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Abstract. Recently, end-to-end CNNs have presented remarkable per-
formance for disparity estimation. But most of them are too heavy to
resource-constrained devices, because of enormous parameters necessary
for satisfactory results. To address the issue, we propose two compact
stereo networks, MABNet and its light version MABNet tiny. MABNet
is based on a novel Multibranch Adjustable Bottleneck (MAB) module,
which is less demanding on parameters and computation. In a MAB mod-
ule, feature map is split into various parallel branches, where the depth-
wise separable convolutions with different dilation rates extract features
with multiple receptive fields however at an affordable computational
budget. Besides, the number of channels in each branch is adjustable
independently to tradeoff computation and accuracy. On SceneFlow and
KITTI datasets, our MABNet achieves competitive accuracy with fewer
parameters of 1.65M. Especially, MABNet tiny reduces the parameters
to 47K by cutting down the channels and layers in MABNet.

Keywords: Stereo Matching, Disparity Estimation, Multibranch Ad-
justable Bottleneck module, Compact Networks

1 Introduction

Disparity estimation from a stereo pair of images provides depth information
which is a significant cue for many computer vision applications, such as au-
tonomous driving [19], 3D reconstruction [32] and augmented reality [1]. These
applications usually run on mobile devices or embedded platforms, including
drones [20], smart phones and vehicles. These resource-constrained devices pre-
fer the stereo system with low power consumption and small memory footprint.
Besides, stereo system has to be of low latency and high accuracy to ensure
the safety and the comfort, especially in autonomous driving. However, in or-
der to achieve high accuracy, we have to design complex model with a large
number of parameters and floating-point-operations (FLOPs), which conflicts
the energy efficiency required by resource-constrained devices. In this paper, we
propose two lightweight end-to-end stereo networks to tradeoff computation and
accuracy, namely MABNet and its light version MABNet tiny. They have fewer
parameters and FLOPs thus are more suitable to be deployed on embedded
devices.
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In general, traditional stereo matching pipeline consists of four steps: match-
ing cost calculation, cost aggregation, disparity computation and disparity re-
finement [12]. It computes the matching cost within a finite window, with the
limitation of dealing with the large texture-less areas, occlusions and repeating
textures. The accuracy and speed of traditional stereo matching methods are
still unable to meet the actual application requirements.

With the rapid development of deep convolutional neural networks (CNNs),
people proposed many learning-based stereo methods to overcome the limita-
tion of traditional methods. MC-CNN [44] first introduced CNNs in stereo to
calculate the matching cost by comparing image patches, and proved the great
potential of CNNs. Gradually, it replaced some of the aforementioned steps of
the traditional stereo pipeline. CCNN [28] and PBCP [31] estimate confidence
by CNNs, while LRCR [16] and RecResNet [3] train CNNs to refine the dispar-
ity. Learning-based stereo methods improve the accuracy but have to take more
time to process.

Inspired by the successes of end-to-end neural networks in optical flow compu-
tation [8], object detection and semantic segmentation [2, 5], CNNs have replaced
the total traditional stereo matching pipeline. The first end-to-end stereo net-
work is DispNet [24] proposed in 2016. DispNet achieves competitive accuracy
with MC-CNN [44] on KITTI dataset [10, 26] but runs 100× faster on GPU.
It utilizes encoder-decoder architecture which extracts unary features from a
stereo pair of images by 2D CNNs, correlates the features and then restores
the original resolution by consecutive deconvolutions. CRL [27], iResNet [21],
MADNet [34] encode similarity into feature channels by this feature correlation
method. However, their results loss the real geometric context and have to im-
prove accuracy at the expense of more parameters in filters. Instead of simply
correlating features, some networks, such as GC-Net [17], PSMNet [4], GA-Net
[45] and AMNet [9], correlate features at different disparity levels to build a 4D
cost volume and aggregate cost by 3D CNNs. They have fewer parameters but
take a longer time because of more operations in 3D CNNs.

Although end-to-end CNNs show superior performance in stereo, it is chal-
lenging to deploy end-to-end stereo networks on practical devices with limited
resource due to their enormous parameters and excessive FLOPs. People pay
too much attention to the high accuracy, constructing more complex networks.
For example, in comparison with GC-Net [17], GA-Net-deep [45] reduced three-
pixel-error (3PE) from 2.87% to 1.81% on KITTI2015 [26] but doubling the
number of parameters and runtime. In contrast to previous works, we focus
on the model size and feasibility of implementation on hardware and manage to
build as compact as possible stereo networks on the precondition of guaranteeing
precision.

