 43.8
	16.0	50.2	48.8	50.8	35.2	46.3

4 L.Gao, Q.Zhang et al.

Table 5. The average success rate(%) of non-targeted attacks in different project factor γ settings. Here we use Inc-v3 to generate adversarial examples by DMPI-FGSM.

Inc-v3	γ	Inc-v4	Res-152	IncRes-v2	Dense-161	Avg
	1.0	81.2	61.8	76.0	61.1	70.0
	2.0	81.7	64.5	77.3	63.6	71.8
	3.0	81.9	65.1	77.3	66.0	72.6
	4.0	79.7	63.1	75.7	67.9	71.6
	5.0	76.3	60.6	71.7	66.0	68.7
	6.0	74.4	56.6	69.1	67.1	66.8
	7.0	69.5	55.6	64.0	63.6	63.2
	8.0	66.1	52.9	59.1	65.4	60.9
DMPI-FGSM	9.0	63.6	51.0	58.4	64.0	59.3
	10.0	62.2	51.1	56.1	63.5	58.2
	11.0	63.6	52.0	56.7	64.0	59.1
	12.0	61.8	49.4	56.0	64.7	58.0
	13.0	62.9	50.1	55.6	64.8	58.4
	14.0	62.2	50.5	54.1	63.4	57.6
	15.0	60.4	49.5	53.9	62.6	56.6
	16.0	61.4	49.7	54.7	63.8	57.4

Table 6. The average success rate(%) of non-targeted attacks in different project factor γ settings. Here we use Res152 $_B$ ("*" indicates white-box attacks) to generate adversarial examples by PI-FGSM.

$Res152_B$	$ \gamma $	$\operatorname{ResNeXt}_{DA}$	$ { m Res}152_B $	$ { m Res}152_D $	Avg
	1.0	62.0	88.6*	61.5	70.7
	2.0	62.1	88.2*	61.6	70.6
	3.0	61.8	87.7*	62.0	70.5
	4.0	61.5	87.1*	61.6	70.0
	5.0	60.0	85.4*	58.8	68.1
	6.0	56.8	84.0*	56.0	65.6
	7.0	55.0	82.1*	53.4	63.5
	8.0	53.4	80.7*	50.8	61.6
PI-FGSM	9.0	51.9	79.6*	49.0	60.2
	10.0	50.9	78.7*	48.8	59.5
	11.0	51.3	78.2*	48.6	59.4
	12.0	50.8	78.0*	48.2	59.0
	13.0	50.2	77.8*	48.0	58.7
	14.0	50.3	77.8*	47.7	58.6
	15.0	50.2	77.7*	47.7	58.5
	16.0	50.2	77.7*	47.7	58.5

Table 7. The average success rate(%) of non-targeted attacks in different iteration T against NT. Here we use Inc-v3 to generate adversarial examples by PI-FGSM.

Inc-v3	iteration T	Inc-v4	Res-152	IncRes-v2	Dense-16	l Avg
	5	60.9	46.3	54.8	58.9	55.2
	10	59.8	46.9	52.7	60.2	54.9
	15	57.3	46.3	51.2	60.1	53.7
PI-FGSM	20	57.6	46.6	50.8	60.6	53.9
	25	58.1	47.2	49.7	61.3	54.1
	30	58.6	46.0	50.0	60.7	53.8

Table 8. The average success rate(%) of non-targeted attacks in different iteration T against EAT. Here we use Inc-v3 to generate adversarial examples by PI-FGSM.

Inc-v3	iteration T	$\operatorname{Inc-v3}_{adv}$	$Inc-v3_{ens3}$	$ \text{Inc-v3}_{ens4} $	$ IncRes_{ens} $	Avg
	5	39.4	33.6	33.8	24.7	23.0
	10	40.7	40.2	39.7	29.6	27.4
	15	40.8	39.7	40.0	29.0	27.2
PI-FGSM	20	40.5	40.6	41.3	30.1	28.0
	25	39.9	41.3	41.5	29.9	28.2
	30	40.1	41.1	40.6	31.4	28.3

Table 9. The average success rate (%) of non-targeted attacks in different iteration T against FD. Here we use $\mathrm{Res}152_B$ ("*" indicates white-box attacks) to generate adversarial examples by PI-FGSM.

$Res152_B$	iteration T	$ { m ResNeXt}_{DA} $	$ { m Res}152_B $	$ { m Res}152_D $	Avg
PI-FGSM	5 10	60.0 61.8	86.8* 88.6*	60.2 61.5	69.0 70.6
	$\frac{15}{20}$	62.6 62.9	89.3* 89.5*	61.7 61.9	71.2 71.5
	25 30	62.8 62.8	89.5* 89.8*	62.1 61.5	71.5 71.4

References

- 1. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016) 1
- 2. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR (2017) 1
- 3. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: AAAI (2017) 1
- 4. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR (2016) 1
- 5. Tramèr, F., Kurakin, A., Papernot, N., Goodfellow, I.J., Boneh, D., McDaniel, P.D.: Ensemble adversarial training: attacks and defenses. In: ICLR (2018) 1
- Xie, C., Wu, Y., van der Maaten, L., Yuille, A.L., He, K.: Feature denoising for improving adversarial robustness. In: CVPR (2019) 1