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Abstract. We propose and study a method called FLOT that estimates
scene flow on point clouds. We start the design of FLOT by noticing that
scene flow estimation on point clouds reduces to estimating a permutation
matrix in a perfect world. Inspired by recent works on graph matching,
we build a method to find these correspondences by borrowing tools from
optimal transport. Then, we relax the transport constraints to take into
account real-world imperfections. The transport cost between two points
is given by the pairwise similarity between deep features extracted by a
neural network trained under full supervision using synthetic datasets.
Our main finding is that FLOT can perform as well as the best existing
methods on synthetic and real-world datasets while requiring much less
parameters and without using multiscale analysis. Our second finding is
that, on the training datasets considered, most of the performance can
be explained by the learned transport cost. This yields a simpler method,
FLOTy, which is obtained using a particular choice of optimal transport
parameters and performs nearly as well as FLOT.

1 Introduction

Scene flow [38] is the 3D motion of points at the surface of objects in a scene. It
is one of the low level information for scene understanding, which can be useful,
e.g., in autonomous driving. Its estimation is a problem which has been studied
for several years using different modalities as inputs such as colour images, with,
e.g., variational approaches [1], [15] or methods using piecewise-constant priors
[16], [22], [39], or also using both colour and depth as modalities [2], [12], [32].
In this work, we are interested in scene flow estimation on point clouds only
using 3D point coordinates as input. In this setting, [3] proposed a technique
based on the minimisation of an objective function that favours closeness of
matching points for accurate scene flow estimate and local smoothness of this
estimate. In [35], 2D occupancy grids are constructed from the point clouds and
given as input features to a learned background removal filter and a learned
classifier that find matching grid cells. A minimisation problem using these grid
matches is then proposed to compute a raw scene flow before a final refinement
step. In [36], a similar strategy is proposed but the match between grid cells is
done using deep features. In [3], [17], the point clouds are projected onto 2D
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cylindrical maps and fed in a traditional CNN trained for scene flow estimation.
In contrast, FLOT directly consumes point clouds by using convolutions defined
for them. The closest related works are discussed in Section 2.

We split scene flow estimation into two successive steps. First, we find soft-
correspondences between points of the input point clouds. Second, we exploit
these correspondences to estimate the flow. Taking inspiration from recent works
on graph matching that use optimal transport to match nodes/vertices in two
different graphs [18], [29], [34], we study the use of such tools for finding soft-
correspondences between points.

Our network takes as input two point clouds captured in the same scene at
two consecutive instants ¢ and ¢+ 1. We extract deep features at each point using
point cloud convolutions and use these features to compute a transport cost
between the points at time ¢ and ¢ + 1. A small cost between two points indicates
a likely correspondence between them. In the second step of the method, we
exploit these soft-correspondences to obtain a first scene flow estimate by linear
interpolation. This estimate is then refined using a residual network. The optimal
transport and networks’ parameters are learned by gradient descent under full
supervision on synthetic datasets.

Our main contributions are: (a) an optimal transport module for scene flow
estimation and the study of its performance; (b) a lightweight architecture that
can perform as well as the best existing methods on synthetic and real-world
datasets with much less parameters and without using multiscale analyses; (¢) a
simpler method FLOT( obtained for a particular choice of the OT parameters
and which achieves competing results with respect to the state-of-the-art methods.
We arrive at this simplified version by noticing that most of the performance in
FLOT are explained by the learned transport cost. We also notice that the main
module of FLOT( can be seen as an attention mechanism. Finally, we discuss,
in the conclusion, some limitations of FLOT concerning the absence of explicit
treatment of occlusions in the scene.