We propose a lightweight bottleneck module constructed by depthwise sepa-
rable convolutions [7] with fewer parameters and FLOPs than standard convo-
lutions. In addition, in order to compensate the accuracy loss, it incorporates
standard convolution and dilated convolution [13] with different dilation rates
by split-transform-merge strategy [41], and uses channel shuffle operation [46] to
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promote the information communication between different groups. We name the
bottleneck module as Multibranch Adjustable Bottleneck (MAB) module since it
has several branches with different dilation rates and adjustable scale factors. As
for 3D MAB module, we factorize a standard 3D convolution into disparity-wise
convolution and spatial convolution to further reduce parameters and FLOPs.
Details of our 2D and 3D MAB modules are described in Section 3.1. Based on
the 2D and 3D MAB modules, we design our compact stereo networks MABNet
and MABNet tiny. MABNet with 1.65M parameters achieves 2.41% three-pixel-
error (3PE) on KITTI2015, while MABNet tiny with 47K parameters achieves
3.88% 3PE.

2 Related Work

There have been several concurrent works pushing towards learning-based stereo
in different directions, such as high accuracy, low latency and strong self-adaption.
In this paper, we are concerned with lightweight end-to-end stereo networks,
which is prone to be applied on embedded devices instead of GPUs. Some works
optimize the GPU to process neural network more efficiently and faster, or im-
prove the neural network to adapt the operation mode of GPU. They speed up
the stereo networks on GPU, but have fewer substantive benefit on the high
energy efficient implementation on embedded devices than reducing model size.

Different from them, StereoDRNet [33] devoted to reducing FLOPs. Based
on PSMNet [4], it improved the feature extraction module by vortex pooling [40],
and proposed a novel cost filtering network with fewer FLOPs to aggregate cost.
PDSNet [35], an applications-friendly deep stereo, designed a novel bottleneck
module, drastically reducing the memory footprint in inference. It also proposed
sub-pixel cross-entropy loss combined with a MAP estimator, making the system
applicable to different disparity ranges without retraining. Besides, LWSM [43]
utilized group convolution and dilated convolution to build upon an enhance-
ment block which has low computation complexity and memory consumption.
Their accuracy is competitive with classical end-to-end stereo networks, but their
models are smaller obviously.

Furthermore, there are more compact models, such as StereoNet [18] and
AnyNet [38]. StereoNet [18] achieved real-time performance by using a very
low-resolution cost volume, reducing the parameters by an order of magnitude
in comparison with PDSNet [35] or LWSM [43]. AnyNet [38] is a tiny stereo
network with only 40K parameters by the aid of U-Net [29] and SPNet [22].
It can process 1242×375 resolution images within a range of 10-35 FPS on an
NVIDIA Jetson TX2 module. However, due to excessive compression, both of
StereoNet and AnyNet’s accuracy drop severely.

In comparison with prior models on the approximate order of magnitude,
our MABNet and MABNet tiny achieve a noticeable improvement in accuracy.
Moreover, our models with fewer parameters and FLOPs are easier to be de-
ployed on embedded devices. The detailed experimental data is given in the
Section 4.3.
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3 Proposed Network

As the foundation of our networks, Multibranch Adjustable Bottleneck (MAB)
module is introduced firstly, including the structure and the advantage. Then we
provide an overview. In each part of its introduction, we describe the difference
between MABNet tiny and the origin MABNet.

3.1 Multibranch Adjustable Bottleneck (MAB) module

Most prior works, such as PSMNet [4], StereoDRNet [33] and GA-Net [45], uti-
lized ResNet block [11] (see Fig. 1) to design their feature extraction backbone,
leading to oversized models. Recently, there have been more compact and more
accurate networks, such as MobileNet [14, 30], SqueezeNet [15] and ShuffleNet
[46, 23]. They are used or referenced in different fields, showing great perfor-
mance. Besides for classification, FastDepth [39] adopted MobileNet [14, 30] to
design an encoder-decoder architecture for monocular depth estimation, while
ESPNet [25] used techniques in compact CNNs to build a network for seman-
tic segmentation. Driven by the successful experience, we designed Multibranch
Adjustable Bottleneck (MAB) module, as shown in Fig. 2 and Fig. 3.
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Fig. 1. ResNet block in PSMNet [4] does not apply ReLU after summation. (a)ResNet
block with stride=1. (b)ResNet block with stride=2.