2 Related Works

Deep Scene Flow Estimation on Point Clouds. In [1], a deep network is
trained end-to-end to estimate rigid motion of objects in LIDAR scans. The closest
related works where no assumption of rigidity is made are [11], [15], [40], [16]. In

[40], a parametric continuous convolution that operates on data lying on irregular
structures is proposed and its efficiency is demonstrated on segmentation tasks and

scene flow estimation. The method [15] relies on PointNet++ [30] and uses a new
flow embedding layer that learns to mix the information of both point clouds to
yield accurate flow estimates. In [11], a technique to perform sparse convolutions

on a permutohedral lattice is proposed. This method allows the processing of
large point clouds. Furthermore, it is proposed to fuse the information of both
point clouds at several scales, unlike in [15] where the information is fused once
at a coarse scale. In contrast, our method fuse the information once at the finest
scale. Let us highlight that our optimal transport module is independent of the
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type of point cloud convolution. We choose PointNet++ but other convolution
could be used. In [16], PWC-Net [33] is adapted to work on point clouds. The
flow is estimated in a coarse-to-fine scale fashion showing improvement over the
previous method. Finally, let us mention that recent works [25], [16] address this
topic using self-supervision. We however restrict ourselves to full supervision in
this work.

Graph Matching by Optimal Transport. Our method is inspired by
recent works on graphs comparison using optimal transport. In [18], the graph
Laplacian is used to map a graph to a multidimensional Gaussian distribution
that represents the graph structure. The Wasserstein distance between these
distributions is then used as a measure of graph similarity and permits one to
match nodes between graphs. In [27], each graph is represented as a bag-of-vectors
(one vector per node) and the measure of similarity is the Wasserstein distance
between these sets. In [29], a method building upon the Gromov-Wasserstein
distance between metric-measure spaces [21] is proposed to compare similarity
matrices. This method can be used to compare two graphs by, e.g., representing
each of them with a matrix containing the geodesic distances between all pairs of
nodes. In [34], it is proposed to compare graphs by fusing the Gromov-Wassertsein
distance with the Wasserstein distance. The former is used to compare the graph
structures while the latter is used to take into account node features. In our
work, we use the latter distance. A graph is constructed for each point cloud by
connecting each point to its nearest neighbours. We then propose a method to
train a network that extract deep features for each point and use these features
to match points between point clouds in our optimal transport module.

Algorithm Unrolling. Our method is based on the algorithm unrolling
technique which consists in taking an iterative algorithm, unrolling a fixed number
of its iterations, and replacing part of the matrix multiplications/convolutions in
these unrolled iterations by new ones trained specifically for the task to achieve.
Several works build on this technique, such as [10], [17], [24], [20] to solve linear
inverse problems, or [5], [14], [20], [41] in for image denoising (where the denoiser
is sometimes used to solve yet another inverse problem). In this work, we unroll
few iterations of the Sinkhorn algorithm and train the cost matrix involved in it.
This matrix is trained so that the resulting transport plan provides a good scene
flow estimate. Let us mention that this algorithm is also unrolled, e.g., in [9] to
train a deep generative network, and in [31] for image feature assignments.

3 Method

3.1 Step 1: Finding Soft-Correspondences between Points

Let p, ¢ € R™*3 be two point clouds of the same scene at two consecutive instants
t and ¢ + 1. The vectors p;,q; € R3 are the xyz coordinates of the it* and ;"
points of p and q, respectively. The scene flow estimation problem on point clouds
consists in estimating the scene flow f € R™*3 where f; € R? is the translation
of p; from ¢ to t + 1.
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Fig. 1. The point clouds p and g go through g which outputs a feature for each input
point. These features (black arrows) go in our proposed OT module where they are
used to compute the pairwise similarities between each pair of points (p;,q;). The
output of the OT module is a transport plan which informs us on the correspondences
between the points of p and q. This information permits us to compute a first scene
flow estimate f , which is refined by h to obtain fest. The convolution layers (conv) are
based on PointNet++ [30] but the OT module could accept the output of any other
point cloud convolution. The dashed-blue arrows indicate that the point coordinates
are passed to each layer to be able to compute convolutions on points.