We adopt split-transform-merge strategy [33] to design our MAB module.
Firstly, a 2D MAB module (see Fig. 2(a)) equally splits the input into two
subblocks by channel split operation [23]. Then, the first subblock is fed into
three parallel branches to generate features. The corresponding scale factors λi
in Fig. 2 and Fig. 3 controls the number of channels for input feature maps in
these branches separately. Generally, the first layer projects a high dimension
feature map onto a low dimension space via a pointwise convolution. Then a
depthwise convolution [6] with a certain dilation rate extracts features. The three
branches with dilation rates of {1,2,4} grab multilevel context information. Next,
we combine the outputs of three branches along channel dimension, followed by
another pointwise convolution to merge them. Finally, we concatenate it with
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Fig. 2. (a)2D MAB module with sizein=sizeout (stride=1 and Cin = Cout = C).
(b)2D MAB module with sizein 6=sizeout ((stride = S) 6= 1 or Cin 6= Cout). PWConv:
pointwise convolution. DWConv: depthwise convolution. λi={λ1,λ2 λ3}.

another subblock of input, then perform channel shuffle operation proposed in
ShuffleNet [46, 23] to make the input and output channels fully related.

Although dilated convolution used in our MAB enlarges the effective recep-
tive field without increasing the number of parameters, it may cause gridding
artifact [37] sacrificing the accuracy. Fortunately, our multibranch structure not
only contains context information of multiple receptive fields but also diminishes
gridding artifact through fusing output features of the three branches. Further-
more, considering that larger dilation rate leads to more paddings (filling in
zeros) which fades the effective information in feature maps and increases com-
putational cost, we finally choose the dilation rate as {1,2,4} in 2D MAB module.
In Section 4.2, we prove the choice by ablation studies.

In addition, features with different receptive fields benefit the depth esti-
mation of different scenes. Usually, large dilation rate learns coarse-grained re-
lationship, such as houses, cars and roads, helpful for disparity estimation in
background. On the contrary, small dilation rate needs more convolutions to
get the same receptive field, and learns more fine-grained information, like win-
dows, wheels and traffic lights. In Section 4.2, we research the best proportional
relationship between the three scale factors and a reasonable receptive field in
outputs.

Unlike the Fig. 2(a), the subfigure of Fig. 2(b) exhibits another 2D MAB
module when stride 6=1 or Cin 6= Cout. In the (b) module used to downsample,
we skip the channel split operation, but concatenate the input as a residual to
the result through a shortcut connection.

Besides the 2D MAB, we also implement two kinds of computational efficient
3D MAB modules, as shown in Fig. 3. Inspired by the spatial and temporal con-
volutions in 3D CNNs [42, 36] for video recognition, we factorize a standard 3D
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Fig. 3. (a)3D MAB module with sizein=sizeout (stride=1 and Cin = Cout = C).
(b)3D MAB module with sizein 6=sizeout ((stride = S) 6= 1 or Cin 6= Cout). PWConv:
pointwise convolution. DWConv: depthwise convolution. λi={λ1,λ2}.

convolution into two stages, namely disparity-wise convolution and spatial con-
volution. The disparity-wise convolution plays the same role as the first pointwise
convolution in 2D MAB module. Meanwhile, the resolution of 3D MAB in cost
aggregation is smaller than that of 2D MAB in feature extraction, asking 3D
MAB for fewer paddings. Therefore, 3D MAB deletes the branches with dilation
rate=4 and remains only two branches, which also reduce computation.

3.2 MABNet Overview
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Fig. 4. Architecture overview of MABNet and MABNet tiny.

As shown in Fig. 4, our stereo matching pipeline consists of four classical
steps. Firstly, the stereo pair of images each with the size of 3×H×W are fed to
two weight-sharing feature extractors respectively. The resolution of each output
feature map is reduced to a quarter of the original input image as C× 1

4H×
1
4W .

Then we correlate the two feature maps at different disparity levels to build a 4D
cost volume of 2C× 1

4D×
1
4H×

1
4W . Next, the cost volume is aggregated by 3D
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MAB modules followed by a bilinear interpolation to upsample the cost volume
back to the resolution of 1×D×H×W . Finally, we apply a regression procedure
in D dimension to obtain the disparity map of the same resolution as the input
images. Note that C, D, H and W denote the number of channels, the maximum
disparity, the height and the weight of the input image respectively in the paper.

3.3 Feature Extraction by 2D MAB
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Fig. 5. Feature extraction in MABNet. ×2, ×3 and ×15 represent the number of rep-
etitions. λ=[λ1,λ2,λ3]. The height of the rectangle is proportional to the resolution of
the output feature maps.

The schematic diagram of the feature extraction in MABNet and the pa-
rameters for each 2D MAB are presented in Fig. 5. We first use three cascaded
3×3 convolution filters, where the first filter has a stride of 2, downsampling the
input image. Next, four groups of 2D MAB modules extract further features.
The number of 2D MAB modules in the four groups are {3,16,3,3} individually,
generating the output feature maps of {32,64,128,128} channels respectively.
The outputs of the last three groups are concatenated to form a unary feature
map of 320 channels. Finally, through two convolution layers, we fuse the 320-
channel feature map to a cost volume of 32 channels then output it. Instead of
using four groups of 2D MAB modules, MABNet tiny uses only three groups of
{4,8,4} modules corresponding {8,16,32} channels, and gives a cost volume of 8
channels by fusing the outputs of the last two groups.

3.4 Cost Volume

After the feature extraction, we get the left and right feature maps, both with
the size of C× 1

4H×
1
4W . As illustrated in Fig. 6, following GC-Net [17], we form

a 4D cost volume of 2C× 1
4D×

1
4H×

1
4W by concatenating left feature map with

their corresponding right feature map at different disparity levels, rather than
concatenating a bulk of right feature maps at the end of the entire group of left
feature maps. Specifically, when a 1

4H×
1
4W feature map of left feature builds a

1
4D×

1
4H×

1
4W cost, the data stays at the original position. But the correspond-

ing right feature map shifts to the right sequentially with the necessary trimming
and padding.
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Fig. 6. Illustration of cost volume building. The colored parts represent data in feature
maps, while the white parts in the illustration of 4D cost volume represent data filled
with 0.

3.5 Cost Aggregation by 3D MAB
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Fig. 7. Cost aggregation in MABNet.

At cost aggregation stage, instead of stacking standard hourglass (encoder-
decoder) architecture proposed in PSMNet [4], we design a novel multibranch
hourglass, a bit similar to split-transform-merge structure. MABNet takes the
advantage of the three successive hourglass networks, as shown in Fig. 7. In each
hourglass network, a combination of four parallel branches and a 3D MAB mod-
ule encodes information with different receptive fields. The encoded information
is upsampled back to the same size as the input image by two 3D deconvolu-
tions and one bilinear interpolation. The two outputs in the first layer of each
hourglass network are concatenated and added to the output of first 3D de-
convolution through a short path to compensate the loss of features during the
encoding procedure, as linked by the blue arrows in Fig. 7. In MABNet, the
three successive hourglass networks generate three aggregated costs and three
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training losses (Loss1, Loss2, and Loss3) correspondingly. The loss function is
described in Section 3.7. As for the simplification of MABNet tiny, we keep only
one hourglass network in cost aggregation.

3.6 Disparity Regression

We employ the disparity regression proposed in GC-Net [17] to estimate the
continuous disparity map:

d̂ =

Dmax∑
d=0

d× σ (−cd) (1)

where the estimation disparity d̂ denotes the sum of each disparity d weighted
by its probability. And the probability is calculated from the cost volume −cd
via the softmax operation σ (·).