Perfect World. We construct FLOT starting in the perfect world where p+ f =
Pq, with P € {0,1}"*" a permutation matrix. The role of FLOT is to estimate
the permutation matrix P without the knowledge of f. In order to do so, we
use tools from optimal transport. We interpret the motion of the points p; as
a displacement of mass between time t and ¢ + 1. Each point in the first point
cloud p is attributed a mass which we fix to n~'. Each point q; then receives
the mass n~! from p; if p; + fi = g, or, equivalently, if P;; = 1. We propose
to estimate the permutation matrix P by computing a transport plan T € Rixn
from p to g which satisfies

n
T € argmin Z C;jU;; subjectto Ul=1n"' and UT1=1n""' (1)
UERT™™ j j=1

where 1 € R" is the vector with all entries equal to 1, and C;; > 0 is the
displacement cost from point p; to point g; [28]. Each scalar entry T,;; > 0 of
the transport plan T represents the mass that is transported from p; to g;.
The first constraint in (1) imposes that the mass of each point p; is entirely
distributed over some of the points in q. The second constraint imposes that each
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Input: cost matrix C; parameters K, A, e > 0.
Output: transport plan T.
a 1n’1;

U+ exp(— C/e);

for k=1,...,K do
b [(1n"") @ (UTa)V Ot
a«[(1n"h) o UM+,
end

T « diag(a) U diag(d) ;
Algorithm 1: Optimal transport module. The symbol @ denote the element-
wise division and multiplication, respectively.

points g; receives exactly a mass n~! from some of the points p. No mass is lost
during the transfer. Note that in the hypothetical case where the cost matrix C
would contain one zero entry per line and per column then the transport plan is
null everywhere except on these entries and the mass constraints are immediately
satisfied via a simple scaling of the transport plan. In this hypothetical situation,
the mass constraints would be redundant for our application as it would have
been enough to find the zero entries of C to estimate P. It is important to note
the mass constraints play a role in the more realistic situation where “ambiguities”
are present in C by ensuring that each point gives/receives a mass n~! and that
each point in p has a least one corresponding point in q and vice-versa.

We note that n~'P satisfies the optimal transport constraints. We need now
to construct C so that T = n~!P.

Real World and Fast Estimation of T. In the real world, the equality
p + f = Pq does not hold because the surfaces are not sampled at the same
physical locations at ¢ and ¢ + 1 and because objects can (dis)appear due to
occlusions. A consequence of these imperfections is that the mass preservation in
(1) does not hold exactly: mass can (dis)appear. One solution to circumvent this
issue is to relax the constraints in (1). Instead of solving (1), we propose to solve

- 1 1
Uernn Z 3 Yij i (logUs; — 1) ( n> ( n
(2)

where €, A > 0, and KL denotes the KL-divergence. The term U;;(logU;; — 1)
in (2) is an entropic regularisation on the transport plan. Its main purpose, in
our case, is to allow the use of an efficient algorithm to estimate the transport
plan: the Sinkhorn algorithm [7]. The version of this algorithm for the optimal
transport problem (2) is derived in [6] and is presented in Alg. 1. The parameter
€ controls the amount of entropic regularisation. The smaller € is, the sparser
the transport plan is, hence finding sparse correspondences between p and q.
The regularisation parameter A adjust how much the transported mass deviates

ij=1
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from the uniform distribution, allowing mass variation. One could let A — 400
to impose strict mass preservation.

Note that the mass regularisation is controlled by the power A/(\ + €) in
Alg. 1. This power tends to 1 when A — 400 to impose strict mass preservation
and reaches 0 in absence of any regularisation. Instead of fixing the parameters
€, A in advance, we let these parameters free and learn them by gradient descent
along with the other networks’ parameters.

We would like to recall that, in the perfect world, it is not necessary for the
power \/(\ + €) to reach 1 to yield accurate results as the final quality is also
driven by the quality of C. In a perfect situation where the cost would be perfectly
trained with a bijective mapping already encoded in C by its zero entries, then
any amount of mass regularisation is sufficient to reach accurate results. This
follows from our remark at the end of the previous subsection but also from the
discussion in the subsection below on the role of C and the mass regularisation.
In a real situation, the cost is not perfectly trained and we expect the power
A/(A+ ¢€) to vary in the range of (0, 1) after training, reaching values closer to 1
when trained in a perfect world setting and closer to 0 in presence of occlusions.