3.7 Training Loss

During training, we adopt smooth L1 loss to measure the difference between the
output of MABNet and the ground truth. L1 loss is robust but nondifferentiable
at disparity discontinuities, while L2 loss is differentiable everywhere but too
sensitivity to outliers. Hence, we formulate smooth L1 loss, defined as

L
(
d, d̂
)

=
1

N

N∑
i=1

smoothL1

(
di − d̂i

)
(2)

in which

smoothL1
(x) =

0.5x2, if
∣∣∣x∣∣∣ < 0.5∣∣∣x∣∣∣− 0.5, otherwise

(3)

where N is the total number of labeled pixels, d̂i is the predicted disparity and
di is the ground-truth disparity. Similar to PSMNet [4], the total training loss
is calculated as the weighted summation of the three losses. The total training
loss Ltotal in MABNet is defined as

Ltotal = 0.5× Loss1 + 0.7× Loss2 + Loss3. (4)

Because MABNet tiny uses just one hourglass network, its Ltotal equals to Loss1.

4 Experiments

In this section, we evaluate our MABNet on SceneFlow, KITTI2012 and KITTI2015
stereo datasets. We first introduce the datasets and the experiment settings.
Then we present ablation studies to compare different models with different pa-
rameter configurations. Finally, we compare the proposed stereo networks with
other state-of-the-art published methods.
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4.1 Implementation Details

Datasets SceneFlow [24] is a large-scale synthetic dataset with 35454 stereo
pairs for training and 4370 stereo pairs for testing, all being of 540×960 reso-
lution. It provides dense disparity maps as ground truth. We use the end-point
error (EPE) as the evaluation metric, which means the average absolute disparity
error in pixels.

Unlike SceneFlow, KITTI is a real-world dataset with street views from a
driving car, consisting of KITTI2012 [10] and KITTI2015 [26]. KITTI2012 con-
tains 194 training stereo pairs with semi-dense ground truth disparities acquired
using a LIDAR sensor and 195 testing stereo pairs without ground truth dispari-
ties, both of which are of 376×1240 resolution. KITTI2015 contains 200 training
stereo pairs and 200 testing stereo pairs. Since there is no ground truth disparity
in testing set, we divide the whole training data into a training set (80%) and
a validation set (20%) in our ablation studies. Finally, we submit the results to
the KITTI online benchmark to evaluate our models. Note that KITTI consider
a pixel to be correctly estimated if the disparity end-point error is <3 pixels
or <5%. The percentage of erroneous pixels (3PE) is the evaluation metric for
KITTI dataset.

Experiment settings We implement our stereo networks in PyTorch and train
them by Adam optimizer with β1=0.9 and β2=0.999 on four Nvidia RTX 2080Ti.
During training, we crop the input image to size 256×512 randomly and perform
color normalization to process all of them. Besides, we fix the batch size to 8
and set the maximum disparity Dmax to 192.

4.2 Ablation Studies

In the proposed MAB module, the number of branches, scale factors are ad-
justable. Through the following ablation studies, we want to figure out the im-
pact of the parameter configuration to the accuracy of MABNet. Basically, a
larger number of branches and higher scale factors lead to more expensive com-
putational demand while not necessarily a better accuracy of the stereo network.
We performed two sets of experiments in MABNet to decide the proper param-
eter configuration in 2D and 3D MAB modules. Each model was evaluated on
SceneFlow and KITTI2015. For SceneFlow dataset, we trained the model from
scratch for 10 epochs with learning rate=0.001. For KITTI2015, there are only
160 training stereo pairs and 40 validation stereo pairs, making models suscepti-
ble to over-fitting. Thus, we used the pretrained SceneFlow model and finetuned
it for 300 epochs. The learning rate of this fine-tuning began at 0.001 for first
200 epochs, then drops to 0.0001 for remaining 100 epochs. Finally, we computed
EPE on the SceneFlow test set and the percentage of 3PE on the KITTI 2015
validation set.

Different numbers of branches in 2D MAB module To figure out the best
choice for the number of branches in 2D MAB module, we did four experiments in
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MABNet with the fixed scale factors as 0.5 both in 2D and 3D MAB modules.
The reason we only did experiments with 2D MAB is because the number of
branches in 3D MAB can be inferred from the results about 2D MAB. And
adding a branch in 3D MAB will greatly increase FLOPs, which is time and
resources consuming. In the experiments, λ1, λ2 and λ3 are the scale factor in
the branch with dila=1, dila=2 and dila=4 respectively. Besides, we added the
4th branch with dila=8 and λ4.

Table 1. Evaluation of MABNet with different numbers of branches in 2D MAB
module. λ1, λ2, λ3 and λ4 are scale factors in 2D MAB. FLOPs represent floating-point-
operations in processing a stereo pair of 256×512, including convolution, activation
function and batch normalization.

Branches λ1 λ2 λ3 λ4 Parameters FLOPs SceneFlow(EPE) KITTI2015(3PE)

1 0.5 - - - 1.525M 188.26G 1.072 3.236%
2 0.5 0.5 - - 1.573M 189.16G 1.111 3.349%
3 0.5 0.5 0.5 - 1.621M 190.07G 1.056 3.174%
4 0.5 0.5 0.5 0.5 1.669M 190.97G 1.588 3.225%

The results listed in Table 1 show that setting three branches in 2D MAB is
the most reasonable case. As for experiments with one and two branches, they
do not extract enough multilevel features, causing lower accuracy than that
with three branches. As for the experiment with four branches, although it has
features with more level at the cost of more parameters and FLOPs, its result
is comparatively unacceptable especially when tested on Sceneflow [24] which
contains lots of pictures of monkey and flying objects. As mentioned in Section
3.1, larger dilation rate in the additional branch leads to more paddings, fading
the effective information in feature maps. On the other hand, larger dilation
rate good for the estimation of background disparity contains scanty foreground
information. Therefore, the experiment with four branches yields a worse depth
estimation.

Different scale factors in MAB module After determining the number of
branches, we further explored the proportional relationship between the three
scale factors. Similar to 2D MAB, λ1, λ2 in 3D MAB are the scale factors in
the branches with dila=1 and dila=2 respectively. To narrow the search space,
we constrained the λi to be 1

2n (n=0,1,2), which ensured that the number of
output channels was an integer and greater than 1. Besides, we only performed
experiments on SceneFlow since KITTI validation dataset has too few samples
to get regular results.

We first carry out the experiments with fixed λ in 3D MAB module as 0.5 and
0.25. The results about 2D MAB modules in Table 2 proves that λ1 had positive
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impact on the accuracy but λ3 had opposite effect. Therefore, we empirically
fixed the scale factors of 2D MAB in the next three experiments in Table 3, trying
to explore the importance of λi in 3D MAB. We found that the configuration of
{1,0.5,0.25,0.5,0.25} gives the best result.

Table 2. Evaluation of MABNet with different scale factors in 2D MAB module.

2D MAB 3D MAB
Parameters

SceneFlow
λ1 λ2 λ3 λ1 λ2 (EPE)

0.25 0.5 0.5 0.5 0.25 1.591M 1.107
0.5 0.5 0.5 0.5 0.25 1.615M 1.072
1 0.5 0.5 0.5 0.25 1.663M 1.041

0.5 0.25 0.5 0.5 0.25 1.591M 1.075
0.5 0.5 0.5 0.5 0.25 1.615M 1.072
0.5 1 0.5 0.5 0.25 1.663M 1.073

0.5 0.5 0.25 0.5 0.25 1.591M 1.091
0.5 0.5 0.5 0.5 0.25 1.615M 1.072
0.5 0.5 1 0.5 0.25 1.663M 1.161

Table 3. Evaluation of MABNet with different scale factors in 3D MAB modules.

2D MAB 3D MAB
Parameters

SceneFlow
λ1 λ2 λ3 λ1 λ2 (EPE)

1 0.5 0.25 0.25 0.5 1.639M 1.127
1 0.5 0.25 0.5 0.25 1.639M 0.987
1 0.5 0.25 0.5 0.5 1.645M 1.006
1 0.5 0.25 1 0.5 1.655M 0.994

4.3 Evaluations on Benchmarks

We evaluated our MABNet and MABNet tiny on SceneFlow and KITTI to prove
the effectiveness of our MAB module. Unlike ablation studies, we increased the
number of trainings to 20 epochs for SceneFlow and 600 epochs for KITTI. For
SceneFlow, the learning rate was 0.001 initially, 0.0005 for 16th-18th epoch and
0.0001 for 19th-20th. For KITTI, we used the pretrained SceneFlow model in
15th epoch. The learning rate was 0.001 initially, 0.0005 for 300th-399th epoch,
0.0002 for 400th-499th epoch and 0.0001 for 500th-600th epoch.