Learning the Transport Cost. An essential ingredient in (2) is the cost
C € R™*™ where each entry C;; encodes the similarity between p; to point g;.
An obvious choice could be to take the Euclidean distance between each pair
of points (pi, q;), i.e., C;j = ||p; — g;||2, but this choice does not yield accurate
results. In this work, we propose to learn the displacement costs by training a
deep neural network g : R"*3 — R"*¢ that takes as input a point cloud and
output a feature of size ¢ for each input point. The entries of the cost matrix are
then defined using the cosine distance between the features g(p);, g(q); € R at
points p; and q;, respectively:

T

(9] 9(9); y s
Cyj <1 |g(p)i”2”g(q)j”2> -1l <dmax (Pi — @) - 3)

The more similar the features g(p); and g(q); are, the less the cost of transporting
a unit mass from p; to q; is. The indicator function

Lif Pi — gj <dmax7
|| J||2 (4)

i|\~||2<dmax (Pi —qj) = {—I—oo otherwise,

is used to prevent the algorithm to find correspondences between points too far
away from each other. We set dpyax = 10 m.

In order to train the network g, we adopt the same strategy as, e.g., in [9]
to train generative models or in [31] for matching image features. The strategy
consists in unrolling K iterations of Alg. 1. This unrolled iterations constitute
our OT module in Fig. 1. One can remark that the gradients can backpropagate
through each step of this module and allow us to train g.

On the Role of C and of the Mass Regularisation. We gather in this
paragraph the earlier discussions on the role of C and the mass regularisation.
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For the sake of the explanation, we come back in the perfect-world setting and
consider (1). In this ideal situation, one could further dream that it is possible
to train g perfectly such that C;; is null for matching points, ¢.e., when P;; =1,
and strictly positive otherwise. The transport plan would then satisfy T = n~!P
with a null transport cost. However, one should note that the solution T would
entirely be encoded in C up to a global scaling factor: the non-zero entries of T
are at the zero entries of C. In that case, the mass transport constraints only
adjust the scale of the entries in T. Such a perfect scenario is unlikely to occur
but these considerations highlight that the cost matrix C could be exploited alone
and could maybe be sufficient to find the appropriate correspondences between p
and g for scene flow estimation. The mass transport regularisation plays a role
in the more realistic case where ambiguities appears in C. The regularisation
enforces, whatever the quality of C and with a “strength” controlled by A, that
the mass is distributed as uniformly as possible over all points. This avoids that
some points in p are left with no matching point in q, and vice-versa.

FLOT,. FLOT) is a version of FLOT where only the cost matrix C is exploited
to find correspondences between p and q. This method is obtained when removing
the mass transport regularisation in (2), i.e., by setting A = 0. In this limit, the
“transport plan” satisfies

T = exp(— C/e). (5)

T is then used in the rest of the method as if it was the output of Alg. 1.

3.2 Step 2: Flow Estimation from Soft-Correspondences

We obtained, in the previous step, a transport plan T that gives correspondences
between the points of p, q. Our goal now is to exploit these correspondences to
estimate the flow. As before, it is convenient to start in the perfect world and
consider (1). In this setting, we have seen that f = Pq — p and that, if g is well
trained, we expect n~'P = T. Therefore, an obvious estimate of the flow is

n n n
_ 1 > i1 Vi G5
fz'zg Piij—piZjE Tijq —pi=“L— —pi, (6)
j=1 n j=1 Z Tij

j=1

where we exploited the fact that 327, T;j = n~" in the last equality.

In the real world, the first equality in (6) does not hold. Yet, the last expression
in (6) remains a sensible first estimation of the flow. Indeed, this computation is
equivalent to computing, for each point p;, a corresponding virtual point that is
a barycentre of some points in q. The larger the transported mass T;; from p;
to g; is, the larger the contribution of g; to this virtual point is. The difference
between this virtual point and p; gives an estimate of the flow f;. This virtual
point is a “guess” on the location of p; + f; made knowing where the mass from
p; is transported in q.



8 G. Puy et al.

However, we remark that the flow f estimated in (6) is, necessarily, still
imperfect as it is highly likely that some points in p + f cannot be expressed as
barycentres of the found corresponding points g. Indeed, some portion of objects
visible in p might not visible any more in g due to the finite resolution in point
cloud sampling. The flow in these missing regions cannot be reconstructed from
q but has to be reconstructed using structural information available in p, relying
on neighbouring information from the well sampled regions. Therefore, we refine
the flow using a residual network:

.fest :f+h(.f)’ (7)

where h : R"*3 — R™%€ takes as inputs the estimated flow f and uses convolutions
defined on the point cloud p.