According to the online KITTI2015 leaderboard, as shown in Table 4, in
comparison with other models on the approximate order of magnitude, our com-
pact models with fewer parameters achieves competitive accuracy. Especially,
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MABNet tiny improves the accuracy significantly over StereoNet and AnyNet.
We obtain the same observation through the experimental results on KITTI2012
and SceneFlow, illustrated in Table 5.

Table 4. Evaluation results on KITTI2015 benchmark. The percentages of erroneous
pixels for non-occluded (Noc) and all (All) pixels in background (D1-bg), foreground
(D1-fg) and all areas (D1-all) are reported. Note that AnyNet [38] is tested on the
Nvidia Jetson TX2 GPU computing module.

Method
All(%) Noc(%)

Parameters Runtime
D1-bg D1-fg D1-all D1-bg D1-fg D1-all

GC-Net [17] 2.21 6.16 2.87 2.02 5.58 2.61 3.5M 0.9s
PSMNet [4] 1.86 4.62 2.32 1.71 4.31 2.14 5.2M 0.41s
PDSNet [35] 2.29 4.05 2.58 2.09 3.68 2.36 2.2M 0.5s
LWSM [43] 1.86 5.35 2.44 1.69 4.68 2.18 1.8M 0.24s
MABNet 1.89 5.02 2.41 1.74 4.59 2.21 1.65M 0.38s

StereoNet [18] 4.30 7.45 4.83 - - - 360K 0.015s
AnyNet [38] - - 6.20 - - - 40K 0.0973s
MABNet tiny 3.04 8.07 3.88 2.80 7.28 3.54 47K 0.11s

Table 5. Evaluation results on KITTI2012 and SceneFlow benchmark. The percentages
of erroneous pixels (Out) and the average end-point errors (Avg) for both non-occluded
(Noc) and all (All) pixels are reported on KITTI2012. The error threshold is set to 2.

Method
KITTI2012 SceneFlow

Out-Noc(%) Out-All(%) Avg-Noc(px) Avg-all(px) (EPE)

GC-Net [17] 2.71 3.46 0.6 0.7 2.51
PSMNet [4] 2.44 3.01 0.5 0.6 1.09
PDSNet [35] 3.82 4.65 0.9 1.0 1.12
LWSM [43] 2.48 3.17 0.5 0.6 0.8
MABNet 2.43 3.02 0.5 0.5 0.797

StereoNet [18] 4.91 6.02 0.8 0.9 1.101
MABNet tiny 4.45 5.27 0.7 0.8 1.663

As shown in Table 6, compared with PSMNet [4] and StereoNet [18], the
proposed MABNet and MABNet tiny that have much less network parameters
do not exhibit the advantage of running time on the platform of GPU. We dis-
cover that the depthwise convolutions involved in the 2D and 3D MAB modules
cannot perform efficiently on GPUs. Because the procedure of a convolution
is similar to a general matrix multiplication (GEMM) operation, before which
GPU must perform an im2col operation, transforming the input 3D data into
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a 2D matrix. Therefore, a depthwise convolution needs to repeat the im2col
and GEMM operation C times because it has C groups of feature map, while
a standard convolution needs only once in2col operation. Since the number of
parameters influences the memory access cost [46], as well as the number of
FLOPs determines the number of multiply-and-accumulate (MAC) operations,
we believe MABNet and its light version should achieve superior efficiency on
the other hardware flatforms, like embedded DNN accelerators for edge devices.

Table 6. Evaluation results of FLOPs for processing a stereo pair of 256×512, including
convolution, activate function and batch normalization.

Method PSMNet [4] MABNet StereoNet [18] MABNet tiny

FLOPs 257.01G 190.75G 14.08G 6.60G
Runtime 0.41s 0.38s 0.015s 0.11s

5 Conclusions

We propose the MAB module which can extract features with multiple recep-
tive fields and is adjustable in the number of channels in each branch. Moreover,
we are looking forward to applying the MAB module to more fields, such as
object detection, semantic segmentation and classification. Based on the MAB
module, we propose two lightweight stereo network MABNet and its light ver-
sion MABNet tiny. Experimental results on SceneFlow and KITTI demonstrate
the effectiveness of the MAB module, MABNet and MABNet tiny. More impor-
tantly, our models with few parameters and low computational complexity are
easy to be deployed on resource-constrained devices.
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