Let us finally conclude this section by highlighting the fact that, in the case
of FLOTy, (6) simplifies to

>oi—1exp(—Cij/e) (g5 — pi)
>i—1exp(—Cij/e)

On can remark that the OT module essentially reduces to an attention mechanism
[37] in that case. The attention mechanism is thus a particular case of FLOT
where the entropic regularisation € plays the role of the softmax temperature. Let
us mention that similar attention layers haved been showed effective in related
problems such as rigid registration [42,43 44].

fi= (®)

3.3 Training

The network’s parameters, denoted by 6, and ¢, are trained jointly under full
supervision on annotated synthetic datasets of size L. Note that to enforce
positivity of €,~, we learn their log values. A constant offset of 0.03 is applied to
€ to avoid numerical instabilities in the exponential function during training.

The sole training loss is the ¢1-norm between the ground truth flow f and
the estimated flow fogs:

L
o1 ¢
min = >~ [MO (79 - 50| . )
=1

where M) € R"*™ is a diagonal matrix encoding an annotated mask used to
remove points where the flow is occluded.

We use a batchsize of 4 at n = 2048 and a batchsize of 1 at n = 8192 using
Adam [13] and a starting learning rate of 0.001. The learning rate is kept constant
unless specified in Section 4.

3.4 Similarities and Differences with Existing Techniques

A first main difference between FLOT and [11], [15], [46] is the number of
parameters which is much smaller for FLOT (see Table 1). Another difference is
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that we do not use any downsampling and upsampling layers. Unlike [11], [16],
we do not use any multiscale analysis to find the correspondences between points.
The information between point clouds is mixed only once, as in [15], but at the
finest sampling resolution and without using skip connections between g and h.
We also notice that [11], [15], [46] rely on a MLP or a convnet applied on the
concatenated input features to mix the information between both point clouds.
The mixing function is learned and thus not explicit. It is harder to find how
the correspondences are effectively done, i.e., identify what input information
is kept or not taken into consideration. In contrast, the mixing function in
FLOT is explicit with only two scalars €, A adjusted to the training data and
whose roles are clearly identified in the OT problem (2). The core of the OT
module is a simple cross-correlation between input features, which is a module
easy to interpret, study and visualise. Finally, among all the functions that the
convnets/MLPs in [1 1], [15], [46] can approximate, it is unlikely that the resulting
mixing function actually approximates the Sinkhorn algorithm, or an attention
layer, after learning without further guidance than those of the training data.

4 Experiments

4.1 Datasets

As in related works, we train our network under full supervision using Fly-
ingThings3D [19] and test it on FlyingThings3D and KITTI Scene Flow [22,23].
However, none of the datasets provide point clouds directly. This information
needs to be extracted from the original data. There is at least two slightly different
ways of extracting these 3D data, and we report results for both versions for
a better assessment of the performance. The first version of the datasets are
prepared”® as in [11]. No occluded point remains in the processed point clouds.
We denote these datasets FT3Dg and KITTI,. The second version of the datasets
are the ones prepared” by [15] and denoted FT3D,, and KITTL,. These datasets
contains points where the flow is occluded. These points are present at the input
and output of the networks but are not taken into account to compute the
training loss (9) nor the performance metrics, like in [15]. Further information
about the datasets is in the supplementary material. Note that we keep aside
2000 examples from the original training sets of FT3Dg and FT3D,, as validation
sets, which are used in Section 4.3.

4.2 Performance Metrics

We use the four metrics adopted in [11], [L5], [46]: the end point error EPE; two
measures of accuracy, denoted by AS and AR, computed with different thresholds
on the EPE; a percentage of outliers also computed using a threshold on the
EPE. The definition of these metrics is recalled in the supplementary material.

3 Code and pretrained model available at https://github.com/laoreja/HPLFloullet.
* Code and datasets available at https://github.com/xingyul/flownet3d.
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Table 1. Performance of FLOT on the validation sets of FT3D,, FT3Ds, and FT3D,
(top). Performance of FLOT measured at the output of the OT module, i.e., before
refinement by h, on FT3D, and FT3D; (bottom). The corresponding performance
on FT3D, is in the supplementary material. We report average scores and, between
parentheses, their standard deviations. Please refer to Section 4.3 for more details.

Dataset K € A/(A+¢€) EPE AS AR Out.
FLOTy 0.03 (0.00) O (fixed) 0.0026 (0.0005) 99.56 (0.08) 99.69 (0.05) 0.44 (0.10)
FT3D 1 0.03 (0.00) 0.70 (0.00) 0.0011 (0.0001) 99.83 (0.01) 99.89 (0.01) 0.17 (0.01)
‘q;'; 3 0.03 (0.00) 0.82 (0.00) 0.0009 (0.0001) 99.85 (0.01) 99.90 (0.01) 0.16 (0.01)
g 5 0.03 (0.00) 0.88 (0.00) 0.0009 (0.0001) 99.84 (0.02) 99.90 (0.01) 0.17 (0.02)
9]
é FLOTy 0.03 (0.00) O (fixed) 0.0811 (0.0005) 50.32 (0.34) 83.08 (0.24) 52.15 (0.34)
g FT3D 1 0.03 (0.00) 0.64 (0.01) 0.0785 (0.0003) 50.91 (0.52) 83.67 (0.10) 51.73 (0.38)
2 ° 3 0.03 (0.00) 0.59 (0.00) 0.0786 (0.0010) 51.06 (0.95) 83.78 (0.35) 51.72 (0.76)
q% 5 0.03 (0.00) 0.56 (0.00) 0.0798 (0.0003) 49.77 (0.50) 83.39 (0.08) 52.58 (0.31)
=}
x FLOTy 0.03 (0.00) O (fixed) 0.1834 (0.0018) 21.94 (0.69) 52.79 (0.53) 77.19 (0.43)
B FT3D 1 0.03 (0.00) 0.50 (0.01) 0.1798 (0.0009) 22.01 (0.14) 53.39 (0.24) 76.77 (0.16)
° 3 0.03 (0.00) 0.34 (0.00) 0.1797 (0.0014) 22.77 (0.53) 53.74 (0.54) 76.39 (0.43)
5 0.03 (0.00) 0.35 (0.01) 0.1813 (0.0020) 22.64 (0.41) 53.58 (0.41) 76.52 (0.46)
5 FLOTy 0.0026 (0.0006) 99.59 (0.07) 99.70 (0.05) 0.42 (0.10)
g FT3D, 1 Same as above 0.0010 (0.0001) 99.83 (0.01) 99.89 (0.01) 0.18‘ (0.01)
b 3 0.0009 (0.0000) 99.85 (0.01) 99.90 (0.01) 0.16 (0.01)
fE 5 0.0010 (0.0001) 99.84 (0.03) 99.90 (0.01) 0.17 (0.02)
5]
; FLOT, 0.1789 (0.0004) 17.57 (0.07) 43.34 (0.08) 75.34 (0.07)
é FT3D, 1 Same as above 0.1721 (0.0005) 18.24 (0.11) 44.64 (0.14) 74.54 (0.11)
o 3 0.1764 (0.0003) 17.64 (0.07) 43.52 (0.10) 75.09 (0.07)
b4 5 0.1761 (0.0009) 17.68 (0.13) 43.60 (0.23) 75.07 (0.13)

Let us highlight that the performance reported on KITTIg and KITTI, are
obtained by using the model trained on FT3Dg and FT3D,, respectively without
fine tuning. We do not adapt the model for any of the method. We nevertheless
make sure that the zyz axes are in correspondence for all datasets.

4.3 Study of FLOT

We use FT3Dg, FT3D,, and FT3D,, to check what values the OT parameters €, A
reach after training, to study the effect of K on the FLOT’s performance and
compare it with that of FLOTy. FT3D,, is exactly the same dataset as FT3Dq
except that we enforce p + f = Pq when sampling the point to simulate the
perfect world setting. The sole role of this ideal dataset is to confirm that the
OT model holds in the perfect world, the starting point of our design.

For these experiments, training is done at n = 2048 for 40 epochs and takes
about 9 hours. Each model is trained 3 times starting from a different random
draw of 0 to take into account variations due to initialisation. Evaluation is
performed at n = 2048 on the validation sets. Note that the n points are drawn
at random also at validation time. To take into account this variability, validation
is performed 5 different times with different draws of the points for each of the
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Fig. 2. Illustration of correspondences, found by FLOT (K = 1) trained on n = 8192
(see Section 4.4), between p and g in two different scenes of KITTI;. We isolated
one car in each of the scenes for better visualisation. The point cloud p captured
at time t is represented in orange. The lines show the correspondence between a
query point p; and the corresponding point g;« in g on which most the mass is
transported: j* = argmax; T;;. The colormap on q represents the values in T; where
yellow corresponds to 0 and blue indicates the maximum entry in T,; and show how the
mass is concentrated around g;-.

trained model. For each score and model, we thus have access to 15 values whose
mean and standard deviation are reported in Table 1. We present the scores
obtained before and after refinement by h.

First, we notice that ¢ = 0.03 for all model after training. We recall that we
applied a constant offset of 0.03 to prevent numerical errors occurring in Alg. 1
in the exponential function when reaching to small value of €. Hence, the entropic
regularisation, or, equivalently, the temperature in FLOT, reaches its smallest
possible value. Such small values favour sparse transport plans T, yielding sparse
correspondences between p and q. An illustration of these sparse correspondences
is provided in Fig. 2. We observe that the correspondences are accurate and that
the mass is well concentrated around the target points, especially when these
points are near corners of the object.

Second, the power A/(\ + ¢€), which controls the mass regularisation, reaches
higher values on FT3D,, than FT3D,. This is the expected behaviour as FT3D,,
contains no imperfection and FT3D, contains occlusions. The values reached on
FT3Dg are in between those reached on FT3D,, than FT3D,. This is also the
expected behaviour as FT3Dy is free of occlusions and the only imperfections are
the different sampling of the scene as ¢t and ¢ + 1.

Third, on FT3D,, FLOT reduces by 2 the EPE compared to FLOT, which
nevertheless already yields good results. Increasing K from 1 to 3 further reduces
the error and stabilises at K = 5. This validates the OT model in our the perfect
world setting: the OT optimum and perfect world optimum coincide.

Fourth, on FT3Dg and FT3D,, the average scores are better for FLOT than
FLOT, except for two metrics at K = 5 on FT3Dg. The nevertheless good
performance of FLOT( indicates that most of it is due to the trained transport
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Table 2. Performance on FT3Ds and KITTI;. The scores of FlowNet3D and
HPLFlowNet are obtained from [11]. We also report the scores of PointPWC-Net
available in [46], as well as those obtained using the official implementation’. Italic
entries are for methods publicly available but not yet published at submission time.

Dataset Method EPE AS AR Out. Size (MB)
FlowNet3D [15] 0.114 41.2 77.1 60.2 15
HPLFlowNet [11] 0.080 61.4 85.5 42.9 77

FT3Dg FLOT (K =1) 0.052 73.2 92.7 35.7 0.44
PointPWC-Net [/0] 0.059 73.8 92.8 34.2 30
PointPWC-Net! 0.055 79.0 94 .4 29.8 30
FlowNet3D [15] 0.177 37.4 66.8 52.7 15
HPLFlowNet [11] 0.117 47.8 77.8 41.0 ke

KITTIg FLOT (K =1) 0.056 75.5 90.8 24.2 0.44
PointPWC-Net [/0] 0.069 72.8 88.8 26.5 30
PointPWC-Net' 0.067 78.5 90.6 22.8 30

cost C. On FT3Dg and FT3D,, changing K from 1 to 3 has less impact on the
EPE than on FT3D,. We also detect a slight decrease of performance when
increasing K from 3 to 5. The OT model (2) can only be an approximate model
of the (simulated) real-world. The real-world optimum and OT optimum do not
coincide. Increasing K brings us closer to the OT optimum but not necessarily
always closer to the real-world optimum. K becomes an hyper-parameter that
should be adjusted. In the following experiments, we use K =1 or K = 3.

Finally, the absence of h has no effect on the performance on FT3D,, with
FLOT still performing better than FLOT(. This shows that OT module is able
to estimate accurately the ideal permutation matrix P on its own and that
the residual network h is not needed in this ideal setting. However, h plays a
important role on the more realistic datasets FT3Dg and FT3D,, with an EPE
divided by around 2 when present.

4.4 Performance on FT3Dg and KITTI

We compare the performance achieved by FLOT and the alternative methods on
FT3Dg and KITTI; in Table 2. We train FLOT using n = 8192 points, as in [11],
[46]. The learning rate is set to 0.001 for 50 epochs before dividing it by 10 and
continue training for 10 more epochs.

The scores of FlowNet3D and HPLFlowNet are obtained directly from [11].
We report the scores of PointPWC-net available in [16], as well as the better scores
we obtained using the associated code and pretrained model.” The model sizes
are obtained from the supplementary material of [15] for FlowNet3D, and from
the pretrained models provided by [11] and [16]. HPLFlowNet, PointPWC-Net
and FLOT contain 19 M, 7.7 M, and 0.11 M parameters, respectively.

® Code and pretrained model available at https://github.com/DylanWusee/PointPUC.
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Table 3. Performance on FT3D, and KITTI,.

Dataset Method EPE AS AR Out.
FlowNet3D [15] 0.160 25.4 58.5 78.9
FT3D, FLOTy 0.160 33.8 63.8 70.5
FLOT (K = 1) 0.156 34.3 64.3 70.0
FLOT (K = 3) 0.161 32.3 62.7 71.7
FlowNet3D [15] 0.173 27.6 60.9 64.9
KITTI, FLOTy 0.106 45.3 73.7 46.7
FLOT (K = 1) 0.110 41.9 72.1 48.6
FLOT (K = 3) 0.107 45.1 74.0 46.3

FLOT performs better than FlowNet3D and HPLFlowNet on both FT3Dj
and KITTI;. FLOT achieves a slightly better EPE than PointPWC-Net on
KITTI; and a similar one on FT3D5. However, PointPWC-Net achieves better
accuracy and has less outliers. FLOT is the method that uses the less trainable
parameters (69 times less than PointPWC-Net).

We illustrate in Fig. 3 the quality of the scene flow estimation for two scenes
of KITTI;. We notice that FLOT aligns correctly all the objects. We also remark
that the flow f estimated at the output of the OT module is already of good
quality, even though the performance scores are improved after refinement.

4.5 Performance on FT3D, and KITTI,

We present another comparison between FlowNet3D and FLOT using FT3D,
and KITTI,, originally used in [15]. We train FlowNet3D using the associated
official implementation. We train FLOT and FLOT( on n = 2048 points using
a learning rate of 0.001 for 340 epochs before dividing it by 10 and continue
training for 60 more epochs.

The performance of both methods is reported in Table 3. We notice that FLOT
and FLOT, achieve a better accuracy than FlowNet3D with an improvement
of AS of 8.8 points on FT3D, and 17.7 on KITTI,. The numbers of outliers are
reduced by the same amount. FLOT at K = 1 performs the best with FLOT
close behind. On KITTI,, the best performing model are those of FLOT and
FLOT at K = 3.

The reader can remark that the results of FlowNet3D are similar to those
reported in [15] but worse on KITTI,. The evaluation on KITTI, is done differ-
ently in [15]: the scene is divided into chunks and the scene flow is estimated
within each chunk before a global aggregation. In the present work, we keep
the evaluation method consistent with that of Section 4.4 by following the same
procedure as in [11], [46]: the trained model is evaluated by processing the full
scene in one pass using n random points from the scene.
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Fig. 3. Two scene from KITTI; with input point clouds p, q along with the ground
truth p + f, estimated p 4+ f and refined p + fest using FLOT (K = 1) at n = 8192.

5 Conclusion

We proposed and studied a method for scene flow estimation built using optimal
transport tools. It can achieves similar performance to that of the best performing
method while requiring much less parameters. We also showed that the learned
transport cost is responsible for most of the performance. This yields a simpler
method FLOT(, which performs nearly as well as FLOT.

We also noticed that the presence of occlusions affects the performance of
FLOT negatively. The proposed relaxation of the mass constraints in Eq. (2)
permits us to limit the impact of these occlusions on the performance but does not
handle them explicitly. There is thus room for improvements by detecting, e.g.,
by analysing the effective transported mass, and treating occlusions explicitly.
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